教育巴巴 > 教案模板 > 优秀教案 >

2024年高中上册数学教案设计

时间: 梦荧 优秀教案

教案有助于顺利而有效地开展教学活动。那么关于高中上册数学教案怎么写呢?一起来看看吧,以下是小编整理的一些关于高中上册数学教案,仅供参考。

2024年高中上册数学教案设计

2024年高中上册数学教案设计【篇1】

教学目标

1使学生理解本章的知识结构,并通过本章的知识结构掌握本章的全部知识;

2对线段、射线、直线、角的概念及它们之间的关系有进一步的认识;

3掌握本章的全部定理和公理;

4理解本章的数学思想方法;

5了解本章的题目类型。

教学重点和难点

重点是理解本章的知识结构,掌握本章的全部定和公理;难点是理解本章的数学思想方法。

教学设计过程

一、本章的知识结构

二、本章中的概念

1直线、射线、线段的概念。

2线段的中点定义。

3角的两个定义。

4直角、平角、周角、锐角、钝角的概念。

5互余与互补的角。

三、本章中的公理和定理

1直线的公理;线段的公理。

2补角和余角的性质定理。

四、本章中的主要习题类型

1对直线、射线、线段的概念的理解。

例1下列说法中正确的是( )。

A延长射线OP B延长直线CD

C延长线段CD D反向延长直线CD

解:C因为射线和直线是可以向一方或两方无限延伸的,所以任何延长射线或直线的说法都是错误的。而线段有两个端点,可以向两方延长。

例2如图1-57中的线段共有多少条?

解:15条,它们是:线段AB,AD,AF,AC,AE,AG,BD,BF,DF,CE,CG,EG,BC,DE,FG。

2线段的和、差、倍、分。

例3已知线段AB,延长AB到C,使AC=2BC,反向延长AB到D使AD= BC,那么线段AD是线段AC的( )。

A.B. C. D.

解:B如图1-58,因为AD是BC的二分之一,BC又是AC的二分之一,所以AD是AC的四分之一。

例4如图1-59,B为线段AC上的一点,AB=4cm,BC=3cm,M,N分别为AB,BC的中点,求MN的长。

解:因为AB=4,M是AB的中点,所以MB=2,又因为N是BC的中点,所以BN=1.5。则MN=2+1.5=3.5

3角的概念性质及角平分线。

例5如图1-60,已知AOC是一条直线,OD是∠AOB的平分线,OE是∠BOC的平分线,求∠EOD的度数。

解:因为OD是∠AOB的平分线,所以∠BOD= ∠AOB;又因为OE是∠BOC的平分线,所以∠BOE= ∠BOC;又∠AOB+∠BOC=180°,

所以∠BOE+∠BOD=(∠AOB+∠BOC)÷2=90°。

则∠EOD=90°。

例6如图1-61,已知∠AOB=∠COD=90°,又∠AOD=150°,那么∠AOC与∠COB的度数的比是多少?

解:因为∠AOB=90°,又∠AOD=150°,所以∠BOD=60°。

又∠COD=90°,所以∠COB=30°。

则∠AOC=60°,(同角的余角相等)

∠AOC与∠COB的度数的比是2∶1。

4互余与互补角的性质。

例7如图1-62,直线AB,CD相交于O,∠BOE=90°,若∠BOD=45°,求∠COE,∠COA,∠AOD的度数。

解:因为COD为直线,∠BOE=90°,∠BOD=45°,

所以∠COE=180°-90°-45°=45°

又AOB为直线,∠BOE=90°,∠COE=45°

故∠COA=180°-90°-45°=45°,

而AOB为直线,∠BOD=45°,

因此∠AOD=180°-45°=135°。

例8一个角是另一个角的3倍,且小有的余角与大角的余角之差为20°,求这两个角的度数。

解:设第一个角为x°,则另一个角为3x°,

依题义列方程得:(90-x)-(90-3x)=20,解得:x=10,3x=30。

答:一个角为10°,另一个角为30°。

5度分秒的换算及和、差、倍、分的计算。

例9 (1)将4589°化成度、分、秒的'形式。

(2)将80°34′45″化成度。

(3)计算:(36°55′40″-23°56′45″)。

解:(1)45°53′24″。

(2)约为8058°。

(3)约为9°44′11″(第一步,做减法后得12°58′55″;再做乘法后得36°174′165″,可以先不进位,做除法后得9°44′11″)

五、本章中所学到的数学思想

1运动变化的观点:几何图形不是孤立和静止的,也应看作不断发展和变化的,如线段向一个方向延长,就发展成为射线;射线向另一方向延长就发展成直线。又如射线饶它的端点旋转就形成角;角的终边不断旋转就变化成直角、平角和周角。从图形的运动中可以看到变化,从变化中看到联系和区别及特性。

2数形结合的思想:在几何的知识中经常遇到计算问题,对形的研究离不开数。正如数学家华罗庚所说:“数缺形时少直观,形缺数时难如微”。本章的知识中,将线段的长度用数量表示,利用方程的方法解决余角与补角的问题。因此我们对几何的学习不能与代数的学习截然分开,在形的问题难以解决时,发挥数的功能,在数的问题遇到困难时,画出与它相关的图形,都会给问题的解决带来新的思路。从几何的起始课,就注意数形结合,就会养成良好的思维习惯。

3联系实际,从实际事物中抽象出数学模型。数学的产生来源于生产和生活实践,因此学习数学不能脱离实际生活,尤其是几乎何的学习更离不开实际生活。一方面要让学生知道本章的主要内容是线和角,都在生活中有大量的原型存在,另一方面又要引导学生将所学的知识去解决某些简单的实际问题,这才是理论联系实际的观点。

六、本章的疑点和误点分析

概念在应用中的混淆。

例10判断正误:

(1)在∠AOB的边OA的延长线上取一点D。

(2)大于90°的角是钝角。

(3)任何一个角都可以有余角。

(4)∠A是锐角,则∠A的所有余角都相等。

(5)两个锐角的和一定小于平角。

(6)直线MN是平角。

(7)互补的两个角的和一定等于平角。

(8)如果一个角的补角是锐角,那么这个角就没有余角。

(9)钝角一定大于它的补角。

(10)经过三点一定可以画一条直线。

解:(1)错。因为角的两边是射线,而射线是可以向一方无限延伸的,所以就不能再说射线的延长线了。

(2)错。钝角的定义是:大于直角且小于平角的角,叫做钝角。

(3)错。余角的定义是:如果两个角的和是一个直角,这两个角互为余角。因此大于直角的角没有余角。

(4)对.∠A的所有余角都是90°-∠A。

(5)对.若∠A<90°,∠B<90°则∠A+∠B<90°+90°=180°.

