教育巴巴 > 教案模板 >

五年级电子版教案数学上册

时间: 新华 教案模板

五年级电子版教案数学上册篇1

教学目标:

1、初步体会整数乘法的运算定律在小数乘法中仍然适用。

2、能运用这些运算定律使计算简便。

3、培养学生独立思考、认真审题灵活运用运算定律简算的习惯和能力。

教学重点:

学生通过观察能找出正确的简便算法。

教学难点:

学生通过观察能找出正确的简便算法。

教学准备:

媒体等

教学过程:

一、复习准备:

1、口算:5×=×=125×=×=×=×80=×20=250×=×=

2、简便计算:

32×25×12579×21+21×21

二、探究新知:

1、师:同学们,在整数乘法中我们学过哪些运算定律?用字母怎么表示呢?

2、出示:观察并计算,下面每组中的两个算式有什么关系:

×○×(×)×○×(×)

×+×○(+)×3、通过观察、计算、讨论,引导学生自主发现规律:整数乘法的交换律、结合律和分配律,对于小数乘法也同样适用。

4、揭题:整数乘法运算定律推广到小数5、你能用这些运算定律来巧算吗?__×+×(+)×4

a.让学生独立思考完成

b.让学生汇报:你应用哪条乘法运算定律进行简便计算的。

三、分层练习:

1、将一个数分解成两个数的积或两个数的差:

=8×()=0.8×()=×()=10-()=100-()=1-()

2、下面各题怎样计算比较简便?×25×125×99+64×3、判断下面各题是否正确,并说说理由。(书P17—练一练)

4、你认为怎样算简便?×

四、课堂总结:

整数乘法的交换律、结合律和分配律,对于小数乘法也同样适用。

五、思考题:

判断是否正确(机动)

×+×38=×(+)=×10=83

六、板书:

整数乘法运算定律推广到小数乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:a×(b+c)=a×b+a×c

五年级电子版教案数学上册篇2

教学内容:

最小公倍数

教学目标:

1.使学生理解最小公倍数的意义,初步学会求两个数的最小公倍数。

2.培养学生的观察能力、分析能力和归纳概括能力。

3.培养学生良好的学习习惯。

学习目标:

1、理解最小公倍数的意义

2、初步学会求两个数的最小公倍数。

学习任务:

任务一 理解最小公倍数的意义

任务二 求两个数的最小公倍数

教学过程:

一、激情导课

1、师:同学们,看今天我们要学习什么?(最小公倍数)

看到这个题目,你会想到我们以前学过的什么知识?(倍数)

2、师:(出示课件)谁会求这俩个数的倍数?有了这个知识做铺垫,相信我们这节课一定会学的很轻松。

3、(出示目标)理解最小公倍数的意义,初步学会求两个数的最小公倍数。请同学们默读一遍,并牢牢的记住它。

二、民主导学

任务一

一、任务呈现

师:过几天,我们五年级的同学将外出旅游,高兴吗?小兰也想和爸爸妈妈一起去游玩,可从7月1日起,小兰的妈妈每4天休息一天,爸爸每6天休息一天,他们打算等爸妈全部休息时,全家一块儿去。那么在这一个月里,他们可选那些日子去呢?你会帮他们把这些日子找出来吗?

要求:先独立思考,不会的小组商量。

提示:每4天休息一天就是工作3天休息一天,每6天休息一天就是工作5天休息一天

二、自主学习

教师巡视学习情况

三、展示交流

1、师:他们可选那几日外出?(12、24)

你是怎样选出来的?根据回答板书;

妈妈的休息日:4 8 12 16 20 24 28 ---- 4的倍数

爸爸的休息日:6 12 18 24 30 -----6的倍数。

共同的休息日:12 24 -----4和6的公倍数

最近的一天:12------4和6的最小公倍数

还可以用集合图来表示,

2、仔细观察两组数据有什么特征?

3、再次强调 4 的公倍数就是妈妈的休息日

6 的公倍数就是爸爸的休息日

4 和6的公倍数就是爸爸和妈妈的共同休息日

4、最近是哪一天? 12

12也是这公倍数中最小的一个,叫做最小公倍数。

5、集合图还可以这样表示 出示课件

问:和前面的图有什么不同?中间的部分表示什么?(重合的、公共的)

你会填吗?把刚才的数据填在这个表里,中间填?两旁呢?

