教育巴巴 > 教案模板 >

九年级数学教案课件反思

时间: 新华 教案模板

九年级数学教案课件反思篇1

20__-20__学年即将到来,大家在两个月的暑期调整后,又精神抖擞地投入到紧张、繁忙而有序地教育教学工作中,怎样做好这些艰巨而富有重大意义的工作,在今后的教学工作中能有效地、有序地进行下去,围绕校关于20__年下半年工作计划要求制定初三在本学期的教学计划。

一、抓常规课堂管理入手,严格规范课前准备,立足提高课堂效率,重视课后反思,定位规律探究。做到:

1.备好课:争取每节课前,与同组同仁们讨论、研究确定教学的重点、难点、教学目标、教法、学法,甚至例题的选用,作业的布置等等,做到五备,让每一节课上出实效,让每位学生愉悦的获得新知。

2.上好课:在备好课的基础上,上好每一个45分钟,提高45分钟的效率,让每一位同学都听的懂,对部分基础较差者要循序渐进,以选用的例题的难易程度不同,使每个学生能“吃”饱、“吃”好。

3.注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验。

4.批好每一次作业:作业反映了一节课的效果如何,学生对知识的掌握程度如何,认真批改作业,使教师能迅速掌握情况,对症下药。

5.按时检验学习成果,做到单元测验的有效、及时,测验卷子的批改不过夜。考后对典型错误利用学生想马上知道答案的心理立即点评。

6.及时指导、纠错:争取面批、面授,今天的任务不推托到明日,争取一切时间,紧紧抓住初三阶段的每分每秒。

二、基本功,提高自身“内力”

积极参加学校组织的各项与教育教学有关的活动。9月份的上课评课,10月份的六认真检查,11月期中考试,12月的区检查。每周至少做一套初三综合试卷。看一篇专业文章,多听课,博采众长,不断提高自身“内力”。

三、分层辅导,因材施教

对本年级的学生实施分层辅导,利用优胜劣汰的方法,激励学生的学习激情,保证升学率及优良率,提高及格率。对部分差生实行课后辅导,以提高成绩。

四、严格按照教学进度,有序的进行教学工作。

用心去做,从细节去做,尽自己追大的努力,发挥自己最大的能力去做好初三毕业班的教学工作。

九年级数学教案课件反思篇2

一.说教材

1.教材的地位与作用

《一元二次方程的解法》是人教版九年级上册第二十一章第二节的内容。从本章来看,前几节课已经学习了一元二次方程的概念及四种解法,后面即将学习一元二次方程的应用,本节课具有承上启下的作用;从本册书来看,一元二次方程是后面学习二次函数、圆中的有关计算的基础;从整个初中阶段学生数学学习的内容来看,一元二次方程是初中数学“数与代数”的的重要内容之一,在初中数学中占有重要地位,通过一元二次方程的学习,可以对已学过的实数、一元一次方程、因式分解、二次根式等知识加以巩固,同时又是今后学习可化为一元二次方程的其它多元方程、高次方程、一元二次不等式、二次函数等知识的基础;从学科领域来看,学习一元二次方程对其它学科也有重要意义,如物理学中电学的一些计算、化学中根据化学方程式的计算等,都要用到一元二次方程的知识。本节课是一元二次方程的解法的练习课,旨在通过对一元二次方程四种解法的类比归纳,让学生会选择适当的方法解一元二次方程,并在学习中体会一些常用的数学思想。

2.教学目标

(1)熟练掌握一元二次方程的四种解法,并能选择适当的方法解一元二次方程。

(2)通过对一元二次方程的四种解法进行类比,理解解一远二次方程的基本思想是“降次”,体验分类讨论、转化归纳等数学思想。

(3)通过学生间合作交流、探索,进一步激发学生的学习热情,求知欲望,同时提高小组合作意识和一丝不苟的精神。

3.教学重难点

重点:用适当的方法解一元二次方程。

难点:对解一远二次方程的基本思想是“降次”的理解。

二.说教法学法

常言道:知己知彼,百战不殆。我们教学就相当于和学生作战,只有了解学生的学习情况,才能够针对学生的具体水平而选择最好的方法将知识传授给学生,所以要先分析学情,再确定教法。