(6)错。平角是一个角就要有顶点,而直线上没有表示平角顶点的点。如果在直线上标出表示角的顶点的点,就可以了。

(7)对。符合互补的角的定义。

(8)对。如果一个角的补角是锐角,那么这个角一定是钝角,而钝角是没有余角的。

(9)对。因为钝角的补角是锐角,钝角一定大于锐角。

(10)错。这个题应该分情况讨论:如果这三点在同一条直线上,这个结论是正确的。如果这三个点不在同一条直线上,那么过这三个点就不能画一条直线。

板书设计

回顾与反思

(一)知识结构(四)主要习题类型(五)本章的数学思想

略例1  1

·  2

(二)本章概念·  3

略·  (六)疑误点分析

(三)本章的公理和定理·

例9

2024年高中上册数学教案设计【篇2】

教学目标

(1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题。

(2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念。

(3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点。

(4)通过求曲线方程的教学,培养学生的转化能力和全面分析问题的能力,帮助学生理解解析几何的思想方法。

(5)进一步理解数形结合的思想方法。

教学建议

教材分析

(1)知识结构

曲线与方程是在初中轨迹概念和本章直线方程概念之后的解析几何的基本概念,在充分讨论曲线方程概念后,介绍了坐标法和解析几何的思想,以及解析几何的基本问题,即由曲线的已知条件,求曲线方程;通过方程,研究曲线的性质。曲线方程的概念和求曲线方程的.问题又有内在的逻辑顺序。前者回答什么是曲线方程,后者解决如何求出曲线方程。至于用曲线方程研究曲线性质则更在其后,本节不予研究。因此,本节涉及曲线方程概念和求曲线方程两大基本问题。

(2)重点、难点分析

①本节内容教学的重点是使学生理解曲线方程概念和掌握求曲线方程方法,以及领悟坐标法和解析几何的思想。

②本节的难点是曲线方程的概念和求曲线方程的方法。

教法建议

(1)曲线方程的概念是解析几何的核心概念,也是基础概念,教学中应从直线方程概念和轨迹概念入手,通过简单的实例引出曲线的点集与方程的解集之间的对应关系,说明曲线与方程的对应关系。曲线与方程对应关系的基础是点与坐标的对应关系。注意强调曲线方程的完备性和纯粹性。

(2)可以结合已经学过的直线方程的知识帮助学生领会坐标法和解析几何的思想,学习解析几何的意义和要解决的问题,为学习求曲线的方程做好逻辑上的和心理上的准备。

(3)无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则。

(4)从集合与对应的观点可以看得更清楚:

设 表示曲线 上适合某种条件的点 的集合;

表示二元方程的解对应的点的坐标的集合。

可以用集合相等的概念来定义“曲线的方程”和“方程的曲线”,即

(5)在学习求曲线方程的方法时,应从具体实例出发,引导学生从曲线的几何条件,一步步地、自然而然地过渡到代数方程(曲线的方程),这个过渡是一个从几何向代数不断转化的过程,在这个过程中提醒学生注意转化是否为等价的,这将决定第五步如何做。同时教师不要生硬地给出或总结出求解步骤,应在充分分析实例的基础上让学生自然地获得。教学中对课本例2的解法分析很重要。

这五个步骤的实质是将产生曲线的几何条件逐步转化为代数方程,即

文字语言中的几何条件 数学符号语言中的等式 数学符号语言中含动点坐标 , 的代数方程 简化了的 , 的代数方程

由此可见,曲线方程就是产生曲线的几何条件的一种表现形式,这个形式的特点是“含动点坐标的代数方程。”

(6)求曲线方程的问题是解析几何中一个基本的问题和长期的任务,不是一下子就彻底解决的,求解的方法是在不断的学习中掌握的,教学中要把握好“度”。

2024年高中上册数学教案设计【篇3】

教学要求:

理解曲线交点与方程组的解的关系,掌握直线与曲线位置关系的讨论,能熟练地求曲线交点。

教学重点:

熟练地求交点。

教学过程:

一、复习准备:

1、直线A x+B+C=0与直线A x+B+C=0,平行的充要条件是__,相交的充要条件是__;

重合的充要条件是__,垂直的充要条件是__。

2、知识回顾:充分条件、必要条件、充要条件。

二、讲授新课:

1、教学例题:

①出示例:求直线=x+1截曲线=x所得线段的中点坐标。

②由学生分析求解的思路→学生练→老师评讲

(联立方程组→消用韦达定理求x坐标→用直线方程求坐标)

③试求→订正→小结思路。→变题:求弦长

④出示例:当b为何值时,直线=x+b与曲线x+=4分别相交?相切?相离?

⑤分析:三种位置关系与两曲线的交点情况有何关系?

⑥学生试求→订正→小结思路。

⑦讨论其它解法?

解一:用圆心到直线的`距离求解;

解二:用数形结合法进行分析。

⑧讨论:两条曲线F(x,)=0与F(x,)=0相交的充要条件是什么?

如何判别直线Ax+B+C=0与曲线F(x,)=0的位置关系?

(联立方程组后,一解时:相切或相交;二解时:相交;无解时:相离)

2、练习:

求过点(—2,—)且与抛物线=x相切的直线方程。

三、巩固练习:

1、若两直线x+=3a,x-=a的交点在圆x+=5上,求a的值。

(答案:a=±1)

2、求直线=2x+3被曲线=x截得的线段长。

3、课堂作业:书P72 3、4、10题。

2024年高中上册数学教案设计【篇4】

教学目标:

1。通过生活中优化问题的学习,体会导数在解决实际问题中的作用,促进

学生全面认识数学的科学价值、应用价值和文化价值。

2。通过实际问题的研究,促进学生分析问题、解决问题以及数学建模能力的提高。

教学重点:

如何建立实际问题的目标函数是教学的重点与难点。

教学过程:

一、问题情境

问题1把长为60cm的铁丝围成矩形,长宽各为多少时面积最大?

问题2把长为100cm的铁丝分成两段,各围成正方形,怎样分法,能使两个正方形面积之各最小?

问题3做一个容积为256L的方底无盖水箱,它的高为多少时材料最省?

二、新课引入

导数在实际生活中有着广泛的应用,利用导数求最值的方法,可以求出实际生活中的某些最值问题。

1。几何方面的应用(面积和体积等的最值)。

2。物理方面的'应用(功和功率等最值)。

3。经济学方面的应用(利润方面最值)。

三、知识建构

例1在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?

说明1解应用题一般有四个要点步骤:设——列——解——答。

说明2用导数法求函数的最值,与求函数极值方法类似,加一步与几个极

值及端点值比较即可。

例2圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选取,才能使所用的材料最省?

变式当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省?