这样我们可以一眼看出4 和6的公倍数是12、24.

6、谁能用一句话说说什么是公倍数?什么是最小公倍数?

7、89页做一做

二、那如何求最小公倍数呢?

任务二

求两个数的最小公倍数

一、任务呈现

1、求6和8的最小公倍数

2、想一想

1.你还能想出几种求法?

2.公倍数有多少个?你能找出的公倍数吗?

3.两个数的公倍数和最小公倍数之间有什么关系?

二、自主学习

三、展示交流

1、把不同求法板书

2、交流以上三个问题

(三)检测导结

1、目标检测

求下列每组数的最小公倍数(要求5分钟)

2和7   4和8

3和5   6和15

2、结果反馈

一次正确5分,自己改正4分,帮助改正3分,

3、反思总结 谈谈收获和不足

五年级电子版教案数学上册篇3

教学内容:

教材P32例6及练习八第1、2、3、8题。

教学目标:

1.知识与技能:能理解商的近似数的意义。

2.过程与方法:掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。

3.情感、态度与价值观:培养学生在实际生活中灵活运用数学知识的能力,能根据实际情况进行求近似数。

教学重点:

掌握小数除法计算中用“四舍五入”法求商的近似数的一般方法。

教学难点:

根据题意正确求出商的近似数。

教学方法:

注重新旧知识的迁移,引导学生自主学习、总结。

教学准备:

多媒体。

教学过程:

一、复习导入

复习旧知:(出示如下题目)

1.用“四舍五入”法将下面的数改写成一位小数。

8.769  3.452  12.71  18.64

2.计算下面各题,得数保留两位小数。

2.43×4.67   12.15×3.41

订正答案,并通过问题:你是用什么方法求这些数的近似数?

(保留几位小数就看这位小数后面的数位,大于4就向前一位进一,小于五就舍去。师引导总结方法的名称:“四舍五入”法。)

引出课题:这节课我们要学习“商的近似数”。(板书课题:商的近似数)

二、互动新授

1.出示教材第32页例6情境图。

阅读情境图中的信息,并问:怎样解决爸爸提出的问题呢?

引导学生自主列算式,并试着计算:19.4÷12

学生在计算过程中,会发现除不尽。这时,师引导学生小组交流,遇到这种情况应该怎么办?

通过交流,学生可能会想到:实际计算钱数时应该算到分,因为分是人民币的最小单位;也可以算到角,因为现在买东西时已经不用分了。

教师小结:根据我们的生活实际,当所买的商品数量少的时候,可以保留整数,或者保留一位小数,或者两位小数。当然如果数量很多的时候,通常会计算到分,这就要根据我们的实际需要进行取近似数了。看来取近似数一种是按照要求去取,一种是按照实际情况去取。(板书:按要求取,按需要取。)

然后再引导学生想一想:算到分和角时分别需要保留几位小数?

(算到分要保留两位小数,算到角就要保留一位小数。)

师引导学生思考并讨论:除的时候应该怎么算?

小组讨论后,学生汇报:保留两位小数,就要算出三位小数,再按“四舍五入”法省略百分位后面的尾数;保留一位小数,就要算出两位小数,再按“四舍五入”法省略十分位后面的尾数。

让学生自己用竖式计算:19.4÷12。教师根据学生汇报,板书

2.提问:说一说如何求商的近似数?

让学生独立思考后,在小组内交流、讨论。引导学生小结:求商的近似数时,只需要比需要保留的小数位数多除出一位,然后再用“四舍五入”法就可以取近似数了。或者除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。同时,求商的近似数的时,不需要算出商的准确值之后再进行取舍。

3.引导学生比较求商的近似值和求积的近似值的异同点。

小组讨论后发言:相同点:都是用“四舍五入”法求近似数。

不同点:积的近似数要求出准确数之后再求近似数;商的近似数不需要求出准确数,只需比需要保留的小数位数多除出一位就可以求近似数。

师小结:求商的近似数非常重要,有时按照要求取近似数,有时按照实际取,在取商的近似数的时候,要明白应该除到哪位就可以不用再除了。

三、巩固拓展

1.完成教材第32页“做一做”。学生独立完成。订正时让学生说一说它们的近似值分别是怎么取的。有些题保留指定小数位数后,近似数的末尾有0,要让学生说说是如何处理的。如第2小题1.55÷3.9,保留两位小数是0.40。

四、课堂小结。同学们,这节课你学了什么知识?有哪些收获?