1.学情分析

在学习本节课之前,学生已经学习了一元二次方程的概念及四种解法,在七、八年级的时候也学习了一元一次方程、二元一次方程组、分式方程的解法,掌握了一些解方程的基本能力。再者,九年级学生的数学思维已有一定程度的发展,具有一定分析推理能力,同时,在讨论、探索、交流学习等方面有较为丰富的`知识和经验,因此,应更多地应用探讨、合作交流等方法让学生去求得新知识,加深和扩展学生对一些数学思想的理解。

2.教法学法

本节课的主要任务是熟练掌握一元二次方程的四种解法,并能选择适当的方法解一元二次方程,所以,我采用的方法可以概括性为四个字:精讲多练。讲,就是讲四种解法的优缺点及“降次”的思想;练,就是通过大量的解一元二次方程的练习题,让学生体会选择适当的方法的重要性及所有的一元二次方程都是通过“降次”转化为一元一次方程而求解,体验化归的数学思想。

所以,本节课主要采用引探式教学方法,在活动中教师着眼于“引”尽力激发学生求知的欲望,引导他们解决问题并掌握解决问题的规律和方法,学生着眼于“探”,通过探索活动发现规律,解决问题,发展探索能力和创造能力。同时,采用电脑多媒体课件辅助教学,利用投影仪出示练习题,节约了课堂时间,保证学生能有充足的时间进行练习、交流,还可以展示学生的练习结果,纠正学生存在的共性问题。

三.说教学过程

1.回顾旧知:学生回顾一元二次方程的概念及四种解法(直接开平方法、配方法、公式法、因式分解法)

2.探究新知:出示四道有代表性的一元二次方程,要求学生自己选择方法解方程。学生完成任务后,以小组为单位交流或者跨小组交流,看看彼此用的是不是同一种方法,若方法不同,比较看谁的方法更简单。教师深入各小组了解学生的解题情况,并选出几个有代表性的学生的解题过程在投影仪上展示。

3.归纳小结:教师以四名学生的解法为例,引导学生体会不同的一元二次方程可以选择不同的方法来解,选择的基本原则就是简单易行。对于形如完全平方等于非负数的形式的一元二次方程,采用直接开平方法来解;对于方程的左边能用提公因式或乘法公式分解因式分解的一元二次方程,则采用因式分解法求解;其余的方程,则选择公式法或配方法。通过比较发现,无论选择哪一种方法解一元二次方程,基本的思想都是“降次”。直接开平方法和公式法是通过开平方达到降次的目的,配方法是通过配方再开平方达到降次的目的,因式分解法是通过把方程分解成两个一次因式的积等于0的.形式而达到降次的目的,可谓是殊途同归。同时可以看出,这几种方法都是将“二次”降为“一次”,然后将一个一元二次方程化成了两个一元一次方程,然后用七年级学过的一元一次方程的解法来解决问题,这体现了一种转化的数学思想。可以给学生强调:我们学习数学知识有一种重要的方法,就是将遇到的新问题转化成我们已经学过的的、已经能解决的旧问题而解决,这就是转化归纳的数学思想。

4.拓展延伸:通过对一元二次方程解法的归纳,学生发现解一元二次方程的基本思想是“降次”,由此可以拓展:解高次方程的基本思想就是“降次”,降高次为一次,那么解多元方程的基本思想就是“消元”,这样学生就会理解以前学习的二元一次方程组和三元一次方程组的解法都采用的是代入消元法和加减消元法了。为学生以后学习多元高次方程的解法打下良好的基础。

5.巩固练习:通过前面的练习和讲解,学生对一元二次方程的解法有了新的认识,这时应该趁热打铁,再出示几道习题让学生练习。

九年级数学教案课件反思篇3

弧、弦、圆心角

1.理解圆心角的概念和圆的旋转不变性,会辨析圆心角.

