2024年数学教案
教案可以帮助教师提高教学质量,从而更好地提高学生的学习成绩。好的2024年数学教案应该怎么写?快来看看,小编给大家分享2024年数学教案的写作技巧和示例,供大家参考!
2024年数学教案篇1
教学内容:
长方体和正方体的表面积概念,长方体和正方体表面积的计算
教学目标 :
1.学生通过操作掌握长方体和正方体的表面积的概念,并初步掌握长方体和正方体表面积的计算方法。
2.会用求长方体和正方体表面积的方法解决生活中的简单问题。
3.培养学生分析能力,发展学生的空间概念。
教学重点:
掌握长方体和正方体表面积的计算方法。
教学难点:
会用求长方体和正方体表面积的方法解决生活中的简单问题
教具运用:
长方体、正方体纸盒,剪刀,投影仪
教学过程:
一、复习导入
1.什么是长方体的长、宽、高?什么是正方体的棱长?
2.指出长方体纸盒的长、宽、高,并说出长方体的特征。指出正方体的棱长,并说出正方体的特征。
二、新课讲授
1.教学长方体和正方体表面积的概念。
(1)请同学们拿出准备好的长方体纸盒,在上面分另标出“上”、“下”、“前”、“后”、“左”、“右”六个面。
师生共同复习长方形的特征。请同学们沿着长方体纸盒的前面和上面相交的棱剪开,得到右面这幅展开图。
(2)请同学们拿出准备好的正方体纸盒,分别标出“上、下、前、后、左、右”六个面,然后师生共同复习正方体的特征。让学生分别沿着正方体的棱剪开。得到右面正方体展开图。
(3)观察长方体和正方体的的展开图,看看哪些面的面积相等,长方体中每个面的长和宽与长方体的长、宽、高有什么关系?
观察后,小组议一议。引导学生总结长方体的表面积概念。长方体或正方体6个面的总面积,叫做它的表面积。
2.学习长方体和正方体表面积的计算方法。
(1)在日常生活和生产中,经常需要计算哪些长方体或正方体的表面积?
(2)出示教材第24页例1。
理解分析,做一个包装箱至少要用多少平方米的硬纸板,实际上是求什么?(这个长方体饭包装箱的表面积)
先确定每个面的长和宽,再分别计算出每个面的面积,最后把每个面的面积合起来就是这个长方体的表面积。
(3)尝试独立解答。
(4)集体交流反馈。
老师根据学生的解题思路进行板书。
方法一:长方体的表面积=6个面的面积和
0.7×0.4+0.7×0.4+0.5×0.4+0.5×0.4+0.7×0.5+0.7×0.5=0.28+0.28+0.2+0.2+0.35+0.35=1.66(m2)
方法二:长方体的表面积=上、下两个面的面积+前、后两个面的面积+左、右两个面的面积
0.7×0.4×2+0.5×0.4×2+0.7×0.5×2=0.7+0.56+0.4=1.66(m2)
方法三:(上面的面积+前面的面积+左面的面积)×2
(0.7×0.4+0.5×0.4+0.7×0.5)×2=0.83×2=1.66(m2)
(5)比较三种方法,你认为求长方体的表面积关键是找什么?这三种方法你喜欢哪种方法?
(6)请同学们尝试自己解答教材第24页例2, 集体交流算法,请学生说说你是怎样解答计算正方体表面积的。
三、课堂作业
1. 完成教材第23页“做一做”。
2.完成教材第24页“做一做”。
3.完成教材第25~26页练习六第1、2、3、4、6、7题。
四、课堂小结
今天我们又学习了长方体和正方体的表面积,并掌握了长方休和正方体表面积的计算方法,通过学习,你能说说你的收获吗?
板书设计:
2024年数学教案篇2
教学建议
1.重点平行四边形的判定定理
重点分析平行四边形的判定方法涉及平行四边形元素的各方面,同时它又与平行四边形的性质联系,判定一个四边形是否为平行四边形是利用平行四边形性质解决其他问题的基础,所以平行四边形的判定定理是本节的重点.
2.难点灵活运用判定定理证明平行四边形
难点分析平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点.
3.关于平行四边形判定的教法建议
本节研究平行四边形的判定方法,重点是四个判定定理,这也是本章的重点之一.
1.教科书首先指出,用定义可以判定平行四边形.然后从平行四边形的性质定理的逆命题出发,来探索平行四边形的判定定理.因此在开始的教学引入中,要充分调动学生的情感因素,尽可能利用形式多样的多媒体课件,激发学生兴趣,使学生能很快参与进来.
2.素质教育的主旨是发挥学生的主体因素,让学生自主获取知识.本章重点中前三个判定定理的顺序与它的性质定理相对应,因此在讲授新课时,建议采用实验式教学模式或探索式教学模式:在证明每个判定定理时,由学生自己去判断命题成立与否,并根据过去所学知识去验证自己的结论,比较各种方法的优劣,这样使每个学生都积极参与到教学中,自己去实验,去探索,去思考,去发现,在动手动脑中得到的结论会更深刻――同时也要注意保护学生的参与积极性.
3.平行四边形的判定方法较多,综合性较强,能灵活的运用判定定理证明平行四边形,是本节的难点.因此在例题讲解时,建议采用启发式教学模式,根据题目中具体条件结合图形引导学生根据分析法解题程序从条件或结论出发,由学生自己去思考,去分析,充分发挥学生的主体作用,对学生灵活掌握熟练应用各种判定定理会有帮助.
示例1
[教学目标 ]通过本节课教学,使学生训练掌握平行四边形的各条判定定理,并能灵活地运用平行四边形的性质定理和判定定理及以前学过的知识进行有关证明,培养学生的逻辑思维能力。
[教学过程 ]
一、准备题系列
1.复习旧知识:前面我们学习了平行四边形的性质,哪位同学能叙述一下。(答对者记分,答错的另点同学补充)
2.小实验:有一块平行四喧形的玻璃片,假如不小心碰碎了解部分(如图所示),同学们想想看,有没有办法把原来的平行四边形重新画出来?
(让学生思考讨论,再各自画图,画好后互相交流画法,教师巡回检查。对个别差生稍加点拨,最后请学生回答画图方法)学生可能想到的画法有:⑴分别过a、c作dc、da的平行线,两平行线相交于b;⑵过c作da的平行线,再在这平行线上截取cb=da,连结ba;⑶分别以a、c为圆心,以dc、da的长为半径画弧,两弧相交于b,连结ab、cb。
还有一种一法,学生不易想到,即由平行四边形对角线的特性,引导学生得出连结ac,取ac的中点o,再连结do,并延长do至b,使bo=do,连结ab、cd。
二、引入新课
上面作出的四边形是否都是平行四边形呢?请同学们猜一猜。生答后师指出这就是今天所要不得研究的问题“平行四边形的判定”(板书课题)。
三、尝试议练
1.要判定我们刚才画出的四边形是不是平行四边形,应当加以证明。第一种画法,由平行四边形的定义可知,它是平行四边形(定义可作性质也可作判定)。
2.现在我们来看看第二种画法,这就是平行四边形判定定理一(翻开课本看它的文字叙述)。请想想,一组对边平行且相等的四边形究竟是不是平行四边形呢?这里已知是什么?求证是什么?请写出。
自学课本上的证明过程,看后提问:这个证明题不作辅助线行不行?为什么?(因为要证平行线,一般要证两角相等,或互补,要证两角相等,一般要证全等三角形,而这里没有三角形,要连一对角线才有三角形)
3.再看第三种画法,在两组对边分别相等的情况下是不是平行四边形?教师写出已知、求证,请两位学生上台证明,其余在课堂练习本上做。(注意考虑要不要添辅助线)
完成证明后提问哪些学生是用判定定理一落千丈证明的?哪些是用定义证明的?(解题后思考)
四、变式练习
1.再看看第四种画法,可知,已各条件是四边形的对角线互相一平分,这种情况下它是不平行四边形?
阅读课本上的判定定理之后,要求学生思考用什么方法求证最简便?(应该用判定定理一)2.变式题
⑴两组对角分别相等的四边形是不是平行四边形?为什么?(练习第1题)(口述证明,不要示书面证明)(问要不要添辅助线?)
⑵一组对边平行,一组对角相等的四边形是不是平行四边形?(教师补充)
⑶一组对边相等,一组对家相等及一组对边相等,另一组对边相等的四边形是不是平行四边形?(引导学生在草稿纸上画图思考,然后回答不是平行四边形。因为边角不能证全等三角形)
⑷自学课本例1思考:此例证明中,什么地方用了平行四边形的“性质”?什么地方用“判定”定理?