引导学生归纳

1.求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。

2.求商的近似数的时候不需要算出商的准确值之后再进行取舍。除到要保留的小数位数后,不再继续除了,只把余数同除数作比较,若余数比除数的一半小,就说明求出下一位商要直接舍去,若余数等于或者大于除数的一半,就说明要在已除得的商的末一位加上1。

作业:教材第36~37页练习八第1、2、3、8题。

板书设计:

商的近似数

求商的近似数时,计算到比保留的小数位数多一位,再将最后一位“四舍五入”。

五年级电子版教案数学上册篇4

教学内容:教材第19页的内容

教学目标:

知识与技能:让学生了解在生活情景中确定物体位置的多种方法,能在具体情境中学会用“第几排第几座”、“第几层第几号”、“第几组第几个”等方式描述物体在平面中的相对位置,或根据平面位置确定物体。

过程与方法:知道可以在平面上用两上数据确定物体的位置,在确定位置的过程中培养学生的空间观念渗透平面坐标最基本的知识。

情感态度价值观:体会生活中处处有数学,产生对数学的亲切感。

教学重难点:

重点:学会用“第几排第几座”、“第几层第几号”、“第几组第几个”等方式描述物体在平面中的相对位置,或根据平面位置确定物体,并解决一些生活中的实际问题。

难点:学根据“第几排第几座”、“第几层第几号”、“第几组第几个”等方式描述物体在平面中的相对位置。

教学方法:直观演示法与自主探索、小组合作的方法。

教学准备:多媒体、投影仪等有关内容图片。

教学过程:

一、创设情境,引出新知。

1、 出示多媒体课件或图片:一位教师到图书馆借书,询问图书管理员工具书所在位置,然后图书员告诉他图书所在位置。

2、 学生观看多媒体课件或图片,听教师讲解,初次接触位置这个概念。

3、 引入本课学习并板书课题。

4、 学生在教师的引导下回忆某物体的位置,确定它们的位置,联系具体生活场景和经验,进入到下面的学习中。

设计意图:通过具体的直观演示以及具体的情景联系,充分调动学生对学习的兴趣,为学习新知奠定基础。

二、例题展示:

1、投影出示例1的内容。

(1)学生读题,了解已知信息。

教师引导学生可以根据自己在教室里的位置来思考这个问题。

(2)问:已知张亮同学是第二列、第三行的同学,你能指出谁是张亮同学吗?

学生联系实际的基础上根据图中张亮所在的列数的行数来确定张亮的位置,教师给予肯定。

(3)如果用(2,3)表示张亮同学的位置,你能表示王艳和赵强同学的位置吗?看一看有什么不同?

启发学生思考,引导学生用数对表示位置。

2、引导学生用刚才的方法小结:先从前往后确定第几行,再从左往右确定第几列,这样就能用第几行第几列确定同学们的位置。

设计意图:通过具体的实例引导学生认识第几行和第几列的判断方法,经历应用数学知识分析问题和解决问题的过程。

三、做一做,巩固确定位置的方法。

1、出示情景。组织学生观察情景,思考教师的提问。

2、引导学生利用在例题中学到的确定位置的方法来回答问题。

3、组织学生用一组数字来表示它们的位置。学生思考后可交流讨论,最后全班汇报。

四、反馈练习。

完成教材第19 页的做一做。

五、课堂小结。

六、作业:选用课时作业。

板书设计:

位置

竖排叫列   横排叫行

确定第几列一般从左往右数,确定第几行一般从前往后数。

课后小记与反思:

第二课时  位置(二)

课型:讲授课

教学内容:教材第20页及相关教学内容

教学目标:

知识与技能:知道在生活中如何根据示意图找到位置。

过程与方法:理解可以用一组数来确定位置关系,通过确立一个坐标图形来找准方位。

情感态度价值观:体会生活中处处有数学,产生数学的亲切感,把位置关系的学习与生活场景紧密联系起来。

教学重难点:

重点:能够通过示意图找到物体的具体位置。

难点:理解用一对数来确定位置的方法,并把它用于实践中。

教学方法:直观演示法和自主探究与小组合作的学习方式。

教学准备:多媒体课件或实物等。

教学时间:

教学过程

一、联系生活,引入新课。

1、谈话导入。

学生回顾在生活所见的示意图,回答教师问题,。

2、引入新课,板书课题。

设计意图:通过对前面知识的复习,以及具体的直观演示和具体的情景联系,充分调动学生对学习的兴趣,为学习新知奠定基础。

二、例题展示。

1、出示例2。

学生读题,明白示意图,初步了解题目中的每个位置是用一个坐标的形式来表示的,每一个游览区和一对数相对应。

2、学生可提问质疑,可小组讨论,可互相回答问题。全班交流。

交流时教师要引导学生认识示意图,知道它们是如何标示各区域所在位置的。

小结:横排和竖排所构成的区域就是整个动物园的范围。

每个小区域所对应的数值就是整个动物园这个大范围的一个坐标点。通过这些坐标点,我们就能够确定某个游览区的具体位置。

3、组织学生说说其他场馆的位置,同时教师板书。

4、引导学生进一步理解场馆位置与坐标中各点对应的关系。

5、练习:在图上标出这些场馆的位置。

6、小结:通过例题我们把一个区域的示意图用坐标的形式表示出来,通过对应的坐标位置就可以确定所要找的地方的位置。

三、做一做,巩固确定位置的知识。

出示练习,引导学生完成练习。

四、反馈练习。

五、课堂总结。

在练习中,要紧紧把握图形,从题目入手,寻找位置与坐标数值的对应关系,明确它们之间是一一对应的关系,可以互相判断对方。

六、作业:选用课时作业。

板书设计:

位置

第三课时 位置(练习课)

教学内容:人教版小学数学五年级教材P21——23练习五2、3、5、6、7、8题

教学目标:

1、通过练习,使学生进一步提高用数对表示、确定位置的能力。

2、通过练习,进一步提高学生抽象思维能力,发展学生的空间观念,体验数学与生活的联系。

教学重点:通过练习,使学生进一步提高用数对表示、确定位置的能力。

教学难点:发展学生的空间观念,体验数学与生活的联系。

教学过程:

一、 基础性练习

1、填一填,再回答

⑴、用数对表示平面图中的位置时,我们规定:竖排叫做( ),横排叫做( ),确定第几列一般从( )往( )数,确定第几行一般从( )往( )数。

⑵、○在第4列第5行,用数对表示是( , ); 用数对表示是(2,7),那么它在第( )列第( )行,(8,7)在图中表示第( )列第( )行的位置。 2、动物园的平面图。

①、动态生成方格图,渗透坐标思想

②、你能用数对表示出大门的位置吗?请生汇报,说理。

③、游戏:猜景点

任选你想去的一个景点,用数对表示它的位置。小组内同学看数对说地名,看看说得对吗?全班交流。 如果想去的景点是在( ,4),可能是哪里?

得出:一个数能准确说出一个地点的位置吗?数对中的两个数能帮助我们很快在平面图上找到某个具体的地点。

④鳄鱼潭在(2,4),请标出。图上(4,2)和(2,4)表示的位置相同吗?为什么? 得出:数对表示位置时不仅要用两个数,还要注意两个数的顺序。

⑤小强的位置在(3,1),他要去的地方位置在(6,5),你能沿着方格线画出他的行走路线吗? 过渡:数对能表示一个人的具体位置,平面图上一个地点,利用数对还能准确描述图形的具体位置。

二、巩固性练习:

书本第2、3、5、6、7、8题,学生先独立练习,老师再有选择、有重点地加以点评,指正(为节省课堂教学时间,这部分练习可以课前布置)。

三、发展性练习

1、移动图形

⑴、在格子图上画一个直角三角形ABC,并构建一个平面示意图,确定列和行,用数对表示这个直角三角形的三个顶点。

⑵、把三角形ABC向右平移5格再向上平移两格后的图形用A’、B’、C’标出对应的点,并用数对表示A’、B’、C’的位置。

⑶、把三角形ABC绕B点逆时针90°,得到的图形用A”、B”、C”标出对应的点,并用数对表示A”、B”、C”的位置。 2、五子棋

明明和小强下五子棋:

明明执黑子先下,小强执白子后下。 明明和小强的落子位置用数对表示是:

明明:1、(4,5) 2、(5,6) 3、(6,7) 4、(7,8) 5、(4,7) 6、(5,7)

小强:1、(5,5) 2、(6,6) 3、(3,4) 4、(8,9) 5、(4,4) 6、(7,7)

⑴、请你根据所给的信息,画出一个简单的棋盘,并在棋盘上画出黑子和白子。

⑵、你认为谁赢的可能性大?如果你是明明,你的下一步棋子准备放哪?请用数对表示。 3、涂色游戏

根据下面给出的数对给方格涂上相应的颜色,并说说涂出的图形是什么。

红色:(3,4),(4,5),(5,6),(6,7),(7,6),(8,5),(9,4),(4,4),(5,4),(6,4),(7,4),(8,4)。

蓝色:(4,1),(4,2),(4,3),(8,1),(8,2),(8,3)。 黄色:(8,6),(8,7)。

绿色:(7,10),(8,9),(8,11),(9,9),(9,11),(10,9),(10,11),(11,10)。

四、课堂总结:

用数对确定位置在生活中有着广泛的应用,同学们说说在哪些领域会用到这个知识?我们学好这个知识对于大家以后指导自己的生活,工作都有重要的作用。我们今天练习的这些内容?你觉得自己掌握的情况如何?有哪些地方还需要加强?

五年级电子版教案数学上册篇5

教学内容:

连乘、乘加、乘减和把整数乘法运算定律推广到小数。

教学目标:

1.掌握小数的连乘、乘加、乘减的运算顺序,并能按运算顺序正确计算结果。

2.理解整数乘法的交换律、结合律、分配律对于小数同样适用。

3.提高学生的类推能力,培养学生知识间存在着内在联系的思想。

教学过程:

课前谈话:前面我们学习了小数乘法,通过学习我们发现小数乘法与整数乘法间存在着紧密的联系。今天这节课我们继续学习新知识,看哪位同学学得快,掌握得好。

一、复习旧知

1.出示投影,先回答问题,再计算。

(1)12×5×60

(2)30×7+85

(3)250×4-200

教师提问:每个式题各含什么运算?是什么式题?每题的运算顺序是什么?

学生回答后,在练习本上计算结果。

订正:(1)3600 (2)295 (3)800

教师说明:小数的这些运算顺序跟整数是一样的。

教学意图:本环节通过三个式题复习整数连乘、乘加和乘减的运算顺序,并向学生说明小数的运算顺序跟整数一样,为下面学生将整数运算顺序迁移到小数作准备。

二、小数连乘、乘加、乘减

1.初步尝试。

出示例6:光明小学的同学们在校园里种了300棵蓖麻,平均每棵收蓖麻籽0.18千克,每千克可榨油0.45千克,一共可榨油多少千克?

全班学生默读题目后,指名让学生说出怎样列算式,教师板书。然后让学生独立尝试把这道题做完,教师指名板书计算过程

0.45×0.18×300

=0.081×300

=24.3(千克)

答:一共可榨油24.3千克。

订正答案后,教师提问

(1)算式中有几步计算?每个数目都是小数吗?是什么式题?

(2)这个含有小数的连乘式你是按什么运算顺序进行计算的?(按从左到右的运算顺序进行计算。)

2.进行类推。

计算下列各题。

(1)72×0.81+10.4 (2)7.06×2.4-5.7

学生先在练习本上独立解答,在订正答案时说说每题的运算顺序。

订正:(1)68.72(含有乘法与加法两种运算,先计算乘法,再计算加法。)(2)11.244(含有乘法与减法两种运算,先算乘法,再计算减法。)

3.教师小结:今天我们学习了小数的连乘、乘加、乘减。这些运算的运算顺序与整数相同。板书:连乘、乘加、乘减

教学意图:本环节利用迁移,让学生将整数的运算顺序类推到小数,尝试完成小数的连乘、乘加、乘减的运算,培养学生的类推能力。

三、整数乘法运算定律推广到小数

1.复习。

教师提问:我们在学习整数乘法时曾学习过几个运算定律,谁还记得是什么?用字母怎样表示?