2.掌握在同圆或等圆中,圆心角与其所对的弦、弧之间的关系,并能应用此关系进行相关的证明和计算.

重点

圆心角、弦、弧之间的相等关系及其理解应用.

难点

从圆的旋转不变性出发,发现并论证圆心角、弦、弧之间的相等关系.

活动1 动手操作,得出性质及概念

1.在两张透明纸片上,分别作半径相等的⊙O和⊙O′.

2.将⊙O绕圆心旋转任意角度后会出现什么情况?圆是中心对称图形吗?

3.在⊙O中画出两条不在同一条直线上的半径,构成一个角,这个角叫什么角?学生先说,教师补充完善圆心角的概念.

如图,∠AOB的顶点在圆心,像这样的角叫做圆心角.

4.判断图中的角是否是圆心角,说明理由.

活动2 继续操作,探索定理及推论

1.在⊙O′中,作与圆心角∠AOB相等的圆心角∠A′O′B′,连接AB,A′B′,将两张纸片叠在一起,使⊙O与⊙O′重合,固定圆心,将其中一个圆旋转某个角度,使得OA与O′A′重合,在操作的过程中,你能发现哪些等量关系,理由是什么?请与小组同学交流.

2.学生会出现多对等量关系,教师给予鼓励,然后,老师小结:在等圆中相等的圆心角所对的弧相等,所对的弦也相等.

3.在同一个圆中,相等的圆心角所对的弧相等吗?所对的弦相等吗?

4.综合2,3,我们可以得到关于圆心角、弧、弦之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.请用符号语言把定理表示出来.

5.分析定理:去掉“在同圆或等圆中”这个条件,行吗?

6.定理拓展:教师引导学生类比定理,独立用类似的方法进行探究:

(1)在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角,所对的弦也分别相等吗?

(2)在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,所对的弧也分别相等吗?

综上所述,在同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等.

活动3 学以致用,巩固定理

1.教材第84页 例3.

多媒体展示例3,引导学生分析要证明三个圆心角相等,可转化为证明所对的弧或弦相等.鼓励学生用多种方法解决本题,培养学生解决问题的意识和能力,感悟转化与化归的数学思想.

活动4 达标检测,反馈新知

教材第85页 练习第1,2题.

活动5 课堂小结,作业布置

课堂小结

1.圆心角概念及圆的旋转不变性和对称性.

2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,以及其应用.

3.数学思想方法:类比的数学方法,转化与化归的数学思想.

作业布置

1.如果两个圆心角相等,那么(  )

A.这两个圆心角所对的弦相等

B.这两个圆心角所对的弧相等

C.这两个圆心角所对的弦的弦心距相等

D.以上说法都不对

2.如图,AB和DE是⊙O的直径,弦AC∥DE,若弦BE=3,求弦CE的长.

3.如图,在⊙O中,C,D是直径AB上两点,且AC=BD,MC⊥AB,ND⊥AB,M,N在⊙O上.

(1)求证:︵AM=︵BN;

(2)若C,D分别为OA,OB中点,则︵AM=︵MN=︵BN成立吗?

答案:1.D;2.3;3.(1)连接OM,ON,证明△MCO≌△NDO,得出∠MOA=∠NOB,得出︵AM=︵BN;(2)成立.

九年级数学教案课件反思篇4

教材内容

1.本单元教学的主要内容:

二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.

2.本单元在教材中的地位和作用:

二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.

教学目标

1.知识与技能

(1)理解二次根式的概念.

(2)理解(a≥0)是一个非负数,()2=a(a≥0),=a(a≥0).

(3)掌握•=(a≥0,b≥0),=•;

=(a≥0,b>0),=(a≥0,b>0).