说明1这种在定义域内仅有一个极值的函数称单峰函数。

说明2用导数法求单峰函数最值,可以对一般的求法加以简化,其步骤为:

S1列:列出函数关系式。

S2求:求函数的导数。

S3述:说明函数在定义域内仅有一个极大(小)值,从而断定为函数的最大(小)值,必要时作答。

例3在如图所示的电路中,已知电源的内阻为,电动势为。外电阻为

多大时,才能使电功率最大?最大电功率是多少?

说明求最值要注意验证等号成立的条件,也就是说取得这样的值时对应的自变量必须有解。

例4强度分别为a,b的两个光源A,B,它们间的距离为d,试问:在连接这两个光源的线段AB上,何处照度最小?试就a=8,b=1,d=3时回答上述问题(照度与光的强度成正比,与光源的距离的平方成反比)。

例5在经济学中,生产单位产品的成本称为成本函数,记为;出售单位产品的收益称为收益函数,记为;称为利润函数,记为。

(1)设,生产多少单位产品时,边际成本最低?

(2)设,产品的单价,怎样的定价可使利润最大?

四、课堂练习

1。将正数a分成两部分,使其立方和为最小,这两部分应分成____和___。

2。在半径为R的圆内,作内接等腰三角形,当底边上高为   时,它的面积最大。

3。有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起做成一个无盖小盒,要使纸盒的容积最大,问剪去的小正方形边长应为多少?

4。一条水渠,断面为等腰梯形,如图所示,在确定断面尺寸时,希望在断面ABCD的面积为定值S时,使得湿周l=AB+BC+CD最小,这样可使水流阻力小,渗透少,求此时的高h和下底边长b。

五、回顾反思

(1)解有关函数最大值、最小值的实际问题,需要分析问题中各个变量之间的关系,找出适当的函数关系式,并确定函数的定义区间;所得结果要符合问题的实际意义。

(2)根据问题的实际意义来判断函数最值时,如果函数在此区间上只有一个极值点,那么这个极值就是所求最值,不必再与端点值比较。

(3)相当多有关最值的实际问题用导数方法解决较简单。

六、课外作业

课本第38页第1,2,3,4题。

2024年高中上册数学教案设计【篇5】

教学目标:

1、使学生了解角的形成,理解角的概念掌握角的各种表示法;

2、通过观察、操作培养学生的观察能力和动手操作能力。

3、使学生掌握度、分、秒的进位制,会作度、分、秒间的单位互化

4、采用自学与小组合作学习相结合的方法,培养学生主动参与、勇于探究的精神。

教学重点:

理解角的概念,掌握角的三种表示方法

教学难点:

掌握度、分、秒的进位制, ,会作度、分、秒间的单位互化

教学手段:

教具:电脑课件、实物投影、量角器

学具:量角器需测量的角

教学过程:

一、建立角的概念

(一)引入角(利用课件演示)

1、从生活中引入

提问:

A、以前我们曾经认识过角,那你们能从这两个图形中指出哪些地方是角吗?

B、在我们的生活当中存在着许许多多的角。一起看一看。谁能从这些常用的物品中找出角?

2、从射线引入

提问:

A、昨天我们认识了射线,想从一点可以引出多少条射线?

B、如果从一点出发任意取两条射线,那出现的.是什么图形?

C、哪两条射线可以组成一个角?谁来指一指。

(二)认识角,总结角的定义

3、 过渡:角是怎么形成的呢?一起看

(1)、演示:老师在这画上一个点,现在从这点出发引出一条射线,再从这点出发引出第二条射线。

提问:观察从这点引出了几条射线?此时所组成的图形是什么图形?

(2)、判断下列哪些图形是角。

(√) (×) (√) (×) (√)

为何第二幅和第四幅图形不是角?(学生回答)

谁能用自己的话来概括一下怎样组成的图形叫做角?

总结:有公共端点的两条射线所组成的图形叫做角(angle)

角的第二定义:角也可以看做由一条射线绕端点旋转所形成的图形.如下图中的角,可以看做射线OA绕端点0按逆时针方向旋转到OB所形成的我们把OA叫做角的始边,OB叫做角的终边.

B

0 A

4、认识角的各部分名称,明确顶点、边的作用

(1)观看角的图形提问:这个点叫什么?这两条射线叫什么?(学生边说师边标名称)

(2)角可以画在本上、黑板上,那角的位置是由谁决定的?

(3)顶点可以确定角的位置,从顶点引出的两条边可以组成一个角。

5、学会用符号表示角

提问:那么,角的符号是什么?该怎么写,怎么读的呢?(电脑显示)

(1)可以标上三个大写字母,写作:∠ABC或∠CBA,读作:角ABC或角CBA.

(2)观察这两种方法,有什么特点?(字母B都在中间)

(3)所以,在只有一个角的时候,我们还可以写作: ∠B,读作:角B

(4)为了方便,有时我们还可以标上数字,写作∠1,读作:角1

(5)注:区别 “∠”和“<”的不同。请同学们指着用学具折出的一个角,训练一下这三种读法。

6、强调角的大小与两边张开的程度有关,与两条边的长短无关。

二、 角的度量

1、学习角的度量

(1)教学生认识量角器

(2) 认识了量角器,那怎样使用它去测量角的度数呢?这部分知识请同学们合作学习。

提出要求:小组合作边学习测量方法边尝试测量

第一个角,想想有几种方法?

1、要求合作学习探究、测量。

2、反馈汇报:学生边演示边复述过程

3、教师利用课件演示正确的操作过程,纠正学生中存在的问题。

4、归纳概括测量方法(两重合一对)

(1)用量角器的中心点与角的顶点重合

(2)零刻度线与角的一边重合(可与内零度刻度线重合;也可与外零度刻度线重合)

(3)另一条边所对的角的度数,就是这个角的度数。

5、小结:同一个角无论是用内刻度量角,还是用外刻度量角,结果都一样。

6、独立练习测量角的度数(书做一做中第一题1,3与第二题)

(1) 独立测量,师注意查看学生中存在的问题。

(2) 课件演示纠正问题

三、度、分、秒的进位制及这些单位间的互化

为了更精细地度量角,我们引入更小的角度单位:分、秒.把1°的角等分成60份,每份叫做1分记作1′;把1′的角再等分成60份,每份叫做1秒的角,1秒记作1″.

1°=60′,1′=60″;

1′=( )°,1″=( )′.

例1 将57.32°用度、分、秒表示.

解:先把0.32°化为分,

0.32°=60′×0.32=19.2′.

再把0.2′化为秒,

0.2′=60″×0.2=12″.

所以 57.32″=57°19′12″.

例2 把10°6′36″用度表示.

解:先把36″化为分,

36″=( )′×36=0.6′

6′+0.6′=6.6′.

再把6.6′化为度,

6.6′=( )°×6.6=0.11°.

所以 10°6′36″=10.11°.