观察下图:
平行四边形abcd中,<a、<c的平行线分别交对边于e和f,求证:ae=fc(怎样证最简便?)
五、课堂小结
1.今天这节课我们学了什么?平行四这形的判定有哪些方法?试列举之。
2.这些平行四边形的判定方法中最基本的是哪一条?
3.平行四边形的判定定理和性质有什么关系?同一个证明题中应注意什么地方用判定,什么地方性质?
2024年数学教案篇3
教学目标:
情意目标:培养学生团结协作的精神,体验探究成功的乐趣。
能力目标:能利用等腰梯形的性质解简单的几何计算、证明题;培养学生探究问题、自主学习的能力。
认知目标:了解梯形的概念及其分类;掌握等腰梯形的性质。
教学重点、难点
重点:等腰梯形性质的探索;
难点:梯形中辅助线的添加。
教学课件:PowerPoint演示文稿
教学方法:启发法、
学习方法:讨论法、合作法、练习法
教学过程:
(一)导入
1、出示图片,说出每辆汽车车窗形状(投影)
2、板书课题:5梯形
3、练习:下列图形中哪些图形是梯形?(投影)
结梯形概念:只有4、总结梯形概念:一组对边平行另以组对边不平行的四边形是梯形。
5、指出图形中各部位的名称:上底、下底、腰、高、对角线。(投影)
6、特殊梯形的分类:(投影)
(二)等腰梯形性质的探究
【探究性质一】
思考:在等腰梯形中,如果将一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎样的三角形?(投影)
猜想:由此你能得到等腰梯形的内角有什么样的性质?(学生操作、讨论、作答)
如图,等腰梯形ABCD中,AD∥BC,AB=CD。求证:∠B=∠C
想一想:等腰梯形ABCD中,∠A与∠D是否相等?为什么?
等腰梯形性质:等腰梯形的同一条底边上的两个内角相等。
【操练】
(1)如图,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,则腰AB=cm。(投影)
(2)如图,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延长线于点E,CA平分∠BCD,求证:∠B=2∠E.(投影)
【探究性质二】
如果连接等腰梯形的两条对角线,图中有哪几对全等三角形?哪些线段相等?(学生操作、讨论、作答)
如上图,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求证:AC=BD。(投影)
等腰梯形性质:等腰梯形的两条对角线相等。
【探究性质三】
问题一:延长等腰梯形的两腰,哪些三角形是轴对称图形?为什么?对称轴呢?(学生操作、作答)
问题二:等腰梯是否轴对称图形?为什么?对称轴是什么?(重点讨论)
等腰梯形性质:同以底上的两个内角相等,对角线相等
(三)质疑反思、小结
让学生回顾本课教学内容,并提出尚存问题;
学生小结,教师视具体情况给予提示:性质(从边、角、对角线、对称性等角度总结)、解题方法(化梯形问题为三角形及平行四边形问题)、梯形中辅助线的添加方法。
2024年数学教案篇4
列方程解应用题(一)
教学目标
(一)掌握列方程解应用题的一般步骤,会用列方程的方法解答比较容易的两步计算的应用题。
(二)掌握根据题意找出数量间相等关系的方法,养成根据等量关系列方程的习惯。
教学重点和难点
重点:学会用列方程的方法解答应用题。
难点:掌握根据题意找出数量间的相等关系的方法。
教学过程 设计
(一)复习准备
1.用两种方法解答下题(投影出示):
商店原有一些饺子粉,卖出35千克以后,还剩40千克。这个商店原来有多少千克饺子粉?
学生解答后,订正。
学生讲解为什么这样做,根据是什么?
解法1:
根据:卖出的重量+剩下的重量=原来的重量。
列式:35+40=75(千克)
解法2:
根据:原有的重量-卖出的重量=剩下的重量。
解:设原来有x千克。
x-35=40
x=40+35
x=75(千克)
答:原来有75千克饺子粉。
2.观察比较:以上两种解法有哪些相同点和不同点?
相同点:都是根据数量间的相等关系列式。
不同点:解法1:以已知推出未知,是算术法。解法2:把未知数用x表示,列出含有未知数的等式。
教师讲解:像解法2中的含有未知数的等式,实际上就是方程,解法2实际上就是列方程解应用题。
(二)学习新课
1.揭示课题:
今天我们一起学习用方程解答一些步数较多的应用题。
思考:
①什么是方程?
②列一个方程必须具备哪几个条件?(①等式;②含有未知数。)
2.学习例1。
(1)将复习题中第一个直接条件改为间接条件,使之成为例1。
商店原来有一些饺子粉,每袋5千克,卖出7袋以后,还剩40千克。这个商店原来有多少千克饺子粉?
(2)找出方程所需要的两个条件。
学生思考、讨论得出:
①原来的重量是未知数,可以把它设为x。
②根据题目的叙述顺序,找出数量间的相等关系:
原有的重量-每袋的重量卖出的袋数=剩下的重量
(x千克)(5千克)(7袋)(40千克)
(3)根据等量关系列方程,解方程。
学生试做:
解:设原有x千克。
x-5×7=40
x-35=40
x=40+35
x=75
答:原来有75千克饺子粉。
(4)检验:
怎样检验?
①可检查方程是否符合题意。
②把解得的x的值代入原方程,看解得对不对。
③也可用算术法进行检验。
学生按以上方法进行检验。
(5)试做:商店原有15袋饺子粉,卖出35千克,还剩40千克,每袋多少千克?
学生试做后讲解。
解:设每袋饺子粉x千克。
列方程:15x-35=40
15x=40+35
15x=75
x=5
答:每袋饺子粉5千克。
(6)小结:列方程解应用题的解题步骤是怎样的?
讨论后得出:
①弄清题意,找出未知数,并用x表示;
②找出应用题中数量之间的相等关系,列方程;
③解方程;
④检验,写出答案。
3.学习例2小青买2节五号电池,付出6元,找回了0.4元。每节五号电池的价钱是多少元?
(1)审题:已知什么条件,求什么问题?可把题目中的什么数量看作一个整体?(可将买2节电池的钱看作一个整体。)
(2)思考讨论:这道题的数量之间存在什么样的相等关系?
(3)学生试做后讲解:
解:设每节五号电池的价钱是x元。
①根据:
列方程:6-2x=0.4
2x=6-0.4
2x=5.6
x=2.8
②根据:
列方程:6-0.4=2x
5.6=2x
2.8=x
③根据:
列方程:2x+0.4=6
2x=6-0.4
2x=5.6
x=2.8
(4)检验:(略)
(5)小结:
这道题为什么能列出三个方程呢?(因为题中的三种数量之间存在着三个基本的相等关系,每个相等关系就可列出一个方程,三个相等关系就可列出三个不同的方程。)
说明根据对题目的不同理解,可以找出不同的等量关系,列出不同的方程。
4.总结:
从以上几道题可以看出,列方程解应用题有什么特点?(用字母表示未知数,根据题目中数量之间的相等关系,列出一个含有未知数的等式(也就是方程),再解出来。)
(三)巩固反馈
1.用含有字母的式子表示:
(1)每袋大米x千克,5袋大米()千克;
(2)每个练习本x元,小明买8个练习本,应付()元;
(3)每套桌椅x元,10套桌椅()元;
(4)每箱水果x千克,25箱水果()千克。
2.说出下面每组数量之间的相等关系。
(1)女生人数,男生人数,全班人数;
(2)苹果的重量,梨的重量,梨比苹果少的重量。
3.找出题目中数量间的相等关系。
(1)一辆公共汽车中途到站后,先下去15人,又上来9人,这时车上正好有30人,到站前车上有多少人?
(2)一本书240页,小刚看了5天,还剩165页没看,平均每天看多少页?
4.课本:1。
根据提出找出数量间的相等关系,再把方程补充完整。
5.课后作业 :P112:2,3,4。
课堂说明
本节课根据学生已有的知识基础和认知规律出发,针对新的解题思路不易接受的特点,紧紧抓住基本概念。在区别比较中,概括总结已有的思路,对比归纳新的解题思路。
为了使学生较好地掌握分析,寻找等量关系的方法,教案采取了由易到难的设计方案。例1的等量关系与复习题相同,都是按题目的叙述顺序写出的。由例1改编的练习,基本数量关系没变,重点是把15袋饺子粉的重量看作一个整体,为学习例2做了铺垫。例2的重点是引导学生找出不同的等量关系,培养学生发散思维的能力。
板书设计 (略)
2024年数学教案篇5
教学内容:
分配
教学目标:
1.使学生经历将一些实际问题抽象为代数问题的过程,并能运用所学知识解决有关实际问题。
2.能与他人交流思维过程和结果,并学会有条理地、清晰地阐述自己的观点。
3.进一步体会到数学与日常生活密切相关。
教学重点:分配问题。
教学难点:正确说明分配的结果。
教学过程:
一、教学例1
1.组织活动。
把4枝铅笔放进3个文具盒中,可以怎么放?有几种情况?
