教育巴巴 > 教学设计 >

最新教案数学教案

时间: 新华 教学设计

教案的编排以教学过程的步骤为基础,使教师能够清晰地了解整个教学流程,从而有利于教学的有序进行。如何写出优秀的最新教案数学教案?下面给大家分享一些最新教案数学教案,希望对大家有所帮助。

最新教案数学教案

最新教案数学教案篇1

教学目标

1、结合欣赏与绘制图案的过程,让学生体会平移、旋转和对称在图案中的应用。

2、通过参与收集、设计图案的活动,使学生感受图案的美,从而培养健康的审美情趣。

教学重点

让学生体会平移、旋转和对称在图案中的应用。

教学难点

通过参与收集、设计图案的活动,使学生感受图案的美,从而培养健康的审美情趣。

教具准备

直尺、彩笔、课文放大图等。

教学过程

一、导入新课

在我们的生活中,时常会看到一些美丽的图案,不知道同学们有没有注意观察图案的特征?

如:某商品的商标图案,三星级酒店的标志等。

通过学生观察发现:

(1)图案的特征:每个图案都是由几个相同的图形组合成的。

(2)图案的制作:只有画图案中的一个图形,然后把这个图形进行复制(或重复印制)。

这时,学生的回答可能不会说出图案经过平移或旋转得出,但是只要说的有道理,教师都应该给以鼓励。

二、揭示课题

1、这些美丽的图案看起来很复杂,其实是由很简单的图形构成的。那么,这些图案是怎么制作成的呢?今天,我们一起来学习一个新的知识。

2、板书课题:欣赏与设计。

三、讲授新课

1、出示课文的第一个紫荆花图案。

(1)欣赏:这个图案漂亮吗?它有什么特征?(漂亮,它是有5片相同的“花瓣”图案构成的。

想知道它是如何得到的吗?

(2)制作过程:先出示1个“花瓣”;然后加一个“花瓣”在第1个的位置,通过旋转到第2个位置上;依次类推得到第3、4、5个“花瓣”。

(3)提出问题:观察整个图案,想一想,它是怎样得到的?(引导学生结合刚才的演示过程进行分析。)

学生不难得出是由其中的一个图形经过旋转得到的。

2、出示“奥运标志”的五环图。

(1)观察图案,找出图案的特征。

(2)想一想:是哪个图形经过怎样运动得到的?

3、出示课本上下面的两幅图案。

提出问题:观察这两幅图案,想一想每幅图的图案是哪个图形平移或旋转得到的?

学生:第一幅图案是由其中的一个风筝平移得到的,第二幅图案是由其中的一枝花经过旋转得到的。

4、找出对称图形。

(1)打开课本,观察4幅图案;

(2)说一说每幅图案是由哪个图形平移或旋转得到的?并把这个图形涂上颜色。(学生动手涂颜色)

(3)展示学生作品。

(4)提出问题:上面哪幅图案是对称的?(第2、3、4幅图案都是对称的)

四、课堂活动

1、画一画。

(1)课本第24页的“画出下面图形的对称图形”。

(2)第24页的“继续画下去”。

2、展示作品。

选取由代表性的作品进行展示,教师并加以评点。

五、巩固练习

1、课本第25页“练一练”中的第1、2题。

2、实践活动。

3、课本第26页“做一做”。

六、作业设计

1、画出下图的对称图形。

2、在方格纸上画一个自己喜欢的图形,然后通过平移、旋转或对称绘制一幅图案。

七、板书设计

欣赏与设计

1、出示课文的第一个紫荆花图案。

2、出示“奥运标志”的五环图。

教学后记

最新教案数学教案篇2

【简单复合函数的导数】

【高考要求】:简单复合函数的导数(B).

【学习目标】:1.了解复合函数的概念,理解复合函数的求导法则,能求简单的复合函数(仅限于形如f(ax+b))的导数.

2.会用复合函数的导数研究函数图像或曲线的特征.

3.会用复合函数的导数研究函数的单调性、极值、最值.

【知识复习与自学质疑】

1.复合函数的求导法则是什么?

2.(1)若,则________.(2)若,则_____.(3)若,则___________.(4)若,则___________.

3.函数在区间_____________________________上是增函数,在区间__________________________上是减函数.

4.函数的单调性是_________________________________________.

5.函数的极大值是___________.

6.函数的值,最小值分别是______,_________.

【例题精讲】

1.求下列函数的导数(1);(2).

2.已知曲线在点处的切线与曲线在点处的切线相同,求的值.

【矫正反馈】

1.与曲线在点处的切线垂直的一条直线是___________________.

2.函数的极大值点是_______,极小值点是__________.

(不好解)3.设曲线在点处的切线斜率为,若,则函数的周期是____________.

4.已知曲线在点处的切线与曲线在点处的切线互相垂直,为原点,且,则的面积为______________.

5.曲线上的点到直线的最短距离是___________.

【迁移应用】

1.设,,若存在,使得,求的取值范围.

2.已知,,若对任意都有,试求的取值范围.

【概率统计复习】

一、知识梳理

1.三种抽样方法的联系与区别:

类别共同点不同点相互联系适用范围

简单随机抽样都是等概率抽样从总体中逐个抽取总体中个体比较少

系统抽样将总体均匀分成若干部分;按事先确定的规则在各部分抽取在起始部分采用简单随机抽样总体中个体比较多

分层抽样将总体分成若干层,按个体个数的比例抽取在各层抽样时采用简单随机抽样或系统抽样总体中个体有明显差异

(1)从含有N个个体的总体中抽取n个个体的样本,每个个体被抽到的概率为

(2)系统抽样的步骤:①将总体中的个体随机编号;②将编号分段;③在第1段中用简单随机抽样确定起始的个体编号;④按照事先研究的规则抽取样本.