四、巩固练习

课本P122练习

五、总结:请大家回忆一下,今天都学了那些知识,通过学习你想说些什么?

六、作业:课本P123 3、4.(1)(3)、5.(2)(4)

2024年高中上册数学教案设计【篇6】

教学目标:

(1)了解坐标法和解析几何的意义,了解解析几何的基本问题。

(2)进一步理解曲线的方程和方程的曲线。

(3)初步掌握求曲线方程的方法。

(4)通过本节内容的教学,培养学生分析问题和转化的能力。

教学重点、难点:

求曲线的方程。

教学用具:

计算机。

教学方法:

启发引导法,讨论法。

教学过程:

【引入】

1、提问:什么是曲线的方程和方程的曲线。

学生思考并回答。教师强调。

2、坐标法和解析几何的意义、基本问题。

对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何。解析几何的两大基本问题就是:

(1)根据已知条件,求出表示平面曲线的方程。

(2)通过方程,研究平面曲线的性质。

事实上,在前边所学的直线方程的理论中也有这样两个基本问题。而且要先研究如何求出曲线方程,再研究如何用方程研究曲线。本节课就初步研究曲线方程的求法。

【问题】

如何根据已知条件,求出曲线的方程。

【实例分析】

例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程。

首先由学生分析:根据直线方程的知识,运用点斜式即可解决。

解法一:易求线段的中点坐标为(1,3),

由斜率关系可求得l的斜率为

于是有

即l的方程为

分析、引导:上述问题是我们早就学过的,用点斜式就可解决。可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?

(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条)。

证明:(1)曲线上的点的坐标都是这个方程的解。

设是线段的垂直平分线上任意一点,则

将上式两边平方,整理得

这说明点的坐标是方程的解。

(2)以这个方程的解为坐标的点都是曲线上的点。

设点的坐标是方程①的任意一解,则

到、的距离分别为

所以,即点在直线上。

综合(1)、(2),①是所求直线的方程。

至此,证明完毕。回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:

解法二:设是线段的.垂直平分线上任意一点,也就是点属于集合

由两点间的距离公式,点所适合的条件可表示为

将上式两边平方,整理得

果然成功,当然也不要忘了证明,即验证两条是否都满足。显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证。

这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想。因此是个好方法。

让我们用这个方法试解如下问题:

例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程。

分析:这是一个纯粹的几何问题,连坐标系都没有。所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系。然后仿照例1中的解法进行求解。

求解过程略。

【概括总结】通过学生讨论,师生共同总结:

分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:

首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正。说得更准确一点就是:

(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;

(2)写出适合条件的点的集合

(3)用坐标表示条件,列出方程;

(4)化方程为最简形式;

(5)证明以化简后的方程的解为坐标的点都是曲线上的点。

一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点。所以,通常情况下证明可省略,不过特殊情况要说明。

上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正。

下面再看一个问题:

例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程。

【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系。

解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合

由距离公式,点适合的条件可表示为

将①式移项后再两边平方,得

化简得

由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示。

【练习巩固】

题目:在正三角形内有一动点,已知到三个顶点的距离分别为、、,且有,求点轨迹方程。

分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示。设、的坐标为、,则的坐标为,的坐标为。

根据条件,代入坐标可得

化简得

由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为

【小结】师生共同总结:

(1)解析几何研究研究问题的方法是什么?

(2)如何求曲线的方程?

(3)请对求解曲线方程的五个步骤进行评价。各步骤的作用,哪步重要,哪步应注意什么?

【作业】课本第72页练习1,2,3;

2024年高中上册数学教案设计【篇7】

教学准备

教学目标

掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。

教学重难点

掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的.概念,并能运用这些知识解决一些基本问题。

教学过程

等比数列性质请同学们类比得出。

【方法规律】

1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题。方程观点是解决这类问题的基本数学思想和方法。

2、判断一个数列是等差数列或等比数列,常用的方法使用定义。特别地,在判断三个实数

a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)

3、在求等差数列前n项和的最大(小)值时,常用函数的思想和方法加以解决。

【示范举例】

例1:

(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为。

(2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=。

例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数。

例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项。

2024年高中上册数学教案设计【篇8】

[学习目标]

(1)会用坐标法及距离公式证明Cα+β;

(2)会用替代法、诱导公式、同角三角函数关系式,由Cα+β推导Cα—β、Sα±β、Tα±β,切实理解上述公式间的关系与相互转化;

(3)掌握公式Cα±β、Sα±β、Tα±β,并利用简单的三角变换,解决求值、化简三角式、证明三角恒等式等问题。

[学习重点]

两角和与差的正弦、余弦、正切公式

[学习难点]

余弦和角公式的推导

[知识结构]

1、两角和的余弦公式是三角函数一章和、差、倍公式系列的基础。其公式的证明是用坐标法,利用三角函数定义及平面内两点间的距离公式,把两角和α+β的余弦,化为单角α、β的三角函数(证明过程见课本)

2、通过下面各组数的值的比较:①cos(30°—90°)与cos30°—cos90°②sin(30°+60°)和sin30°+sin60°。我们应该得出如下结论:一般情况下,cos(α±β)≠cosα±cosβ,sin(α±β)≠sinα±sinβ。但不排除一些特例,如sin(0+α)=sin0+sinα=sinα。

3、当α、β中有一个是的整数倍时,应首选诱导公式进行变形。注意两角和与差的三角函数是诱导公式等的'基础,而诱导公式是两角和与差的三角函数的特例。

4、关于公式的正用、逆用及变用

2024年高中上册数学教案设计【篇9】

一、预习目标

预习《平面向量应用举例》,体会向量是一种处理几何问题、物理问题等的工具,建立实际问题与向量的联系。

二、预习内容

阅读课本内容,整理例题,结合向量的运算,解决实际的几何问题、物理问题。另外,在思考一下几个问题:

1、例1如果不用向量的方法,还有其他证明方法吗?

2、利用向量方法解决平面几何问题的“三步曲”是什么?

3、例3中,

⑴为何值时,|F1|最小,最小值是多少?

⑵|F1|能等于|G|吗?为什么?

三、提出疑惑

同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容。

课内探究学案

一、学习内容

1、运用向量的有关知识(向量加减法与向量数量积的运算法则等)解决平面几何和解析几何中直线或线段的平行、垂直、相等、夹角和距离等问题。

2、运用向量的有关知识解决简单的物理问题。

二、学习过程

探究一:

(1)向量运算与几何中的结论"若,则,且所在直线平行或重合"相类比,你有什么体会?

(2)举出几个具有线性运算的几何实例。

例1、证明:平行四边形两条对角线的平方和等于四条边的平方和。

已知:平行四边形ABCD。

求证:

试用几何方法解决这个问题,利用向量的方法解决平面几何问题的“三步曲”?