(1)学生思考各种放法。
(2)与同学交流思维的过程和结果。
(3)汇报交流情况。
学生口答说明,教师利用实物木棒或课件演示。
第一种放法;第二种放法;
第三种放法;第四种放法;
2.提出问题。
不管怎么放,总有一个文具盒里至少放进2枝铅笔。为什么?
经过简单交流,学生不难描述其中的原理:如果每个文具盒只放1枝铅笔,最多放3枝,剩下1枝还要放进其中的一个文具盒,所以至少有2枝铅笔放进同一个文具盒。
3.做一做。
7只鸽子飞回5个鸽舍,至少有2只鸽子要飞进同一个鸽舍里。为什么?
(1)说出想法。
如果每个鸽舍只飞进1只鸽子,最多飞回5只鸽子,剩下2只鸽子还要飞进其中的一个鸽舍或分别飞进其中的两个鸽舍。所以至少有2只鸽子飞进同一个鸽舍。
(2)尝试分析有几种情况。
(3)说一说你有什么体会。
学生体会到,如果把各种情况都摆出来很复杂,也有一定的难度。如果找到数学方法来解决就方便了。
二、教学例2
把5本书放进2个抽屉中,不管怎么放,总有一个抽屉至少放进几体书?
1.摆一摆,有几种放法。
不难得出,总有一个抽屉至少放进3本。
2.说一说你的思维过程。
如果每个抽屉放2本,放了4本书。剩下的1本还要放进其中一个抽屉,所以至少有1个抽屉放进3本书。
3.如果一共有7本书会怎样呢?9本呢?
(1)学生独立思考,寻找结果。
(2)与同学交流思维过程和结果。
(3)汇报结果,全班交流。
4.你能用算式表示以上过程吗?你有什么发现?
5÷2=2……1(至少放3本)
7÷2=3……1(至少放4本)
9÷2=4……1(至少放5本)
说明:先平均分配,再把余数进行分配,得出的就是一个抽屉至少放进的本数。
5.做一做
8只鸽子飞回3个鸽舍,至少有3只鸽子要飞进同一个鸽舍里。为什么?
想:每个鸽舍飞进2只鸽子,共飞进6只鸽子。剩下2只鸽子还要飞进其中的1个或2个鸽舍,所以,至少有3只鸽子要飞进同一个鸽舍里。
三、巩固练习
完成课文练习十二第2、4题。
2024年数学教案篇6
教学内容:
苏教版小学数学义务教育课程实验教科书一年级上册8—9页。
教学目标:
1.通过实践简单的分类,初步感受到同一类物体有相同的特性。经历分类的过程,体会分类的思想,掌握分类的方法,能够按照给定的标准或自定的标准进行分类。
2.体验分类方法和结果的多样性,初步养成有条理地思考问题,整理物品的习惯。
3.感受到身边有许多与数学相关的事情,喜欢学习数学,乐于提出问题。在合作交流中培养善于表达和倾听他人意见的学习品质。
教学重、难点及教学突破
重点
结合学生熟悉的事物,让学生经历分类的活动,学会按一定的标准分类,在活动中体验分类的思想方法,感受分类整理在生活中的用途及作用。
难点
让学生能学会自己确立标准分类,有时能按不同的标准多次进行分类。
教学突破
以学生原有生活经验为知识背景,充分利用多媒体创设生活情景,让学生自主活动,亲自动手操作,经历分类的过程,让学生通过自己的探索感受分类的标准和方法。按不同的标准分,选择通过讲<<它俩谁分得对>>的小故事把学生带进生机盎然的教学情境中,学生们讨论后明白我们可以按不同的标准分,结果是不一样的,从而突破教学中的难点。
教学准备
教师准备:多媒体课件一套。
学生准备:日用品和食品若干。
教学步骤
一、创设情境,揭示课题(约4分钟)
二、自主活动,体验分类(约30分钟)
(一)学习按一种标准分
1.分一分,说一说。多媒体显示教科书上文具和学具的主题图。提问:有个做事马虎的小朋友,他把文具和学具都散放在桌子上。我们一起来帮他整理一下。哪些物品应放到文具盒里?哪些物品放到学具盒里?教师在学生回答时用电脑配合显示收文具和学具的过程。
2.分一分,理一理。谈话:下面请各小组将课前准备好的一袋物品拿出来,(袋内装食品、日用品若干件)说一说袋中有哪些物品?学生交流时老师巡视。
(一)学习按一种标准分
1.学生观察后回答哪些物品应放到文具盒里,哪些物品应放到学具盒里。
2.(1)学生在小组中交流。
(2)谈话:现在老师想请小朋友们把这些物品分别装到两个篮子里,怎样放合适呢?看哪个小组分得又对又快!
(3)提问:大家评一评,分得对不对?
3.分一分,做一做。
(1)多媒体显示“想想做做”第一题。把能在水里生活的动物圈起来。
提问:小朋友们喜欢这些小动物吗?谁认识这些小动物?
谈话:小朋友,这些动物中哪些能在水里生活,你能把它们圈出来吗?教师根据学生的回答用鼠标点击画面上的动物,画上圈,并发出该动物的鸣叫声。除了图上的动物还有哪些动物能在水里生活呢?
小结:刚才我们把这些动物分成了两类,一类是能在水里生活的动物,一类是不能在水里生活的动物。多媒体显示两个集合圈,把这些动物分成两类。
(2)多媒体显示“想想做做”第三题。它们各在哪里行驶?
提问:小朋友们,这些都认识吗?它们各在哪里行驶呢?各小组先讨论,互相说一说。指导学生根据行驶地方的不同,可以用不同的符号来做记号。如在天上飞行可以画个来表示,在地面上行驶可以画个来表示,在水里航行的画个来表示。在轻松的音乐声中各小组分别操作。学生把本小组分的两个篮子拿到讲台上,一个篮子里装的是食品,另一个篮子里装的是日用品。
(3)学生检查各小组分情况。
(二)按不同标准分。
1.多媒体显示小故事<<它俩谁分得对>>提问:小白兔、小灰兔把采集来的花分成3堆,都说自己的方法对。你说谁分得对呀?
小结:小白兔和小灰兔都分得有道理,都对。一组物体按不同的标准分,结果是不一样的。
2.选一选,分一分。多媒体显示:观察下面八顶帽子,请你分一分。教师根据学生的回答,对学生出色的回答给予表扬:小朋友们真聪明!只要他细观察,肯动脑筋,会学到很多知识。3.听口令游戏。现在我们来做个听口令的游戏。看哪些小朋友注意力集中。男生起立!女生起立!女生坐下!提问:小朋友们,想一想,现在我们把全班的小朋友按什么来分的?谈话:现在戴帽子的小朋友起立!这时我们全班的小朋友是按什么来分的?谈话:我们全班的小朋友还可以怎么分,小朋友们课后再去想一想。
4.分一分,说一说。多媒体显示“想想做做”第四题。谈话:小朋友们我们各小组讨论一下,可以怎样分?然后选择一种你喜欢的分法?在书上做上不同的记号。教师对于学生说出的分的结果只要有道理都给予肯定。小结:一组物体有时可以按多种标准分,分出的结果是不一样的。学生完成后,分别说一说,再把自己画的和符号和屏幕上一一核对。学生分别回答出:按天上飞的,地上走的,水上航行的标准分的。
(三)按不同标准分
1.学生思考回答分得都对,分别是按颜色和形状来分的。
2.仔细观察,有的回答可以根据颜色分分成三类,有的说可以根据帽子的款式分分成两类。
3.玩听口令游戏。学生根据口令做一做。学生回答是按男生女生来分的。学生听口令做一做。回答是按有没有戴帽子来分的。
4.上“想想做做”第四题。学生观察后讨论,然后各小组在舒缓的音乐声中完成“想想做做”第4题。各小组展示分类结果,有的学生回答我们小组是按蔬菜和水果分的,我们把它们分成两类;有的学生回答我们小组是按照颜色来分的,有红的、有绿的、有紫的,我们把它们分成三类。等等。
三、自由发言,交流体验(约3分钟)
教师活动学生活动
谈话:小朋友们,你知道我们日常生活中还有哪些地方运用了分一分的方法吗?学生追忆后,回答在生活中做过的、见到的用分一分方法的事。
四、实践延伸,学以致用。(约3分钟)
教师活动学生活动
多媒体显示一组房间衣屋散放的画面。提问:看了这幅画面你想说些什么?谈话:我们小朋友回家后运用分一分的方法把自己的小房间整理一下,好吗?学生观看后分别说一说自己的想法。如说这个房间太乱了,需要整理一下,准备回去怎样整理自己的房间等。
五、本课小结
本课是让学生自己在探索中掌握分类的方法。学会分类可以根据同一标准分也可以按不同的标准分。在生活中有许多时候都需要用到分类。
2024年数学教案篇7
教学目标:
1.在实际情境中进一步理解加减法的意义,能正确掌握加减法各部分的名称。
2.能正确熟练在进行整十数加整十数的加减法计算,鼓励算法多样化。
3.培养学生运用数学知识解决实际问题的能力。
学习目标:
1.理解加减法的意义,能正确掌握加减法各部分的名称。
2.正确熟练的进行整十数加整十数的加减法计算。
教学重点:
掌握100以内的整十数加整十数的计算方法。
教学难点:
培养灵活运用所学知识解决实际问题的能力。
教学过程:
一、复习铺垫
比100多1的数是99。()
53和35一样大。()
97前面的数是98,后面的数是96。()
99大于100。()
和70相邻的数是71和72。()
从61到73中间有12个数。()
一个数个位上是5,十位上是1,这个数是51。()
78个是由7个一和8个十组成的。()
39和41的中间是40。()
40+5比50+4小。()
二、创设情景
今天是小兔子的生日,她想请你们参加她的生日宴会。你们愿意参加吗?(板书课题:小兔请客)
三、探究新知。
1.瞧,小兔邀请了哪几个好朋友?(出示主题图)小猴是个“数学迷”,他发现每盘都有10个果子,看到这么多的果子,他马上就想提一个数学问题。你知道小猴子会提什么问题呢?