教师贴出:a×b=b×a

(a×b)×c=a×(b×c)

(a+b)×c=a×c+b×c

提问学生:乘法交换律中两个数的范围是什么?结合律中三个数的范围是什么?分配律中三个数的范围是什么?(这些数的范围都是整数。)

2.观察讨论。

教师用投影出示两组算式,学生口答结果,然后教师用○将左右两组算式相连。

0.7×1.2○1.2×0.7

(0.8×0.5)×0.4○0.8×(0.5×0.4)

(2.4+3.6)×0.5○2.4×0.5+3.6×0.5

让学生观察这三组算式,并讨论以下问题

(1)这三组算式左右两边的结果相等吗?中间可以用什么符号连接?

(2)等号两边的算式有什么特点?与我们学过的什么知识一样?

(3)你能得出什么结论?

学生通过讨论将得出如下结论

①三组算式左右两边的结果相等,中间可以用等号连接。

②第一组是把两个相乘的数交换位置,结果不变,与学过的乘法交换律一样。第二组先把前两个数相乘,再与第三个数相乘,与先把后两个数相乘,再与第一个数相乘,结果相等,与乘法结合律一样。第三组是两个数的和与一个数相乘,与这两个数分别与这个数相乘后求和,结果不变,与乘法分配律一样。

③整数乘法运算定律在小数中同样适用。

教师提问:我们分别比较这三组算式左右两侧的式子,哪一个式子在计算中更为简便?(第一组写成竖式,右边的比较简便,第二组不明显,第三组左式比右式简便。)

3.教师小结:通过观察讨论,我们发现整数的乘法运算定律可以推广到小数乘法,并且利用这些运算定律可以使一些小数乘法计算更简便。

板书:整数乘法运算定律推广到小数乘法。

教学意图:本环节教师指导学生观察每组两个算式的特点以及它们的相等关系,并且通过讨论使学生认识到整数乘法运算定律对于小数也适用,同样可以使一些计算更加简便,从而培养学生的观察、比较能力。

四、巩固练习

1.填空,并说一说应用了哪个运算定律。(填在书上)

4.2×1.69=□×□

2.5×(0.77×0.4)=(□×□)×□

6.1×3.6+3.9×3.6=(□+□)×□

2.计算下面各题。

(1)19.4×6.1×2.3

(2)3.25×4.76-7.8

(3)18.1×0.92+3.93

(4)5.67×0.21-0.62

(5)7.2×0.18×28.5

(6)0.043×0.24+0.875

教师巡视,注意学生的运算顺序是否存在问题。

3.判断对错。

(1)50.4×1.95-1.9  (2)3.76×0.25+25.8

=50.4×0.05    =0.9776+25.8

= 25.2      =26.7776

全体学生用手势判断,并说出错误原因。

4.应用题。

玉山农场新建一座温室,室内耕地面积是285平方米,全部栽种西红柿,一茬平均每平方米产6千克。每千克按1.30元计算,一共可收入多少元?

学生完成练习后,教师及时订正

2.(1)272.182 (2)7.67 (3)20.582 (4)0.5707 (5)36.936 (6)0.88532

3.(1)运算顺序错误。改正:(2)计算错误。改正

50.4×1.95-1.9  3.76×0.25+25.8

=98.28-1.9  =0.94+25.8

=96.38    =26.74

4.1.30×6×285=2223(元)

教学意图:本环节通过多种练习使学生分别对整数乘法运算定律推广到小数乘法,与小数连乘、乘加、乘减这两部分知识进行巩固。其中第二题的六道计算题,各题目计算结果小数部分位数较多,除了注意学生的运算顺序是否正确外,还要注意学生的计算正确率。

五年级电子版教案数学上册篇6

教学目标

1、掌握整除、约数、倍数的概念.

2、知道约数和倍数以整除为前提及约数和倍数相互依存的关系.

教学重点

1、建立整除、约数、倍数的概念.

2、理解约数、倍数相互依存的关系.

3、应用概念正确作出判断.

教学难点

理解约数、倍数相互依存的关系.