(1)建立平面几何与向量的联系,

(2)通过向量运算,研究几何元素之间的关系,

(3)把运算结果“翻译”成几何关系。

例2,如图,平行四边形ABCD中,点E、F分别是AD、DC边的中点,BE、BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗?

探究二:两个人提一个旅行包,夹角越大越费力。在单杠上做引体向上运动,两臂夹角越小越省力。这些力的问题是怎么回事?

例3,在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上作引体向上运动,两臂的夹角越小越省力。你能从数学的角度解释这种现象吗?

请同学们结合刚才这个问题,思考下面的问题:

⑴为何值时,|F1|最小,最小值是多少?

⑵|F1|能等于|G|吗?为什么?

例4如图,一条河的两岸平行,河的宽度m,一艘船从A处出发到河对岸。已知船的.速度|v1|=10km/h,水流的速度|v2|=2km/h,问行驶航程最短时,所用的时间是多少(精确到0。1min)?

变式训练:两个粒子A、B从同一源发射出来,在某一时刻,它们的位移分别为,(1)写出此时粒子B相对粒子A的位移s;(2)计算s在方向上的投影。

三、反思总结

结合图形特点,选定正交基底,用坐标表示向量进行运算解决几何问题,体现几何问题。

代数化的特点,数形结合的数学思想体现的淋漓尽致。向量作为桥梁工具使得运算简练标致,又体现了数学的美。有关长方形、正方形、直角三角形等平行、垂直等问题常用此法。

本节主要研究了用向量知识解决平面几何问题和物理问题;掌握向量法和坐标法,以及用向量解决实际问题的步骤。

2024年高中上册数学教案设计【篇10】

一、向量的概念

1、既有又有的量叫做向量。用有向线段表示向量时,有向线段的长度表示向量的,有向线段的箭头所指的方向表示向量的

2、叫做单位向量

3、的向量叫做平行向量,因为任一组平行向量都可以平移到同一条直线上,所以平行向量也叫做。零向量与任一向量平行

4、且的向量叫做相等向量

5、叫做相反向量

二、向量的表示方法:

几何表示法、字母表示法、坐标表示法

三、向量的加减法及其坐标运算

四、实数与向量的乘积

定义:实数 λ 与向量 的积是一个向量,记作λ

五、平面向量基本定理

如果e1、e2是同一个平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2 ,其中e1,e2叫基底

六、向量共线/平行的'充要条件

七、非零向量垂直的充要条件

八、线段的定比分点

设是上的 两点,p是上__的任意一点,则存在实数,使__,则为点p分有向线段所成的比,同时,称p为有向线段的定比分点

定比分点坐标公式及向量式

九、平面向量的数量积

(1)设两个非零向量a和b,作oa=a,ob=b,则∠aob=θ叫a与b的夹角,其范围是[0,π],|b|cosθ叫b在a上的投影

(2)|a||b|cosθ叫a与b的数量积,记作a·b,即 a·b=|a||b|cosθ

(3)平面向量的数量积的坐标表示

十、平移

典例解读

1、给出下列命题:①若|a|=|b|,则a=b;②若a,b,c,d是不共线的四点,则ab= dc是四边形abcd为平行四边形的充要条件;③若a=b,b=c,则a=c;④a=b的充要条件是|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c

其中,正确命题的序号是__

2、已知a,b方向相同,且|a|=3,|b|=7,则|2a-b|=__

3、若将向量a=(2,1)绕原点按逆时针方向旋转 得到向量b,则向量b的坐标为__

4、下列算式中不正确的是( )

(a) ab+bc+ca=0 (b) ab-ac=bc

(c) 0·ab=0 (d)λ(μa)=(λμ)a

5、若向量a=(1,1),b=(1,-1),c=(-1,2),则c=( )

?函数y=x2的图象按向量a=(2,1)平移后得到的图象的函数表达式为( )

(a)y=(x-2)2-1 (b)y=(x+2)2-1 (c)y=(x-2)2+1 (d)y=(x+2)2+1

7、平面直角坐标系中,o为坐标原点,已知两点a(3,1),b(-1,3),若点c满足oc=αoa+βob,其中a、β∈r,且α+β=1,则点c的轨迹方程为( )

(a)3x+2y-11=0 (b)(x-1)2+(y-2)2=5

(c)2x-y=0 (d)x+2y-5=0

8、设p、q是四边形abcd对角线ac、bd中点,bc=a,da=b,则 pq=__

9、已知a(5,-1) b(-1,7) c(1,2),求△abc中∠a平分线长

10、若向量a、b的坐标满足a+b=(-2,-1),a-b=(4,-3),则a·b等于( )

(a)-5 (b)5 (c)7 (d)-1

11、若a、b、c是非零的平面向量,其中任意两个向量都不共线,则( )

(a)(a)2·(b)2=(a·b)2 (b)|a+b|>|a-b|

(c)(a·b)·c-(b·c)·a与b垂直 (d)(a·b)·c-(b·c)·a=0

12、设a=(1,0),b=(1,1),且(a+λb)⊥b,则实数λ的值是( )

(a)2 (b)0 (c)1 (d)2

16、利用向量证明:△abc中,m为bc的中点,则 ab2+ac2=2(am2+mb2)

17、在三角形abc中, =(2,3), =(1,k),且三角形abc的一个内角为直角,求实数k的值

18、已知△abc中,a(2,-1),b(3,2),c(-3,-1),bc边上的高为ad,求点d和向量

2024年高中上册数学教案设计【篇11】

(一)教学具准备

直尺,投影仪.

(二)教学目标

1.掌握,的定义域、值域、最值、单调区间.

2.会求含有、的三角式的定义域.

(三)教学过程

1.设置情境

研究函数就是要讨论一些性质,,是函数,我们当然也要探讨它的一些属性.本节课,我们就来研究正弦函数、余弦函数的最基本的两条性质.

2.探索研究

师:同学们回想一下,研究一个函数常要研究它的哪些性质?

生:定义域、值域,单调性、奇偶性、等等.

师:很好,今天我们就来探索,两条最基本的性质定义域、值域.(板书课题正、余弦函数的定义域、值域.)

师:请同学看投影,大家仔细观察一下正弦、余弦曲线的图像.

师:请同学思考以下几个问题:

(1)正弦、余弦函数的定义域是什么?

(2)正弦、余弦函数的值域是什么?

(3)他们最值情况如何?

(4)他们的正负值区间如何分?

(5)的解集如何?

师生一起归纳得出:

(1)正弦函数、余弦函数的定义域都是.

(2)正弦函数、余弦函数的值域都是即,,称为正弦函数、余弦函数的有界性.

(3)取最大值、最小值情况:

正弦函数,当时,()函数值取最大值1,当时,()函数值取最小值-1.