(1)同桌说一说。(2)指名交流。
2.光会提问题还不行,你们会解决这个问题吗?
(1)先想一想,再用你手中的学具摆一摆、拨一拨。
(2)小组同学交流自己的想法和算法。
(3)指名说算法和算式。
学生汇报,教师板书:20+30=50。30+20=50。
3.小结:在加法算式里“+”前面和后面的数都叫加数,“=”后面的数叫和。
4.忽然,小刺猬的家里有急事,让他回家。小刺猬望着这么好吃的果子,真舍不得走,怎么办呢?他灵机一动,在盘子里打了一个滚。瞧,(出示主题图的右边图)他得意地走了,惹得大家哈哈大笑。小朋友,现在你又能提出什么数学问题呢?
5.你们能用上面的方法自己解决吗?并说出减法算式各部分名称。
小组讨论:怎样列式,怎样计算?
6.请学生独立完成课堂练习。
四、巩固提高
1.刚才同学们都表现得非常好,小白兔决定带大家玩一个小游戏。(玩开火车游戏)出示课本练一练第3题,快速口答。
2.三只母鸡找不到自己的孩子了,请你快速的找出每个小鸡的妈妈是谁?
3.出示果园图,让学生提出问题并解决问题。
五、教师总结:
这节课你有什么收获?
2024年数学教案篇8
浙江省诸暨市暨阳小学章梧飞(初稿)
浙江省诸暨市实验小学教育集团陈菊娣(修改)
浙江省诸暨市教育局教研室汤骥(统稿)
教学内容:人教版小学数学教材六年级上册第98~99页例2及相关练习。
教学目标:
1.了解三种统计图的不同特点,使学生知道对于同样的数据可以有多种分析方法,能根据需要选择合适的统计图,直观、有效地描述数据,培养进一步发展数据分析观念。
2.通过对三种统计图的认识、制作和选择,进一步培养学生对数据处理的能力及统计观念,使学生深刻体会到数学和我们的社会、生活密切联系。
教学重点:了解不同统计图的特点;能根据实际问题选择合适的统计图,培养统计观念。
教学难点:根据实际问题选择合适的统计图。
教学准备:课件。
教学过程:
一、复习引入
1.复习扇形统计图。
上节课我们学习了扇形统计图,你对它了解了多少?
课件出示扇形统计图:我国居民平均月膳食各类食物的摄入量占总摄入量的百分比就可以用扇形统计图来表示。它能清楚地反映出各部分与总数之间的关系。
2.你还学过了哪些统计图?它们各有什么特点?
根据学生回答,课件随机点击出现相关内容。
(1)条形统计图,能清楚地看出各个数量的多少。
(2)折线统计图,不仅可以反映数量的多少,还能反映出数量增减变化趋势。
通过刚才的复习,我们发现,生活中有时用扇形统计图,有时用条形统计图,还有用到折线统计图的情况。那么人们在选择统计图时,是以什么为依据的呢?这三种统计图各有什么特点和用途呢?这就是我们本节课要研究的问题。
3.揭题:选择合适的统计图。(板书)
【设计意图】通过对三类统计图特点的复习,唤醒学生对已有知识基础的回忆,为接下来统计图的选择做好准备。
二、探究新知
1.学习教材第98页例2第(1)组数据。
课件出示:
(1)绿荫小学2007-2011年校园内树木总量变化情况统计表。
仔细观察,你得到了哪些数学信息?如果让你用统计图表示这一组数据,你觉得可以用哪一种统计图?
学生:可以用折线统计图。
教师引导学生观察:统计图的横轴表示什么?竖轴表示什么?怎样确定竖轴上的数据每一格表示多少?(课件演示绘制过程)
教师:还可以用其他统计图吗?
学生:还可以用条形统计图来表示。(如果学生没有说到条形统计图,教师课件展示。)
教师:我们来看一看,条形统计图能不能把统计表中的信息完整地表示出来呢?
学生:可以把每年的树木总量表示出来;还可以通过条形的起伏看出大致的变化趋势。
引导比较:这张统计表中的信息可以用条形统计图来表示,也可以用折线统计图来表示,你觉得用哪一种更合适,为什么?可以同桌讨论。
小结:折线统计图能更加直观地表示出数量随着时间的变化趋势。相对来说,这里用折线统计图更合适一些。
【设计意图】通过对第(1)组数据的分析,让学生明确如何根据统计表所提供的数据特点来制作统计图,不局限于选择某一种统计图,以拓宽学生的思路,最后通过观察比较,选择更为合适的统计图种类。
2.学习教材第98页例2第(2)(3)组数据。
我们还对绿荫小学的树木进行了其他方面的统计,请看下方表格(课件出示统计表)。
请仔细阅读统计表信息,它们可以用什么统计图来表示?试着在练习纸上画一画。
比一比:你认为哪种统计图能更加直观地表达统计表中的信息?
交流反馈:
第(2)张表格:可以用条形统计图来表示,也可以用扇形统计图来表示(课件演示)。
比较:都能表示出各种树木占树木总量的百分比,但扇形统计图能更加直观地反映出各种树木的数量和树木总量之间的关系。是的,当需要了解部分与整体之间的关系时,选择扇形统计图更合适。
第(3)张表格:给出了各种树木的数量,只能用条形统计图来表示。
为什么不用其他的统计图?
各种树种处于平等、独立的地位,用折线统计图表示是不合适的。
因为缺乏相应的百分比数据,所以也无法用扇形统计图表示。
3.课堂小结:通过刚才的学习,你知道了什么?
小结内容可以包括:三种统计图各有什么特点?在描述各种数据的时候可以用哪些统计图?其中哪些更有优势?用哪些统计统计图又是不合理的?
【设计意图】例题反映了根据不同的情况选择不同的统计图。第(2)张表格可以用不同的统计图,第(3)表格只能用一种统计图,选择什么样的统计图能更适当、清晰反映数据,通过让学生在自主分析数据以及制作、选择、比较统计图的过程中,进一步加深对三种统计图的特点的理解。
三、巩固练习
1.教材第99页“做一做”。
课件出示题目:在林业科学里,通常根据乔木生长期的长短将乔木分成不同的类型。下面是我国乔木林各龄组的面积构成情况。
以上信息可以用什么统计图描述?哪种更直观?
(1)学生独立思考完成。
(2)交流反馈,根据学生回答出示统计图(可以用条形统计图完成,也可以用扇形统计图来完成)。
引导比较:用扇形统计图能更加直观地反映出它们之间的关系。
2.考考你:选择最合适的统计图。
(1)如果我想制作一个统计图,使它能够清晰地反映世界人口从1957—2014年的变化情况,你认为选择哪种统计图最合适?