(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.

2.过程与方法

(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.

(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,并运用规定进行计算.

(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.

(4)通过分析前面的计算和化简结果,抓住它们的共同特点,给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.

3.情感、态度与价值观

通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.

教学重点

1.二次根式(a≥0)的内涵.(a≥0)是一个非负数;()2=a(a≥0);=a(a≥0)及其运用.

2.二次根式乘除法的规定及其运用.

3.最简二次根式的概念.

4.二次根式的加减运算.

教学难点

1.对(a≥0)是一个非负数的理解;对等式()2=a(a≥0)及=a(a≥0)的理解及应用.

2.二次根式的乘法、除法的条件限制.

3.利用最简二次根式的概念把一个二次根式化成最简二次根式.

教学关键

1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.

2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,培养学生一丝不苟的科学精神.

单元课时划分

本单元教学时间约需11课时,具体分配如下:

21.1二次根式3课时

21.2二次根式的乘法3课时

21.3二次根式的加减3课时

教学活动、习题课、小结2课时

21.1二次根式

第一课时

教学内容

二次根式的概念及其运用

教学目标

理解二次根式的概念,并利用(a≥0)的意义解答具体题目.

提出问题,根据问题给出概念,应用概念解决实际问题.

教学重难点关键

1.重点:形如(a≥0)的式子叫做二次根式的概念;

2.难点与关键:利用“(a≥0)”解决具体问题.

教学过程

一、复习引入

(学生活动)请同学们独立完成下列三个问题:

问题1:已知反比例函数y=,那么它的图象在第一象限横、纵坐标相等的点的坐标是___________.

问题2:如图,在直角三角形ABC中,AC=3,BC=1,∠C=90°,那么AB边的长是__________.

问题3:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S2,那么S=_________.

老师点评:

问题1:横、纵坐标相等,即x=y,所以x2=3.因为点在第一象限,所以x=,所以所求点的坐标(,).

问题2:由勾股定理得AB=

问题3:由方差的概念得S=.

二、探索新知

很明显、、,都是一些正数的算术平方根.像这样一些正数的算术平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.

(学生活动)议一议:

1.-1有算术平方根吗?

2.0的算术平方根是多少?

3.当a<0,有意义吗?

老师点评:(略)

例1.下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、-、、(x≥0,y≥0).

分析:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.

解:二次根式有:、(x>0)、、-、(x≥0,y≥0);不是二次根式的有:、、、.

例2.当x是多少时,在实数范围内有意义?

分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,才能有意义.

解:由3x-1≥0,得:x≥

当x≥时,在实数范围内有意义.

三、巩固练习

教材P练习1、2、3.

四、应用拓展

例3.当x是多少时,+在实数范围内有意义?

分析:要使+在实数范围内有意义,必须同时满足中的≥0和中的x+1≠0.

解:依题意,得

由①得:x≥-

由②得:x≠-1

当x≥-且x≠-1时,+在实数范围内有意义.

例4(1)已知y=++5,求的值.(答案:2)

(2)若+=0,求a20__+b20__的值.(答案:)

五、归纳小结(学生活动,老师点评)

本节课要掌握:

1.形如(a≥0)的式子叫做二次根式,“”称为二次根号.

2.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.

六、布置作业

1.教材P8复习巩固1、综合应用5.

2.选用课时作业设计.

3.课后作业:《同步训练》

第一课时作业设计

一、选择题1.下列式子中,是二次根式的是()

A.-B.C.D.x

2.下列式子中,不是二次根式的是()

A.B.C.D.

3.已知一个正方形的面积是5,那么它的边长是()

A.5B.C.D.以上皆不对

二、填空题

1.形如________的式子叫做二次根式.

2.面积为a的正方形的边长为________.

3.负数________平方根.

三、综合提高题

1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,底面应做成正方形,试问底面边长应是多少?