余弦函数,当,()时,函数值取最大值1,当,()时,函数值取最小值-1.

(4)正负值区间:

()

(5)零点:()

()

3.例题分析

【例1】求下列函数的定义域、值域:

(1);(2);(3).

解:(1),

(2)由()

又∵,∴

∴定义域为(),值域为.

(3)由(),又由

∴定义域为(),值域为.

指出:求值域应注意用到或有界性的条件.

【例2】求下列函数的最大值,并求出最大值时的集合:

(1),;(2),;

(3)(4).

解:(1)当,即()时,取得最大值

∴函数的最大值为2,取最大值时的集合为.

(2)当时,即()时,取得最大值.

∴函数的最大值为1,取最大值时的集合为.

(3)若,,此时函数为常数函数.

若时,∴时,即()时,函数取最大值,

∴时函数的最大值为,取最大值时的集合为.

(4)若,则当时,函数取得最大值.

若,则,此时函数为常数函数.

若,当时,函数取得最大值.

∴当时,函数取得最大值,取得最大值时的集合为;当时,函数取得最大值,取得最大值时的集合为,当时,函数无最大值.

指出:对于含参数的最大值或最小值问题,要对或的系数进行讨论.

思考:此例若改为求最小值,结果如何?

【例3】要使下列各式有意义应满足什么条件?

(1);(2).

解:(1)由,

∴当时,式子有意义.

(2)由,即

∴当时,式子有意义.

4.演练反馈(投影)

(1)函数,的`简图是()

(2)函数的最大值和最小值分别为()

A.2,-2 B.4,0 C.2,0 D.4,-4

(3)函数的最小值是()

A.B.-2 C.D.

(4)如果与同时有意义,则的取值范围应为()

A.B.C.D.或

(5)与都是增函数的区间是()

A.,B.,

C.,D.,

(6)函数的定义域________,值域________,时的集合为_________.

参考答案:1.B 2.B 3.A 4.C 5.D

6.;;

5.总结提炼

(1),的定义域均为.

(2)、的值域都是

(3)有界性:

(4)最大值或最小值都存在,且取得极值的集合为无限集.

(5)正负敬意及零点,从图上一目了然.

(6)单调区间也可以从图上看出.

(四)板书设计

1.定义域

2.值域

3.最值

4.正负区间

5.零点

例1

例2

例3

课堂练习

课后思考题:求函数的最大值和最小值及取最值时的集合

提示:

2024年高中上册数学教案设计【篇12】

教学目标

(1)了解算法的含义,体会算法思想。

(2)会用自然语言和数学语言描述简单具体问题的算法;

(3)学习有条理地、清晰地表达解决问题的步骤,培养逻辑思维能力与表达能力。

教学重难点

重点:算法的含义、解二元一次方程组的算法设计。

难点:把自然语言转化为算法语言。

情境导入

电影《神枪手》中描述的凌靖是一个天生的狙击手,他百发百中,最难打的位置对他来说也是轻而易举,是香港警察狙击手队伍的第一神枪手、作为一名狙击手,要想成功地完成一次狙击任务,一般要按步骤完成以下几步:

第一步:观察、等待目标出现(用望远镜或瞄准镜);

第二步:瞄准目标;

第三步:计算(或估测)风速、距离、空气湿度、空气密度;

第四步:根据第三步的结果修正弹着点;

第五步:开枪;

第六步:迅速转移(或隐蔽)

以上这种完成狙击任务的方法、步骤在数学上我们叫算法。

课堂探究

预习提升

1、定义:算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题。

2、描述方式

自然语言、数学语言、形式语言(算法语言)、框图。

3、算法的要求

(1)写出的算法,必须能解决一类问题,且能重复使用;

(2)算法过程要能一步一步执行,每一步执行的操作,必须确切,不能含混不清,而且经过有限步后能得出结果。

4、算法的特征

(1)有限性:一个算法应包括有限的操作步骤,能在执行有穷的操作步骤之后结束。

(2)确定性:算法的计算规则及相应的计算步骤必须是唯一确定的。

(3)可行性:算法中的每一个步骤都是可以在有限的时间内完成的基本操作,并能得到确定的结果。

(4)顺序性:算法从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,后一步是前一步的后续,且除了最后一步外,每一个步骤只有一个确定的后续。

(5)不唯一性:解决同一问题的算法可以是不唯一的

课堂典例讲练

命题方向1对算法意义的理解

例1、下列叙述中,

①植树需要运苗、挖坑、栽苗、浇水这些步骤;

②按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…99+1=100;

③从青岛乘动车到济南,再从济南乘飞机到伦敦观看奥运会开幕式;

④3x>x+1;

⑤求所有能被3整除的正数,即3,6,9,12。

能称为算法的.个数为(  )

A、2

B、3

C、4

D、5

【解析】根据算法的含义和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一个明确的步骤,不符合明确性;⑤的步骤是无穷的,与算法的有限性矛盾。

【答案】B

[规律总结]

1、正确理解算法的概念及其特点是解决问题的关键、

2、针对判断语句是否是算法的问题,要看它的步骤是否是明确的和有效的,而且能在有限步骤之内解决这一问题、

【变式训练】下列对算法的理解不正确的是________

①一个算法应包含有限的步骤,而不能是无限的

②算法可以理解为由基本运算及规定的运算顺序构成的完整的解题步骤

③算法中的每一步都应当有效地执行,并得到确定的结果

④一个问题只能设计出一个算法

【解析】由算法的有限性指包含的步骤是有限的故①正确;

由算法的明确性是指每一步都是确定的故②正确;

由算法的每一步都是确定的,且每一步都应有确定的结果故③正确;

由对于同一个问题可以有不同的算法故④不正确。

【答案】④

命题方向2解方程(组)的算法

例2、给出求解方程组的一个算法。

[思路分析]解线性方程组的常用方法是加减消元法和代入消元法,这两种方法没有本质的差别,为了适用于解一般的线性方程组,以便于在计算机上实现,我们用高斯消元法(即先将方程组化为一个三角形方程组,再通过回代方程求出方程组的解)解线性方程组、

[规范解答]方法一:算法如下:

第一步,①×(-2)+②,得(-2+5)y=-14+11

即方程组可化为

第二步,解方程③,可得y=-1,④

第三步,将④代入①,可得2x-1=7,x=4

第四步,输出4,-1

方法二:算法如下:

第一步,由①式可以得到y=7-2x,⑤

第二步,把y=7-2x代入②,得x=4

第三步,把x=4代入⑤,得y=-1

第四步,输出4,-1

[规律总结]1、本题用了2种方法求解,对于问题的求解过程,我们既要强调对“通法、通解”的理解,又要强调对所学知识的灵活运用。

2、设计算法时,经常遇到解方程(组)的问题,一般是按照数学上解方程(组)的方法进行设计,但应注意全面考虑方程解的情况,即先确定方程(组)是否有解,有解时有几个解,然后根据求解步骤设计算法步骤。