(2)如果我想制作一个统计图,使它能够反映2014年各大洲人口占世界人口的百分比,你认为选择哪种统计图最合适?
(3)如果我想制作一个统计图,使它能够反映2014年各大洲人口的具体情况,你认为应该选择哪种统计图?
3.教材第103页第7题。
(1)学生独立完成。
(2)集体交流订正。
【设计意图】利用练习让学生在选择统计图的多样化选取和优化选择的过程中,进一步理解每种统计图的特点,对三种统计图产生整体的认识。
四、回顾总结,布置作业
1.这节课我们学习了什么?现在你知道如何正确选择统计图了吗?
2.课外作业:教材第104页第8题。
2024年数学教案篇9
活动目标:
1、激发幼儿认识平面图形的兴趣及探索的欲望。
2、发展幼儿较敏锐的观察力和抽象概括能力。
活动准备:课件一套、幼儿正方形、梯形学具每人一套
活动分析:
在幼儿认识平面图形的过程中,一直本着循序渐进的原则。幼儿已经认识了圆形、三角形、正方形、长方形,在此基础上来认识梯形,对幼儿来说是一个学习的过程,也是一个提高的过程。鉴于平面图形较为抽象,因此在活动过程中运用了多媒体教学来解决这一困难,一方面更加激发幼儿的兴趣,一方面更好的为幼儿的学习所服务。本次活动的重点是了解梯形的特征,并能拓展到周围的生活与环境中去,主要运用观察法、观察比较法、讲解法等突破;活动难点是让幼儿能够找出两条平行边,主要运用观察法、讲解法、联系法等突破。
活动过程:
一、导入
情景导入:图形王国要举行聚会,我们一起去看一看吧。(出示课件)
二、展开
1、简单复习学过的图形。
2、由正方形引出梯形,让幼儿认识梯形,记住名字。
3、请幼儿进行操作,比较正方形和梯形的异同点。要求:请幼儿比较边和角的不同。提问:正方形和梯形的边和角有什么相同的地方?有什么不同的地方?
4、出示课件引出平行的概念。
5、让幼儿找出平行线并讲解其概念。
6、找梯形、找出平行线,进行复习巩固。
7、找周围生活中像梯形的物品,让幼儿知道梯形是较稳固的图形,被广泛运用在我们的生活中,并出示课件欣赏。
三、结束
延伸活动:继续寻找周围生活中的梯形物品。
2024年数学教案篇10
教学课题:
十几减9的练习课
教学内容:
十几减9的练习课
教学目标:
通过十几减9的练习,进一步理解和掌握20以内退位减9的口算方法,提高计算能力。
重点难点:
熟练掌握“想加算减法”。
教学准备:
多媒体课件。
教学过程:
一、复习铺垫导入新课
填数计算,并讲一讲上下两行有什么联系?
9+()=159+()=18
15-9=()18-9=()
9+()=149+()=17
14-9=()17-9=()
二、课堂练习
1、完成P11页练习一的第4题。
(1)出示画面,让学生理解题意。
(2)让学生独立口算出每一个算式的答案,并将他们对号入座。
(3)教师任意选择一题让学生说一说你是怎样想的。
2、完成P11页练习一的第3题。
教师将10、14、13、17……写在黑板上,然后教师一手拿着9的卡片在黑板上移动(不必按顺序),卡片对着十几就算十几减9。
[教师还可以随意在黑板上指题,全班每一个学生举数字卡片表示得数,这样能激发学生做题的兴趣,有利于提高学习的效果。]
3、完成P12页练习一的第6题。
(1)出示题目让学生理解题意,口头叙述画面内容。
(2)提问:这道题告诉我们什么条件,要我们求什么?
学生观察后汇报
第一组植树8棵,第二组植树9棵,两个小组一共植树多少棵?
(3)请学生列式,并复述口算过程。
(4)你能根据列出的加法算式说出一个减法算式呢?说说这个减法算式中被减数、减数和差表示的意义吗?
4、完成P12页练习一的第8题。
(1)让学生独立理解题意,叙述画面内容。
(2)让学生通过画面内容想一想:这道题可以提什么问题?
(3)学生任意选择独立完成。
三、课堂练习
1、完成P11页练习二的第5题。
2、完成P12页练习二的第7题。
[学生独立完成,集体订正。]
四、布置作业。
1、完成练习练习二的第9题。
2、完成第12页思考题
教学反思:
通过本课的练习,使学生在有梯度的练习中进一步理解和掌握了十几减9的退位减法的计算方法,在老师的鼓励下,运用想加算减法,学生计算的速度有了明显的提高。
2024年数学教案篇11
教学目标
1、掌握“十几加几(不进位)和十几减几(不退位)”的计算方法。
2、认识加法和减法各部分的名称。
3、能较快、准确地计算十几加几(不进位)的加法和十几减几(不退位)的减法。
4、培养学生积极思考、合作交流的习惯。进一步提高学生的计算能力。
教师提出的核心问题
1、“解决天空中有一共有多少只海鸥?”你认为该用什么方法来计算?为什么?
2、12+3=,哪种方法最容易计算?
3、“解决还剩下多少桶食物?”用什么方法?为什么?
4、计算17-4=,哪种方法最简便?
渗透的思想方法
学生主要的训练点计算方法,书写习惯
教学环节一、复习旧知。
1、口算。
2、填一填。
(1)1个十和5个一是()。
(2)19里面有()个十和()个一。
(3)17=10+()13=()+312=10+()
二、创设情景:
师:海鸥回来了,小朋友可高兴了。星期天,小明和妈妈带着海鸥喜欢吃的食物到海边去喂海鸥,我们也去看看。
三、探究新知:
1、出示情景图。你从图上看到了什么?
2、你能看图提出哪些数学问题?
学生说,教师写有价值的用加减法计算的问题。
3、解决天空中有一共有多少只海鸥?
(1)要解决这个问题,需要知道哪些信息?
(2)你认为该用什么方法来计算?为什么?
“12+3=”
(3)怎样计算?你能想出哪些算法?
教师引导学生利用学具摆一摆、算一算。
小组交流讨论,教师指导。
小组汇报:①接数的方法:13、14、15
②因为2+3=5,10+5=15,所以12+3=15
③因为15可以分成12和3,所以12+3=15
④因为15-3=12,所以12+3=15
提倡算法多样化,注意突出算法最优化②。
(4)师:计算天空中一共有多少只海鸥还可以怎样列式?
板书:3+12=15
4、解决还剩下多少桶食物?
“17-4=”的问题。
(1)出示“岩石上的海鸥”主题图
指名学生说图意,并列出算式。师板书:17-4=
(2)师:谁能算出17减4等于多少?怎样算?
小组交流讨论,教师指导。
小组汇报:①接着减数的方法:16、15、14、13
②因为7-4=3,10+3=13,所以17-4=13
③因为17可以分成13和4,所以17-4=13
④因为13+4=17,所以17-4=13
提倡算法多样化,注意突出算法最优化②。
5、教学加减算式各部分的名称。
师出示算式:12+3=17-4=让学生计算后,教师说明加减法各部分的名称,边介绍边板书:
12+3=1517-4=13
加数加数和被减数减数差
6、小结:今天我们学习的是十几加几(不进位)的加法和十几减几(不退位)的减法,都是先用个位加或减,再合上十位的数。
四、练习:
1、做自主练习的第1题、第2题。
注意一边做,一边说计算过程。
2、做自主练习的第3题
3、做自主练习的第4题
数一数,再填空可以;列式11+5=16也可以。
4、做自主练习的第6题
注意这是第一次接触“文字应用题”,一定引导学生多读题,充分理解题意。再列式计算:17-6=11(条)
5、比一比,看谁算得又对又快!
14+3=20-10=
15-5=15+3=
15-10=5+12=
6+13=16+3=
2+15=10+7=
18-10=15-3=
五、小结:这节课你学会了什么?有什么收获?
教学效果(教师做自我评价)
2024年数学教案篇12
教学内容:教材第22页相关内容及练习题
教学目标:知识与技能:能用语方描述简单的路线图,并能根据描述画出具体的路线示意图。
过程与方法:在学习过程中培养学生的观察分析和交流合作的能力。
情感态度价值观:
1.体会到数学知识与实际生活紧密联系,感受到生活中处处有数学。
2.培养学生合作交流的能力以及学习数学的兴趣和自信心。
教学重难点:重点:能用语方描述简单的路线图,并能根据描述画出具体的路线示意图。
难点:能根据观测点的变化灵活描述路线。
教学方法:合作交流、共同探讨
教、学具准备:教师:多媒体实物投影仪、量角器、三角尺、中国地图等。
学生:量角器、三角尺、中国地图等。
教学过程:
一.复习导入
1.复习。
同学们,在上节课的学习过程中,我们知道了要确定一个物体的位置,需要哪几个条件?