2.当x是多少时,+x2在实数范围内有意义?

3.若+有意义,则=_______.

4.使式子有意义的未知数x有()个.

A.0B.1C.2D.无数

5.已知a、b为实数,且+2=b+4,求a、b的值.

第一课时作业设计答案:

一、1.A2.D3.B

二、1.(a≥0)2.3.没有

三、1.设底面边长为x,则0.2x2=1,解答:x=.

2.依题意得:,

∴当x>-且x≠0时,+x2在实数范围内没有意义.

3.

4.B

5.a=5,b=-4

九年级数学教案课件反思篇5

目的要求

1.理解并掌握函数值与最小值的意义及其求法.

2.弄清函数极值与最值的区别与联系.

3.养成“整体思维”的习惯,提高应用知识解决实际问题的能力.

内容分析

1.教科书结合函数图象,直观地指出函数值、最小值的概念,从中得出利用导数求函数值和最小值的方法.

2.要着重引导学生弄清函数最值与极值的区别与联系.函数值和最小值是比较整个定义域上的函数值得出的,而函数的极值则是比较极值点附近两侧的函数值而得出的,是局部的.

3.我们所讨论的函数y=f(x)在[a,b]上有定义,在开区间(a,b)内有导数.在文科的数学教学中回避了函数连续的概念.规定y=f(x)在[a,b]上有定义,是为了保证函数在[a,b]内有值和最小值;在(a,b)内可导,是为了能用求导的方法求解.

4.求函数值和最小值,先确定函数的极大值和极小值,然后,再比较函数在区间两端的函数值,因此,用导数判断函数极大值与极小值是解决函数最值问题的关键.

5.有关函数最值的实际应用问题的教学,是本节内容的难点.教学时,必须引导学生确定正确的数学建模思想,分析实际问题中各变量之间的关系,给出自变量与因变量的函数关系式,同时确定函数自变量的实际意义,找出取值范围,确保解题的正确性.从此,在函数最值的求法中多了一种非常优美而简捷的方法——求导法.依教学大纲规定,有关此类函数最值的实际应用问题一般指单峰函数,而文科所涉及的函数必须是在所学导数公式之内能求导的函数.

教学过程

1.复习函数极值的一般求法

①学生复述求函数极值的三个步骤.

②教师强调理解求函数极值时应注意的几个问题.

2.提出问题(用字幕打出)

①在教科书中的(图2-11)中,哪些点是极大值点?哪些点是极小值点?

②x=a、x=b是不是极值点?

③在区间[a,b]上函数y=f(x)的值是什么?最小值是什么?

④一般地,设y=f(x)是定义在[a,b]上的函数,且在(a,b)内有导数.求函数y=f(x)在[a,b]上的值与最小值,你认为应通过什么方法去求解?

3.分组讨论,回答问题

①学生回答:f(x2)是极大值,f(x1)与f(x3)都是极小值.

②依照极值点的定义讨论得出:f(a)、f(b)不是函数y=f(x)的极值.

③直观地从函数图象中看出:f(x3)是最小值,f(b)是值.

(教师在回答完问题①②③之后,再提问:如果在没有给出函数图象的情况下,怎样才能判断出f(x3)是最小值,而f(b)是值呢?)

④与学生共同讨论,得出求函数最值的一般方法:

i)求y=f(x)在(a,b)内的极值(极大值与极小值);

ii)将函数y=f(x)的各极值与f(a)、f(b)作比较,其中的一个为值,最小的一个为最小值.

4.分析讲解例题

例4 求函数y=x4-2x2+5在区间[-2,2]上的值与最小值.

板书讲解,巩固求函数最值的求导法的两个步骤,同时复习求函数极值的一般求法.

例5 用边长为60cm的正方形铁皮做一个无盖小箱,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(教科书中图2-13).问水箱底边的长取多少时,水箱容积,容积为多少?

用多媒体课件讲解:

①用课件展示题目与水箱的制作过程.