【变式训练】

【解】算法如下:S1,①+2×②得5x=1;③

S2,解③得x=;

S3,②-①×2得5y=3;④

S4,解④得y=;

命题方向3筛选问题的算法设计

例3、设计一个算法,对任意3个整数a、b、c,求出其中的最小值、

[思路分析]比较a,b比较m与c―→最小数

[规范解答]算法步骤如下:

1、比较a与b的大小,若a

2、比较m与c的大小,若m

[规律总结]求最小(大)数就是从中筛选出最小(大)的一个,筛选过程中的每一步都是比较两个数的大小,保证了筛选的可行性,这种方法可以推广到从多个不同数中筛选出满足要求的一个。

【变式训练】在下列数字序列中,写出搜索89的算法:

21,3,0,9,15,72,89,91,93

[解析]1、先找到序列中的第一个数m,m=21;

2、将m与89比较,是否相等,如果相等,则搜索到89;

3、如果m与89不相等,则往下执行;

4、继续将序列中的其他数赋给m,重复第2步,直到搜索到89。

命题方向4非数值性问题的算法

例4、一个人带三只狼和三只羚羊过河,只有一条船,同船可以容一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊。

(1)设计安全渡河的算法;

(2)思考每一步算法所遵循的共同原则是什么?

2024年高中上册数学教案设计【篇13】

一、教材分析

“解三角形”既是高中数学的基本内容,又有较强的应用性,在这次课程改革中,被保留下来,并独立成为一章。这部分内容从知识体系上看,应属于三角函数这一章,从研究方法上看,也可以归属于向量应用的一方面。从某种意义讲,这部分内容是用代数方法解决几何问题的典型内容之一。而本课“正弦定理”,作为单元的起始课,是在学生已有的三角函数及向量知识的基础上,通过对三角形边角关系作量化探究,发现并掌握正弦定理(重要的解三角形工具),通过这一部分内容的学习,让学生从“实际问题”抽象成“数学问题”的建模过程中,体验“观察——猜想——证明——应用”这一思维方法,养成大胆猜想、善于思考的品质和勇于求真的精神。同时在解决问题的过程中,感受数学的力量,进一步培养学生对数学的学习兴趣和“用数学”的意识。

二、学情分析

我所任教的学校是我县一所农村普通中学,大多数学生基础薄弱,对“一些重要的数学思想和数学方法”的.应用意识和技能还不高。但是,大多数学生对数学的兴趣较高,比较喜欢数学,尤其是象本节课这样与实际生活联系比较紧密的内容,相信学生能够积极配合,有比较不错的表现。

三、教学目标

1、知识和技能:在创设的问题情境中,引导学生发现正弦定理的内容,推证正弦定理及简单运用正弦定理解决一些简单的解三角形问题。

过程与方法:学生参与解题方案的探索,尝试应用观察——猜想——证明——应用”等思想方法,寻求最佳解决方案,从而引发学生对现实世界的一些数学模型进行思考。

情感、态度、价值观:培养学生合情合理探索数学规律的数学思想方法,通过平面几何、三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。同时,通过实际问题的探讨、解决,让学生体验学习成就感,增强数学学习兴趣和主动性,锻炼探究精神。树立“数学与我有关,数学是有用的,我要用数学,我能用数学”的理念。

2、教学重点、难点

教学重点:正弦定理的发现与证明;正弦定理的简单应用。

教学难点:正弦定理证明及应用。

四、教学方法与手段

为了更好的达成上面的教学目标,促进学习方式的转变,本节课我准备采用“问题教学法”,即由教师以问题为主线组织教学,利用多媒体和实物投影仪等教学手段来激发兴趣、突出重点,突破难点,提高课堂效率,并引导学生采取自主探究与相互合作相结合的学习方式参与到问题解决的过程中去,从中体验成功与失败,从而逐步建立完善的认知结构。

五、教学过程

为了很好地完成我所确定的教学目标,顺利地解决重点,突破难点,同时本着贴近生活、贴近学生、贴近时代的原则,我设计了这样的教学过程:

(一)创设情景,揭示课题

问题1:宁静的夜晚,明月高悬,当你仰望夜空,欣赏这美好夜色的时候,会不会想要知道:那遥不可及的月亮离我们究竟有多远呢?

1671年两个法国天文学家首次测出了地月之间的距离大约为385400km,你知道他们当时是怎样测出这个距离的吗?

问题2:在现在的高科技时代,要想知道某座山的高度,没必要亲自去量,只需水平飞行的飞机从山顶一过便可测出,你知道这是为什么吗?还有,交通警察是怎样测出正在公路上行驶的汽车的速度呢?要想解决这些问题,其实并不难,只要你学好本章内容即可掌握其原理。(板书课题《解三角形》)

[设计说明]引用教材本章引言,制造知识与问题的冲突,激发学生学习本章知识的兴趣。

(二)特殊入手,发现规律

问题3:在初中,我们已经学习了《锐角三角函数和解直角三角形》这一章,老师想试试你的实力,请你根据初中知识,解决这样一个问题。在Rt⊿ABC中sinA=,sinB=,sinC=,由此,你能把这个直角三角形中的所有的边和角用一个表达式表示出来吗?

引导启发学生发现特殊情形下的正弦定理。

(三)类比归纳,严格证明

问题4:本题属于初中问题,而且比较简单,不够刺激,现在如果我为难为难你,让你也当一回老师,如果有个学生把条件中的Rt⊿ABC不小心写成了锐角⊿ABC,其它没有变,你说这个结论还成立吗?

[设计说明]此时放手让学生自己完成,如果感觉自己解决有困难,学生也可以前后桌或同桌结组研究,鼓励学生用不同的方法证明这个结论,在巡视的过程中让不同方法的学生上黑板展示,如果没有用向量的学生,教师引导提示学生能否用向量完成证明。

2024年高中上册数学教案设计【篇14】

教学目标:

1.结合实际问题情景,理解分层抽样的必要性和重要性;

2.学会用分层抽样的方法从总体中抽取样本;

3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系。

教学重点:

通过实例理解分层抽样的方法。

教学难点:

分层抽样的步骤。

教学过程:

一、问题情境

1.复习简单随机抽样、系统抽样的概念、特征以及适用范围。

2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?

二、学生活动

能否用简单随机抽样或系统抽样进行抽样,为什么?

指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性.