分别让学生说一说。
(确定物体相对于观测点的方向;确定物体相对于观测点的距离。)
2.导入。
今天这节课我们继续学习位置与方向的相关知识。
[板书课题:位置与方向(二)]
【设计意图】简单的知识回顾,帮助学生回忆学习过的有关知识,为学习新课做准备,让学生能快速地进入学习状态。
二、探过新知
㈠教学例题3。
1.出示台风的大致路径图。
(1)让学生在路径图上分别找一找:台风生成地、A市、B市、路径图上的方向标。
(2)指名汇报。
2.提出问题。
你能用自己的语言说说台风的移动路线吗?
如果学生有困难,可以进行如下适当启发:
台风生成以后,先是沿正西方向移动km,然后改变方向,向西偏北方向移动了km,到达A市。接着,台风又改变了方向,向偏30度方向移动了km,到达B市。
3.组织交流。
指名汇报,其他学生进行补充。
通过交流活动让学生明白台风到达一个新的位置后,要以新的位置作为观测点来判断台风运行的方向。
4.小结描述路线的方法。
描述路线时要讲清楚“从哪里出发”“沿什么方向”“移动多少距离”“到达哪里”。
(二)出示教材第22页“做一做”。
1.提出要求。
根据下面的描述画出路线示意图。
2.小组讨论画图方法。
⑴学生小组讨论怎么样画图。
教师巡视,参与个别小组讨论。
⑵组织交流汇报。
通过交流,让学生明白画图的步骤:
①定下出发时的位置。
②标出示意图的方向标。
③用量角器量出方向。
④确定比例尺,计算出图上距离,量出图上距离。
3.学生独立画路径图。
教师巡视,辅导有困难的学生。
4.展示汇报,交流评议。
交流时分别让学生说一说自己是如何画的。
教师要适时指导学生,特别是如何确定比例尺,也就是图上每一格代表实际的距离是多少。
【设计意图】教学过程中让学生通过观察分析、独立思考、合作交流等方式,亲历问题分析、解决过程,更好地理解物体之间的相对位置关系。
三、巩固练习
1.教材第23页“练习五”第3题。
这道题主要是通过动手操作测量,体会观测点的不同,引起方向的不同,从而懂得物体位置的方向是相对的。教学时可以通过以下步骤进行:
(1)在中国地图上找出北京和哈尔滨的位置;
(2)分别以北京和哈尔滨为观测点,画出“十”字方向标;
(3)连一连,量一量;
(4)说一说北京在哈尔滨的什么方向上,哈尔滨在北京的什么方向上;
(5)你发现了什么?(物体位置方向是相对的)
2.教材第26页“练习五”第9题。
(1)先根据描述,把公共汽车行驶的路线图画完整。通过这个小题,让学生巩固画路线图的方法。
(2)再根据路线图,说一说公共汽车沿原路返回时行驶的方向和路。通过这个小题,感受物体位置方向的相对性。
四、课堂小结
师生通过交流总结:知道了如何描述路线图,并根据路线图画出示意图,知道了物体的位置方向是相对的。
板书设计;
位置与方向㈡
描述路线:从哪里出发→沿什么方向→移动多少距离→到达哪里
定下出发的位置。
↓
标出示意图的方向标。
↓
画路线图的方法:用量角器量出方向。
↓
确定比例尺,计算出图上距离,量出图上距离。
2024年数学教案篇13
教学目标:
1.理解并掌握“单价×数量=总价、速度×时间=路程”这两种数量关系,并能运用数量关系解决实际问题。
2.初步培养学生运用数学术语的能力,发展学生分析、比较、归纳、抽象、概括的能力。
3.感受数学知识与生活的密切联系,在解决问题的过程中感受三位数乘两位数笔算方法的应用价值。
教学重点:理解并掌握单价、数量和总价及速度、时间和路程之间的关系。
教学难点:运用数学术语概括、表达数量关系,并能在解决问题的过程中加以应用。
教学准备:课件
教学过程:
一、谈话引入
1.回顾生活中的常见问题。(课件出示题目)
(1)每个书包50元,4个书包多少钱?
(2)一列动车每小时行200千米,4小时行多少千米?
(3)李师傅每天生产15个零件,他6天可以生产多少个零件?
指名学生口头列式,师生交流反馈。
2.导入新课。
在日常生活中,存在着许许多多的数量关系,弄清楚这些常见的数量关系,对于我们分析问题和解决问题都有很大帮助。这节课我们就一起来学习生活中常见的数量关系。(板书课题)
二、交流共享
(一)教学单价、数量和总价的关系。
1.课件出示教材第28页例题2情境图。
学生观察情境图,收集情境中的信息:钢笔每支12元,练习本每本3元;要买4支钢笔和5本练习本。
2.理解“单价”“数量”和“总价”。
(1)提问:什么是单价?什么是数量?什么是总价?
(2)追问:每种商品的单价各是多少?购买的数量呢?
(3)介绍单价的读法和写法。
(4)认识总价。
引导思考:根据题目中购买钢笔的情况,我们可以求什么呢?
指出:“4支钢笔一共多少钱”指的就是4支钢笔的总价。
3.理解单价、数量和总价的数量关系。
(1)课件出示下表:
单 价数 量总 价
钢笔( )元/支( )支( )元
练习本( )元/本( )本( )元
让学生先填写商品的单价和购买的数量,再分别求出总价。教师巡视,发现错误及时纠正。
(2)交流讨论:总价与单价、数量之间有什么关系?
教师结合学生的汇报情况进行板书:
总价=单价×数量
(3)思考:已知总价和单价,可以求什么?怎样求?已知总价和数量呢?
师生交流后板书:
数量=总价÷单价
单价=总价÷数量
4.师生共同小结。
根据单价、数量和总价三个量的关系,只要知道两个量,就可以求出第三个量。我们在记这一组数量关系式时,只要记住“总价=单价×数量”,就可以根据乘法算式各部分之间的关系,得出“数量=总价÷单价”和“单价=总价÷数量”。
(二)教学速度、时间和路程的关系。
1.课件出示教材第28页例题3情境图。
引导学生读题,收集情境图中的信息。
2.理解“速度”“路程”和“时间”的含义。
(1)提问:情境中给出的两条信息可以称为什么?
(2)交流速度的写法和读法。
先让学生自己阅读教材,再进行交流。
(3)认识时间和路程。
提问:行程问题中除了速度之外,还有哪些数量呢?
指名说说对时间和路程的理解。
3.探究速度、路程和时间的数量关系。
(1)课件出示下表:
单 价数 量总 价
列车( )千米/时( )时( )千米
自行车( )米/分( )分( )米
学生先填写和谐号列车与李冬骑自行车的速度,再分别求出行驶的路程。教师巡视,发现错误及时纠正。
(2)交流讨论:路程与速度、时间之间有什么关系?教师结合学生的汇报情况进行板书:
路程=速度×时间
(3)思考:已知路程和速度,可以求什么?怎样求?已知路程和时间呢?
师生交流后板书:
时间=路程÷速度
速度=路程÷时间
4.小结。
三、反馈完善
1.完成教材第29页“练一练”第1~3题。
第1题:练习单价和速度的写法。
第2题:运用例题3的数量关系解决求路程的问题。
第3题:运用例题2的数量关系解决求总价的问题。
学生独立完成并集体订正。
2.完成教材第30~31页“练习五”第8、9题。
第8题:已知路程和时间求速度的问题。
第9题:已知总价和数量求单价的问题。
学生独立完成,汇报时让学生说说题中的数量关系各是什么。
四、反思总结
通过本课的学习,你有什么收获?还有哪些疑问?
2024年数学教案篇14
教学目标:
1、使学生能初步地数、读、写100以内的数。
2、初步理解数位的意义,掌握100以内数的顺序,会比较它们的大小。
3、初步掌握100以内数的组成。
三、教学重点:
初步正确地数、读、写100以内的数,特别注意过九的数。
四、教学难点:
初步理解数位的意义,掌握100以内数的顺序。
五、教具准备:
计数器、数字卡片
六、教学过程:
(一)复习:
1、复习数位表:
“从右边起,第一位是什么位?第二位呢?第三位呢?(个、十、)对!
“那么怎么样用计数器表示11?”(指名回答,说一说数位表示的意思)
(二)导入:
“刚才表示的数都是20以内的数,如果是20以上的数又应该怎样表示呢?谁知道24这样用计数器表示?”