②分析变量与变量的关系,确定建模思想,列出函数关系式V=f(x),x∈D.

③解决V=f(x),x∈D求最值问题的方法(高次函数的最值,一般采用求导的方法,提醒学生注意自变量的实际意义).

④用“几何画板”平台验证答案.

5.强化训练

演板P68练习

6.归纳小结

①求函数值与最小值的两个步骤.

②解决最值应用题的一般思路.

布置作业

教科书习题2.5第4题、第5题、第6题、第7题.

九年级数学教案课件反思篇6

九年级下册数学教学设计方案

教师如果想优化课程设置,提高教学效率,这就需要做好教学计划。查字典数学网初中频道为大家整理了九年级下册数学教学设计,希望对大家制定教学计划有所启发!

一、学情分析

经过前面五个学期的数学教学,本班学生的数学基础和学习态度已经明晰可见。通过上个学期多次摸底测试及期末检测发现,本班最大的特点是两极分化现象极为严重。虽然涌现了一批学习刻苦,成绩优异的优秀学生,但后进学生因数学成绩十分低下,厌学情绪非常严重,基本放弃对数学的学习了。其次是部分中等学生对前面所学的一些基础知识记忆不清,掌握不牢。二、指导思想

立足中考,把握新课程改革下的中考命题方向,以课堂教学为中心,针对近年来中考命题的变化和趋势进行研究,积极探索高效的复习途径,夯实学生数学基础,提高学生做题解题的能力,和解答的准确性,以期在中考中取得优异的数学成绩。并通过本学期的课堂教学,完成九年级下册数学教学任务及整个初中阶段的数学复习教学。三、教学目标

态度与价值观:通过学习交流、合作、讨论的方式,积极探

第1页索,改进学生的学习方式,提高学习质量,逐步形成正确地数学价值观。知识与技能:理解二次函数的图像、性质与应用;理解相似三角形、相似多边形的判定方法与性质,理解投影与视图在生活中的应用。掌握锐角三角函数有关的计算方法。过程与方法:通过探索、学习,使学生逐步学会正确合理地进行运算,逐步学会观察、分析、综合、抽象,会用归纳、演绎、类比进行简单地推理。班级教学目标:中考优秀率达到30%,合格率:80%。四、教材分析

第二十六章、二次函数本章主要是通过二次函数图像探究二次函数性质,探讨二次函数与一元二次议程的关系,最终实现二次函数的综合应用。本章教学重点是求二次函数解析式、二次函数图像与性质及二者的实际应用。本章教学难点是运用二次函数性质解决实际问题。

第二十七章、相似本章主要是通过探究相似图形尤其是相似三角形的性质与判定。本章的教学重点是相似多边形的性质和相似三角形的判定。本章的教学难点是相似多这形的性质的理解,相似三角形的判定的理解。

第二十八章、锐角三角函数本章主要是探究直角三角形的三边关系,三角函数的概念及

第2页特殊锐角的三角函数值。本章的教学重点是理解各种三角函数的概念,掌握其对应的表达式,及特殊锐角三角函数值。本章的教学难点是三角函数的概念。第二十九章、投影与视图

本章主要通过生活实例探索投影与视图两个概念,讨论简单立体图形与其三视图之间的转化。本章的重点理解立体图形各种视图的概念,会画简单立体图形的三视图。本章教学难点是画简单立体图形的三视图。五、方法措施

1、从学生实际情况出发,认真钻研教材教法,精心设置教学情境和教学内容,做到层次分明,帮助学生理清思路,建立数学严密的数学逻辑推理能力。

2、搞好单元测试工作,做好阅卷分析,发现问题及时纠正,同时加大课后对学生的辅导力度。

3、向有经验的老教师学习,针对近年中考命题趋势,制定详细而周密的复习计划,备好每一节复习课,力求全面而又突出重点。

4、帮助学生建立良好的数学解题作答习惯,向学生传授必要的作答技巧和适应中考的能力。

六、课时安排

九年级下册新授课程控制在4个星期内,剩余时间用于复习。

第3页

第4页

九年级数学教案课件反思篇7

教学目标

1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。

2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。

3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。

教学重难点

教学重点:探索并掌握比例的基本性质。

教学难点:根据乘法等式写出正确的比例。

教学工具

ppt课件

教学过程

一、复习导入

1、我们已经认识了比例,谁能说一下什么叫比例?