由于样本的容量与总体的个体数的比为100∶2500=1∶25,

所以在各年级抽取的个体数依次是__,__,__,即40,32,28。

三、建构数学

1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”。

说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;

②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用。

2.三种抽样方法对照表:

类别

共同点

各自特点

相互联系

适用范围

简单随机抽样

抽样过程中每个个体被抽取的概率是相同的

从总体中逐个抽取

总体中的个体数较少

系统抽样

将总体均分成几个部分,按事先确定的规则在各部分抽取

在第一部分抽样时采用简单随机抽样

总体中的`个体数较多

分层抽样

将总体分成几层,分层进行抽取

各层抽样时采用简单随机抽样或系统

总体由差异明显的几部分组成

3.分层抽样的步骤:

(1)分层:将总体按某种特征分成若干部分。

(2)确定比例:计算各层的个体数与总体的个体数的比。

(3)确定各层应抽取的样本容量。

(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本。

四、数学运用

1.例题。

例1(1)分层抽样中,在每一层进行抽样可用_________________。

(2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;

②某班期中考试有15人在85分以上,40人在60-84分,1人不及格。现欲从中抽出8人研讨进一步改进教和学;

③某班元旦聚会,要产生两名“幸运者”。

对这三件事,合适的抽样方法为()

A.分层抽样,分层抽样,简单随机抽样

B.系统抽样,系统抽样,简单随机抽样

C.分层抽样,简单随机抽样,简单随机抽样

D.系统抽样,分层抽样,简单随机抽样

例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:

很喜爱

喜爱

一般

不喜爱

2435

4567

3926

1072

电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?

解:抽取人数与总的比是60∶12000=1∶200,

则各层抽取的人数依次是12.175,22.835,19.63,5.36,

取近似值得各层人数分别是12,23,20,5。

然后在各层用简单随机抽样方法抽取。

答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人

数分别为12,23,20,5。

说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值。

(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名。为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本。

分析:(1)总体容量较小,用抽签法或随机数表法都很方便。

(2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样。

(3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法。

五、要点归纳与方法小结

本节课学习了以下内容:

1.分层抽样的概念与特征;

2.三种抽样方法相互之间的区别与联系。

2024年高中上册数学教案设计【篇15】

一、教学内容分析

圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象,恰当地利用定义解题,许多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

二、学生学习情况分析

我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

三、设计思想

由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情。在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率。

四、教学目标

1、深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

2、通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

3、借助多媒体辅助教学,激发学习数学的兴趣。

五、教学重点与难点:

教学重点

1、对圆锥曲线定义的理解

2、利用圆锥曲线的定义求“最值”

3、“定义法”求轨迹方程

教学难点:

巧用圆锥曲线定义解题

六、教学过程设计

【设计思路】

(一)开门见山,提出问题

一上课,我就直截了当地给出例题1:

(1)已知A(-2,0),B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是()。

(A)椭圆(B)双曲线(C)线段(D)不存在

(2)已知动点M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是()。

(A)椭圆(B)双曲线(C)抛物线(D)两条相交直线

【设计意图】

定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

为了加深学生对圆锥曲线定义理解,我以圆锥曲线的`定义的运用为主线,精心准备了两道练习题。

【学情预设】

估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折——如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)25

这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|5入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。

在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。以深化对概念的理解。

(二)理解定义、解决问题

例2:

(1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910相内切,求△ABC面积的最大值。

(2)在(1)的条件下,给定点P(-2,2),求|PA|

【设计意图】

运用圆锥曲线定义中的数量关系进行转化,使问题化归为几何中求最大(小)值的模式,是解析几何问题中的一种常见题型,也是学生们比较容易混淆的一类问题。例2的设置就是为了方便学生的辨析。

【学情预设】

根据以往的经验,多数学生看上去都能顺利解答本题,但真正能完整解答的可能并不多。事实上,解决本题的关键在于能准确写出点A的轨迹,有了练习题1的铺垫,这个问题对学生们来讲就显得颇为简单,因此面对例2(1),多数学生应该能准确给出解答,但是对于例2(2)这样相对比较陌生的问题,学生就无从下手。我提醒学生把3/5和离心率联系起来,这样就容易和第二定义联系起来,从而找到解决本题的突破口。

(三)自主探究、深化认识

如果时间允许,练习题将为学生们提供一次数学猜想、试验的机会。

练习:

设点Q是圆C:(x1)2225|AB|的最小值。3y225上动点,点A(1,0)是圆内一点,AQ的垂直平分线与CQ交于点M,求点M的轨迹方程。

引申:若将点A移到圆C外,点M的轨迹会是什么?

【设计意图】练习题设置的目的是为学生课外自主探究学习提供平台,当然,如果课堂上时间允许的话,

可借助“多媒体课件”,引导学生对自己的结论进行验证。

【知识链接】

(一)圆锥曲线的定义

1、圆锥曲线的第一定义

2、圆锥曲线的统一定义

(二)圆锥曲线定义的应用举例

1、双曲线1的两焦点为F1、F2,P为曲线上一点,若P到左焦点F1的距离为12,求P到右准线的距离。

2、|PF1||PF2|2P为等轴双曲线x2y2a2上一点,F1、F2为两焦点,O为双曲线的中心,求的|PO|取值范围。

3、在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。

4、例题:

(1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求|MA|+|MF|的最小值。

(2)已知A(,3)为一定点,F为双曲线1的右焦点,M在双曲线右支上移动,当|AM||MF|最小时,求M点的坐标。

(3)已知点P(-2,3)及焦点为F的抛物线y,在抛物线上求一点M,使|PM|+|FM|最小。

5、已知A(4,0),B(2,2)是椭圆1内的点,M是椭圆上的动点,求|MA|+|MB|的最小值与最大值。

七、教学反思

1、本课将借助于,将使全体学生参与活动成为可能,使原来令人难以理解的抽象的数学理论变得形象,生动且通俗易懂,同时,运用“多媒体课件”辅助教学,节省了板演的时间,从而给学生留出更多的时间自悟、自练、自查,充分发挥学生的主体作用,这充分显示出“多媒体课件”与探究合作式教学理念的有机结合的教学优势。

2、利用两个例题及其引申,通过一题多变,层层深入的探索,以及对猜测结果的检测研究,培养学生思维能力,使学生从学会一个问题的求解到掌握一类问题的解决方法,循序渐进的让学生把握这类问题的解法;将学生容易混淆的两类求“最值问题”并为一道题,方便学生进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。

总之,如何更好地选择符合学生具体情况,满足教学目标的例题与练习、灵活把握课堂教学节奏仍是我今后工作中的一个重要研究课题,而要能真正进行素质教育,培养学生的创新意识,自己首先必须更新观念——在教学中适度使用多媒体技术,让学生有参与教学实践的机会,能够使学生在学习新知识的同时,激发起求知的欲望,在寻求解决问题的办法的过程中获得自信和成功的体验,于不知不觉中改善了他们的思维品质,提高了数学思维能力。

80873