说一说数的组成。
(学生讨论,教师指名回答)
写作:24读作:二十四)
(三)新课:
1、想一想应该怎么样用计数器表示42?(指名回答)
想:42由4个十和2个一组成,所以在十位上拨4,在个位上拨2。
写作:42读作:四十二
2、(1)教师拨珠子:十位4颗,个位3颗
“请问珠子表示的数是多少?”(指名回答)
板书:写作:43
全班齐读“十位是4,个位是3,所以读作四十三”
读作:四十三
3、练习巩固:
(1)接拨珠子,分别用指名答、开火车答、全班齐答等方式。过九的数:39,49,59,69,79,89,99.
(2)教师读数,学生听数并动手写数,再全班对答案。
(3)同桌2人合作,一人说数,另一个人在听写本上写数,要求写数和读数都要写出来。每人说3个数。
(4)巩固练习
?1、个位是7,十位是4,这个数是()。
?2、65的6在()位上,表示(),5在()位上,表示()。
?3、一个两位数,从右边起第一位是7,第二位是2,这个数是()。
(四)小结:今天我们学习了100以内的读数和写数。(板书:读数、写数)其实方法和20以内数的读写都是一样的。不知道小朋友们是否都熟练掌握了100以内数的读写呢?好我们现在来做练习。
2024年数学教案篇15
1、空间一点 位于不共线三点、、所确定的平面内的充要条件是存在有序实数组、、、,对于空间任一点,有且(时常表述为:若且,则空间一点位于不共线三点 、、所确定的平面内。)
2、若多边形的面积为 ,它在一个平面上的射影面积为,若多边形所在的平面与这个平面所成的二面角为,则有。(射影面积公式,解答题用此须作简要说明)
3、经过平面外一点只有一个平面和已知平面平行。
4、过一点和一个平面垂直的直线有且只有一条;过一点和一条直线垂直的平面有且只有一个。
5、经过两条异面直线中的一条,只有一个平面与另一条直线平行。
6、三个两两垂直的平面的交线两两垂直。
7、对角线相等的平行六面体是长方体。
8、线段垂直平分面内任一点到这条线段两端点的距离相等。
9、经过一个角的顶点引这个角所在平面的斜射线,设它和已知角两边的夹角为锐角且相等,则这条斜射线在这个平面内的射影是这个角的平分线。(斜射线上任一点在这个平面上的射影在这个角的平分线上)
10、如果一个角 所在平面外一点到这个角两边的距离相等,那么这点在平面上的射影,在这个角的平分线上。(解答题用此须作简要证明)
11、若三棱锥的三条侧棱相等或侧棱与底面所成的角相等,那么顶点在底面上的射影是底面三角形的外心。
(1)当底面三角形为直角三角形时,射影落在斜边中点上。
(2)当底面三角形为锐角三角形时,射影落在底面三角形内。
(3)当底面三角形为钝角三角形时,射影落在底面三角形外。
12、如果三棱锥的三个侧面与底面所成的二面角都相等或三棱锥的顶点到底面三条边距离都相等(顶点在底面上的射影在底面三角形内),那么顶点在底面上的射影是底面三角形的内心。
13、如果三棱锥的三条侧棱两两垂直,或有两组对棱垂直,那么顶点在底面上的射影是底面三角形的垂心。
14、若平面 、平面、平面两两互相垂直,那么顶点在平面内的射影是三角形的垂心。
15、棱长为 的正四面体的对棱互相垂直,对棱间的距离为。(该间距为小棱切球之直径)
16、设正四面体的棱长为 ,高为,外接球半径为,内切球半径为,棱切球(与各条棱都相切的球,正四面体中存在两个这样的球)半径为,体积为,则:
, ,,或,
17、设正方体的棱长为 ,正方体的内切球、棱切球(与各条棱都相切的球)、外接球的半径分别为、、,则,,。
18、若二面角 的平面角为,其两个面的法向量分别为、,且夹角为,则或()。
19、点 到平面的距离:(其中为垂足,为斜足,为平面的法向量)。
20、证明两平面平行:
(1)若平面 、的法向量、共线,则;
(2)若平面 、有相同的法向量,则。
21、若直线 与平面的法向量共线,则可推出。
22、设 为空间直角坐标系内一点,平面的方程为:,则点到平面的距离为。
23、证明两平面垂直:
(1)确定两个平面 、的法向量、,若,则;
(2)在平面 内找出向量,若与的法向量共线,则;
24、向量 与轴垂直竖坐标(对轴、轴同理)。
25、"等积变换"、"割形"与"补形"是解决立体几何问题常用方法。有关正四面体中的计算有时可造正方体模型,使正方体的面对角线恰好构成正四面体。
三条侧棱两两垂直的正三棱锥中的有关计算有时可以补成正方体。
题型:四面体abcd中,共顶点a的三条棱两两相互垂直,且其长分别为1、 、3,若四面体的四个顶点同在一个球面上,则这个球的表面积为( )。该题型解法:可构造球内接长方体,长方体的体对角线长为球直径。
补充:三棱锥能够构造长方体的几种基本情形
(1)三条侧棱两两垂直的三棱锥可以构造长方体;
(2)三个侧面两两垂直的三棱锥可以构造长方体;
(3)三组对棱两两相等的三棱锥可以构造长方体。
2024年数学教案篇16
活动目标
1、感受门牌号码与楼层、房间位置之间的对应关系,学习用数字表示。
2、运用生活中的序数经验,为动物楼房设计门牌号码。
3、体验数字在日常生活中的作用。
活动准备
1.教具:教学挂图(一)中1~10的数卡(2~3套),教学挂图(四)中小动物楼房。
2.学具:操作材料,1个空白信封,铅笔。
活动过程
一、回忆数字在生活中的作用。
1、教师:在我们的生活环境中有许多数字,你在哪里见到过数字?它可以告诉我们什么?
2、引导幼儿从时钟、电话、汽车站牌、商品标价等多方面感受数字在生活中的作用。
二、了解门牌号码在日常生活中的作用。
1、教师:你家的门牌号码有数字吗?门牌号码上的数字可以告诉我们什么?如果我们家中的地址没有数字,会发生什么问题?
2、教师出示教学挂图(四)及信封,以“小狗邮递员来到小动物楼房前不知道把信送给谁”为由,引导幼儿讨论分析原因。
三、讨论明确门牌号码与楼层、房间位置之间的关系。
1、请个别幼儿讲述自己家的门牌号码是多少,隔壁邻居家的门牌号码及楼上和楼下邻居的门牌号码又是多少。教师随幼儿的讲述进行记录。
2、引导幼儿观察教师记录的门牌号码,如401、402、503、604等。
四、教师:你知道这些小朋友家住在第几层楼第几间房呢?你是怎么知道的?
1、讨论:小朋友的家是401,隔壁是402,为什么前面的数字都是4呢?为什么小朋友的家是401,楼上是501,楼下是301呢?为什么后面的数字都是一样呢?
2、引导幼儿发现门牌号码前面的数字表示的是楼层,后面的数字则表示楼层中的第几间,401、501楼层不一样,位置一样,401、402楼层一样,位置不一样。
五、尝试给小动物家设计门牌号码。
1、教师出示“小动物楼房”的作业单,交待设计门牌号码的规则与要求。
六、教师:看看小动物住在新楼房的哪一层?然后为每家设计门牌号码。每家的号码不能相同,要让别人能从门牌号码中看出每只小动物住在几楼,谁和谁是隔壁邻居,谁和谁是楼上楼下的邻居。
1、幼儿为小动物家设计门牌号码,教师对出现困难的幼儿给予引导和帮助。
七、展示布置设计结果,相互学习同伴间的各种设计。
1、请幼儿将自己设计的门牌号码展示在绒板上,并鼓励幼儿主动与同伴进行交流。
2、观察个别幼儿的作业单。
八、教师:这幢楼房都有哪些门牌号码?它们一样吗?从门牌号码中能够看出__(如小狗)住在几楼吗?哪些门牌号码是它的隔壁邻居?哪些门牌号码是它的楼上楼下邻居?