教学步骤

一、铺垫孕伏(课件演示:数的整除下载)

1、口算

6÷515÷323÷7

1.2÷0.324÷231÷3

2、观察算式和结果并将算式分类.

除尽

除不尽

6÷5=1.215÷3=15

1.2÷0.3=424÷2=12

23÷7=3......2

31÷3=10......1

3、引导学生回忆:研究整数除法时,一个数除以另一个不为零的数,商是整数而没有余数,我们就说第一个数能被第二个数整除.

4、寻找具有整除关系的算式.

板书:15÷3=515能被3整除

5、分类除尽

除不尽

不能整除

整除

6÷5=1.2

1.2÷0.3=4

15÷3=15

24÷2=12

23÷7=3......2

31÷3=10......1

二、探究新知

(一)进一步理解”整除“的意义.

1、整除所需的条件.

(1)分析:24能被2整除,15能被3整除;

23不能被7整除,31不能被3整除;(商有余数)

6不能被5整除;(商是小数)

1.2不能被0.3整除;(被除数和除数都是小数)

(2)引导学生明确:第一个数能被第二个数整除必须满足三个条件:

a、被除数和除数(0除外)都是整数;

b、商是整数;

c、商后没有余数.

板书:整数整数整数(没有余数)

15÷3=5

2、用字母表示相除的两个数,理解整除的意义.

(1)讨论:如果用字母a和b表示两个数相除,那么必须满足几个条件才能说a能被b整除?

(板书:a÷b)

学生明确:a和b都是整数,除得的商正好是整数而没有余数,我们就说a能被b整除.

(板书:a能被b整除)

(2)继续讨论:在什么情况下才能说a能被b整除?(板书:b≠0)

学生明确:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除(也可以说b能整除a).

3、反馈练习.

(1)下面的数,哪一组的第一个数能被第二个数整除?

29和336和121.2和0.4

(2)判断下面的说法是否正确,并说明理由.

a.36能被12整除.()

b.19能被3整除.()

c.3.2能被0.4整除.()

d.0能被5整除.()

e.29能整除29.()

4、”整除“与”除尽“的联系和区别.

讨论:综合以上所学知识讨论,”整除“和”除尽“有什么联系?又有什么区别?

(举例说明)

(二)约数、倍数的意义

1、类推约数、倍数的意义.

(1)教师讲解:15能被3整除,我们就说15是3的倍数,3是15的约数.

(2)学生口述:

24能被2整除,我们就说,24是2的倍数,2是24的约数.

10能被5整除,我们就说,10是5的倍数,5是10的约数.

a能被b整除,我们就说a是b的倍数,b是a的约数.

(3)讨论:如果用字母a和b表示两个整数,在什么情况下才可以说a是b的倍数,b是a的约数?(在数a能被数b整除的条件下)

(4)小结:如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数).

2、进一步理解约数、倍数的意义.

(1)整除是约数、倍数的前提.学生明确:约数和倍数必须以整除为前提,不能整除的两个数就没有的数和倍数的关系.

(2)约数和倍数相互依存的关系.

学生明确:约数和倍数是一对相互依存的概念,不能单独存在.

(3)反馈练习:

A、下面各组数中,有约数和倍数关系的有哪些?

16和2140和2045和15

33和64和2472和8

B、判断下面说法是否正确.

a、8是2的倍数,2是8的约数.()

b、6是倍数,3是约数.()

c、30是5的倍数.()

d、4是历的约数.()

e、5是约数.()

3、教师说明:以后在研究约数和倍数时,我们所说的数一般不包括零.

4、教学例2:12的约数有哪几个?

(1)引导学生合作学习,讨论分析.

(2)汇报、板书:

12的约数有:1、2、3、4、6、12

(3)练习:15的约数有哪几个?

(4)学生明确:

一个数的约数是有限的.其中最小的约数是1,的约数是它本身.

5、教学例3:2的倍数有哪些?

(1)引导学生合作学习,讨论、分析.

(2)汇报、板书:

2的倍数有:2、4、6、8、10......

(3)练习:2的倍数有哪些?

(4)学生明确:

一个数的倍数的个数是无限的,其中最小的倍数是它本身.

三、全课小结

这节课,我们在进一步研究整除的基础上又学到了什么?通过学习你知道了什么?