2、应用比例的意义判断下面的比能否组成比例。

2.4:1.6和60:40

3、今天老师将和大家再学习一种更快捷的方法来判断两个比能否组成比例)板书:比例的基本性质

二、探究新知

1、教学比例各部分的名称.同学们能正确地判断两个比能不能组成比例了,那么,比例各部分的名称是什么?请同学们翻开教材第43页看看什么叫比例的项、外项和内项。(学生看书时,教师板书:2.4:1.6=60:40)让学生指出板书中的比例的外项和内项。学生回答的同时,板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。例如:2.4:1.6=60:40外项内项学生认一认,说一说比例中的外项和内项。

2、教学比例的基本性质。

出示例1、(1)教师:比例有什么性质呢?现在我们就来研究。(板书:比例的基本性质)学生分别计算出这个比例中两个内项的积和两个外项的积。教师板书:两个外项的积是2.4×40=96两个内项的积是1.6×60=96(2)教师:你发现了什么,两个外项的积等于两个内项的积是不是所有的比例都存在这样的特点呢?学生分组计算前面判断过的比例。(3)通过计算,我们发现所有的比例都有这个样的特点,谁能用一句话把这个特点说出来?(可多让一些学生说,说得不完整也没关系,让后说的同学在先说的同学的基础上说得更完整.)(4)最后师生共同归纳并板书:在比例里,两个外项的积等于两个内项的积。教师说明这叫做比例的基本性质。(5)如果把比例写成分数形式,比例的基本性质又是怎样的呢?指名学生改写2.4:1.6=60:40(=)这个比例的外项是哪两个数呢?内项呢?当比例写成分数的形式,等号两端的分子和分母分别交叉相乘的积怎么样?(边问边画出交叉线)(6)能用字母表示这个性质吗?a:b=c:d(b,d≠0)或a/b=c/d;ad=bc

以前我们是通过计算它们的比值来判断两个比是不是成比例的。学过比例的基本性质后,也可以应用比例的基本性质来判断两个比能不能组成比例。

三、拓展应用

1.课本43页做一做,应用比例的基本性质,判断下面哪组中的两个比可以组成比例。

(1)6:3和8:5(2)0.2:2.5和4:50

2.根据比例的基本性质在括号里填上合适的数。

8:2=24:()():15=4:5

3.猜数:老师有一个比例,内项可能是哪两个数,你是怎么样思考的?比例中的外项和内项都有共同的特点吗?

24:()=():2

4.运用比例的基本性质判断下面两个比能不能组成比例。

1/3:1/6和1/2:1/41.2:3/4和4/5:5

四、拓展

已知3×40=8×15,根据比例的基本性质改写成比例,你能写出几对比例。提示:先把3和40当作外项,再把它们当作内项。

五、总结

1、通过这节课,我们学到了什么知识?

2、通过这节课我们知道了组成比例的四个数叫做比例的项,其中两端的两个项叫做比例的外项,中间的两个项叫做比例的内项。在比例里两个外项的积等于两个内项的积,这叫做比例的基本性质。利用比例的基本性质我们可以判断两个比能不能组成比例,当然还可以解比例,这是下节课要学习的内容。

六、作业布置

课本43页练习八第5、7题。

板书

比例的基本性质

例1、2.4:1.6=60:40

两个外项的积是2.4×40=96

两个内项的积是1.6×60=96

2.4:1.6=60:40

52460