1、幼儿相互交流各自设计的门牌号码,感受数字在表示门牌号码时与楼层、房间位置之间的关系。
活动延伸:
将幼儿设计好门牌号码的一幢幢楼房组成一个小区,引导幼儿为整个小区内的每幢楼房设计楼号。
2024年数学教案篇17
教学目标:
1、理解平行线之间的距离的概念。
2、能够测量两条平行线之间的距离,会画到已知直线已知距离的平行线。
3、通过平行线之间的距离转化为点到直线的距离,使学生初步体验转化的数学思想。
教学重点:理解平行线之间的距离的概念,掌握它与点到直线的距离的关系。
教学难点:画到已知直线已知距离的平行线。
教学过程:
一、 准备知识
1、点到直线距离。
2、直线外一点与直线上各点连结的所有线段中,垂线段最短。
3、三条直线的平行关系。
二、探究新知
1、做一做。
测量自己的数学课本的宽度。要注意什么问题?刻度尺要与课本两边互相垂直。
2、公垂线、公垂线段的概念
与两条平行直线都垂直的直线,叫做这两条平行直线的公垂线。如图形中的直线AB与CD都是公垂线,这时连结两个垂足的线段,叫做这两条平行直线的公垂线段。图中的线段AB和CD。两平行线的公垂线段也可以看成是两平行直线中一条上的一点到另一条的垂线段。
3、公垂线段定理:两平行线的所有公垂线段都相等。
4、两平行线上各取一点连结而成的所有线段中,公垂线段最短。
如图m∥n,直线m、n上各取一点A、B,连结AB。再过A作n线段的垂线段AC,垂足为C,则有AC从而得到上述定理。
5、两平行间的距离:两平行线的公垂线段的长度。
6、范例分析
P76例 如图设直线a、b、c是三条平行直线。已知a与b的距离为5厘米,b与c的距离为2厘米,求a与c的距离。
引导学生分析,然后按教材写出解题过程:
解:在直线a上任取一点A,过A作AC⊥a,分别交b、c于B、C两点,则AB、BC、AC分别表示a与b,b与c,a与c的公垂线段。AC=AB+BC=5+2=7,因此a与c的距离为7厘米。
三、小结练习
1、练习P76 P77的A组2题
2、课堂小结
四、布置作业
P77的A组第1、3题
后记:
2024年数学教案篇18
一、学习目标
(一)学习内容
义务教育教科书(人教版)一年级下册第8页~第11页,及练习二的第1--3题。
十几减9是20以内退位减法的第一课时,是今后学习十几减几,多位数计算和其他数学知识最基础的部分。通过创设实际问题的情境,列出减法算式。让学生通过操作活动,理解算理,并形成的算法,形成运算能力。
(二)核心能力
《十几减9》属于数与代数领域内容,通过本单元学习,使学生能熟练地口算20以内的加减法,经历与他人交流各自算法的过程,培养运算能力。
(三)学习目标
1.通过观察和操作,合作探究,会用自己的语言表达与同伴交流15-9的计算方法。
2.在展示交流中,体会15-9算法的多样化,通过对比分析,会选择优化的方法,提升运算能力。
3.在解决问题的过程中,感受数学来源于生活,能运用十几减9正确解决生活中相关的实际问题。
(四)学习重点
掌握十几减9的计算方法。
(五)教学难点
理解“破十法”的计算算理和方法。
(六)配套资源
实施资源:《十几减9》名师教学课件、《十几减9》课时作业。
二、学习设计
(一)复习导入
1.拍手游戏:10的组成。
我拍1,你拍9,1和9组成10。
我拍2,你拍8,2和8组成10。
…………
9和几可以凑成10?看到9想到几?8和几凑成10,看到8想到几?
2.复习十几的组成
师:比一比,看谁抢答的快。16可以分成10和几?12可以分成10和几?19可以分成10和几?
(二)探究新知
1.观察主题图,提出问题
师:这是游园会活动,说一说你看到了什么?发现了哪些数学信息?
指导观察方法:观察图上的信息要有一定的顺序,结合具体的每项活动说说你发现的数学信息,并提出数学问题。
师:咱们一起看小丑卖气球这幅图:你发现了哪些数学信息?能提出一个数学问题吗?
预设:小丑有15个气球,卖出9个,还剩多少个?
师:今天我们就一起来研究十几减9的口算方法。
设计意图:主题图中活动项目很多,数学信息很零碎,教师引导学生有序观察,收集信息和提出与信息相关的问题,初步培养学生有序观察,找与对应信息相关,并提出问题的逻辑分析能力。
2.探究十几减9的计算方法和理解算理
(1)列出算式,自主尝试计算
师:要求“气球还剩多少个”怎样列式?板书:15-9=
(2)操作与思维、表达相结合,理解算理,提升算法
师:15个气球,拿走9个该怎么拿呢?先想一想,再拿一拿,然后和同桌说一说你是怎么拿的。
学生活动汇报预设:
方法一:从15根小棒的下面先拿走5根,再从上面一行拿走4根,还剩6根。
师:刚才这个同学是怎么拿的?谁听清楚了,谁能上来边说边拿?
教师结合情况边说边逐步形成板书:
师:刚才我们是先从下面拿走5根,再从上面拿走4根,实际上是把9分成了5和4,先算15里面的5-5,再算15里面的10-4=6.
师:谁能像老师这样,结合刚才拿的方法来说一说15-9可以怎么算?
(一生照样子说后,同桌相互说一说计算过程)
师:谁还有不同的拿法吗?
方法二:从上面一并拿走9根,还剩1根,和下面的5根合起来是6根。
师:谁能结合他的拿法来说一说15-9可以怎么算?
(同桌相互说一说,找个别学生汇报)
生:先把15分成10和5,从10里去掉9,剩下的1与5合起来是6。
板书:
师:“10”表示哪些小棒?为什么把15分成5和10?“1”表示哪根小棒?“5+1”表示什么意思?
师:你能给这个方法起个名字吗?
动手操作重点理解“破十法”的算法和算理
(1)画出15个圆,左边10个,右边5个。
(2)从中圈出9个,想一想怎么圈。
结合画图过程,用语言表达计算过程。先算什么?再算什么?并完成下面括号的填写。
15-9=()因为()-9=(),()+5=()
师:谁还有不同的方法?
生:想加法算减法,因为9+6=15,所以15-9=6
师:刚才我们在计算15-9=?时想到了不同的方法,有的想加算减,有的是把15分成10和5,先算10-9=1,再算1+5=6,有的是先算5-5=0,再算10-4=6你最喜欢哪种方法?
设计意图:让学生从操作辅助到离开学具操作进行表象操作,从结合操作活动到分析算理,到逐渐脱离操作说明算理,教学过程的展开“扶得合理,放得适度”,思维层次不断提升,知识不断内化。
3.巩固练习
(1)圈一圈,算一算。
师:怎么计算12-9=?先圈一圈,再说一说你是怎么算的,先算什么?再算什么?
生:10-9=11+2=3
师:不操作,你能直接说说怎么计算14-9=?
设计意图:学生通过动手操作、闭眼想象、归纳,将操作、语言和算式充分地联系起来,从而将多种表征方式相结合,帮助学生理解用“破十法”计算15-9的算理。
(2)圈一圈,算一算:独立完成课本第10页“做一做”第2题。
(3)完成练习二第1题。
(三)课堂
全班交流,今天你学会用哪种方法计算十几减9的算式?你更喜欢哪种计算方法?
(四)课时作业
1.练习二第2题送信。
先让学生进行游戏,游戏完之后把信件按顺序:11-9、12-9、13-9、14-9、15-9、16-9、17-9、18-9
师:大家有什么发现?
师:十几减9的差为什么比被减数个位上的数多1呢?
师:你更喜欢用哪种方法计算十几减9?
用你喜欢的方法计算。
11-9=13-9=16-9=18-9=17-9=
师巡视,观察学生选择的计算方法,学生汇报,交流自己的计算方法。
知识点十几减9的计算方法。
答案略
解析通过游戏形式练习,了解学生对十几减9计算方法的掌握情况,接下来按顺序摆放让学生发现规律,并说出十几减9的差为什么比被减数个位上的数多1的道理,提高学生的理解能力和运算能力。
2.结合生活实际,编一道用“16-9”解决的实际问题。
知识点十几减9的应用。
答案略
解析通过学生编题,让学生发现计算和生活的联系,培养学生用数学的眼光观察生活,积累数学素养。
3.看图列式。
(1)(2)
知识点让学生观察分析图中的信息和问题,提高学生看图列式的能力。
答案18-9=915-9=6
解析这两道题都是已知总数和其中一部分,求另一部分的问题,都用减法计算。此题培养学生看图能力的同时,利用所学知识解决生活中的问题。
4.解决问题。
一共有17人排队做操,小红的左边有多少人?
知识点让学生结合生活经验,列出算式。体会所学知识的价值,并提高解决实际问题的能力。
答案17-9-1=7(人)
解析结合生活中排队做操的情境,用总人数减去小红右边的9人,再减去小红1个人,就是小红左边的人数。