(板书课题:约数和倍数的意义)

四、随堂练习

1、下面的说法对吗?说出理由.

(1)因为36÷9=4,所以36是倍数,9是约数.

(2)57是3的倍数.

(3)1是1、2、3、4、5,...的约数.

2、下面的数,哪些是60的约数,哪些是6的倍数?

3412162460

教师说明:一个数可以是另一个数的约数,也可以是某个数的倍数.

3、下面的说法对吗?为什么?

(1)1.8能被0.2除尽.()1.8能被0.2整除.()

1.8是0.2的倍数.()1.8是0.2的9倍.()

(2)若a÷b=10,那么:

a一定是b的倍数.()a能被b整除.()

b可能是a的约数.()a能被b除尽.()

五、布置作业

1、先写出下面每个数的约数,再写出下面每个数的倍数(按照从小到大的顺序各写5个)

101336

2、在下面的圈里填上适当的数.

六、板书设计

约数和倍数的意义

探究活动

五年级电子版教案数学上册篇7

教材分析

本节课的设计思想完全遵循课程大纲按课时要求编写教案,它以素质教育为指导思想,采用现代的教学方法,结合学生的年龄和心理特点,力求做到重难点突出,精心的教学设计。

学情分析

在学习了求积的近似数的方法、小数除法后,学生再来学习本节课的内容,不会感到太困难。教师尽可能的创造学生互相学习、互相讨论的机会,发挥学生的主观能动性,让每位学生突破自己,展示自己,同时应重点引导学生能根据实际情况进行正确地分析,选择正确的方法取商的近似数。同时,引导学生善于观察、发现求商的近似数的简便方法。

教学目标

1.知识与技能:

(1)使学生理解商的近似值的意义。

(2)掌握“四舍五入法”取商的近似值的方法,能正确的按题意求商的近似值。

2.过程与方法:能根据实际情况进行求近似值。

3.情感、态度与价值观:培养学生数学知识,在实际生活中灵活应用的能力。

教学重点和难点

1、教学重点:理解商的近似值的意义,掌握“四舍五入法”取商的近似值的方法。

2、教学难点:能根据实际情况求商的近似值。

教学过程

一、复习导入

1.口算。

0.63÷70.24÷0.30.65÷0.13

72÷1441.44÷0.65.6÷0.08

2.按“四舍五入”法,将下列各数保留一位小数.

1.4835.3478.7852.864

3.按“四舍五入”法,将下列各数保留两位小数.

7.6024.0035.8973.996

做完第2题后,要让学生说明其中小数末尾的“0”为什么不能去掉.

二、探索新课

1.教学教科书P23页例7.

(1)出示例题7.(提问学生:一打是多少个羽毛球?)

(2)要求根据书上提出的信息列式计算.列式19.4÷12

(3)依据单价=总价÷数量

(4)依据题意要求,取商的近似值。

2.小结:

在日常生活中,小数除法所得的商也可以根据需要,采用“四舍五入法”保留近似值,保留时,一般只除到需要保留的小数位数多一位就可以四舍五入了。

三、巩固练习:

1.求下面各数的近似数:

3.81÷732÷42246.4÷13

2.做第23页“做一做”中的题目.

(1)教师让学生独立按要求进行计算,巡视时,注意学生计算时取商的近似值的做法对不对.做完后,让学生说一说按照不同的要求,取不同的商的近似值是怎样求出来的?(计算出商的小数的位数要比要求保留的小数位数多一位,再按“四舍五入法”省略尾数.)

教师问:你解题时用了什么技巧?

(2)集体订正

四、课堂小结:

(1)提问:今天我们学了那些内容?你有那些收获?(出示课题:商的近似值)

(2)求“商的&39;近似值”与求“积的近似值”有什么相同点,又有什么不同?

将学生分成6组,每组4人,合作探究,互相交流,探讨真知。

然后让各小组汇报交流,达到生与生的交流,师与生的交流。

随后,教师进行总结。

相同点:都要用到“四舍五入”法取近似值,并且都要看要保留的那一位的后一位.

不同点:求积的近似值,要先算出积的准确值再求近似数,求商的近似值不需求出商的准确值,只要求出要保留的下一位就可以了

五、布置作业:

练习四第10、11、13题。

47783