(3)分层抽样的步骤:①分层;②按比例确定每层抽取个体的个数;③各层抽样;④汇合成样本.

(4)要懂得从图表中提取有用信息

如:在频率分布直方图中①小矩形的面积=组距=频率②众数是矩形的中点的横坐标③中位数的左边与右边的直方图的面积相等,可以由此估计中位数的值

2.方差和标准差都是刻画数据波动大小的数字特征,一般地,设一组样本数据,,…,,其平均数为则方差,标准差

3.古典概型的概率公式:如果一次试验中可能出现的结果有个,而且所有结果都是等可能的,如果事件包含个结果,那么事件的概率P=

特别提醒:古典概型的两个共同特点:

○1,即试中有可能出现的基本事件只有有限个,即样本空间Ω中的元素个数是有限的;

○2,即每个基本事件出现的可能性相等。

4.几何概型的概率公式:P(A)=

特别提醒:几何概型的特点:试验的结果是无限不可数的;○2每个结果出现的可能性相等。

二、夯实基础

(1)某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种情况,要从中抽取一个容量为20的样本.若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为____________.

(2)某赛季,甲、乙两名篮球运动员都参加了

11场比赛,他们所有比赛得分的情况用如图2所示的茎叶图表示,

则甲、乙两名运动员得分的中位数分别为()

A.19、13B.13、19C.20、18D.18、20

(3)统计某校1000名学生的数学会考成绩,

得到样本频率分布直方图如右图示,规定不低于60分为

及格,不低于80分为优秀,则及格人数是;

优秀率为。

(4)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:

9.48.49.49.99.69.49.7

去掉一个分和一个最低分后,所剩数据的平均值

和方差分别为()

A.9.4,0.484B.9.4,0.016C.9.5,0.04D.9.5,0.016

(5)将一颗骰子先后抛掷2次,观察向上的点数,则以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=27的内部的概率________.

(6)在长为12cm的线段AB上任取一点M,并且以线段AM为边的正方形,则这正方形的面积介于36cm2与81cm2之间的概率为()

三、高考链接

07、某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒

;第六组,成绩大于等于18秒且小于等于19秒.右图

是按上述分组方法得到的频率分布直方图.设成绩小于17秒

的学生人数占全班总人数的百分比为,成绩大于等于15秒

且小于17秒的学生人数为,则从频率分布直方图中可分析

出和分别为()

08、从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为()

分数54321

人数2010303010

09、在区间上随机取一个数x,的值介于0到之间的概率为().

08、现有8名奥运会志愿者,其中志愿者通晓日语,通晓俄语,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.

(Ⅰ)求被选中的概率;(Ⅱ)求和不全被选中的概率.

【核心考点算法初步复习】

1.(2011年天津)阅读图11的程序框图,运行相应的程序,则输出i的值为()

A.3B.4C.5D.6

2.(2011年全国)执行图12的程序框图,如果输入的N是6,那么输出的p是()

A.120B.720C.1440D.5040

3.执行如图13的程序框图,则输出的n=()

A.6B.5C.8D.7

4.(2011年湖南)若执行如图14所示的框图,输入x1=1,x2=2,x3=3,x-=2,则输出的数等于________.

5.(2011年浙江)若某程序图如图15所示,则该程序运行后输出的k值为________.

6.(2011年淮南模拟)某程序框图如图16所示,现输入如下四个函数,则可以输出的函数是()

A.f(x)=x2B.f(x)=1x

C.f(x)=exD.f(x)=sinx

7.运行如下程序:当输入168,72时,输出的结果是()

INPUTm,n

DO

r=mMODn

m=n

n=r

LOOPUNTILr=0

PRINTm

END

A.168B.72C.36D.24

8.在图17程序框图中,输入f1(x)=xex,则输出的函数表达式是________________.

9.(2011年安徽合肥模拟)如图18所示,输出的为()

A.10B.11C.12D.13

10.(2011年广东珠海模拟)阅读图19的算法框图,输出结果的值为()

A.1B.3C.12D.32

最新教案数学教案篇3

教学目标:

1、理解和掌握整十数加减整十数的口算方法,并能比较熟练的口算。

2、经历探索整十数加、减整十数计算方法的过程,体会新旧知识间的联系,获得可以根据已有知识、方法学习新内容的初步经验。

3、在学习过程中能积极思考、交流、倾听,体会学习的成功,提升学习数学的自信心。

教学重点:

重点掌握整十数加减整十数的口算方法

教学难点:

理解整十数加、减整十数的算理

教学准备:

卡片

教学过程:

一、创设情景

1、谈话:今天,老师给你们带来了礼物,看!(出示实物糖球,左手三串,右手两串)。

2、教师举起左手的糖球,提问:老师左手拿着多少个糖球,你是怎么知道的?右手呢?

小结:一串糖球有10个,三串糖球就是3个十,是30,两串糖球是2个十,是20。

二、自主探索

1、教学例题。

)提问:看着这些糖球,你能提出哪些数学问题?

(2)求一共有多少个糖球用什么方法计算?怎么列式?

学生回答,教师板书:30+20=?

(3)提问:为什么用加法计算?你想怎样算?

(4)可以用学具摆一摆,可以结合以前学过的知识来想一想,也可以和周围的同学讨论,然后说给全班同学听。

小组内讨论后,组长汇报讨论结果,

(5)全班交流,教师板书算式的得数。

(学生可能会说3个十加2个十得5个十,5个十是50也可能会说因为3+2=5,所以30+20=50。)

(6)谈话:我们学习了整十数加整十数,(板书课题)同学们的算法都很好,我们的好朋友也来了,看看他们是怎么算的?

2、教学试一试。

提问:刚才,我们提的那个问题可以用减法来计算?你会列式计算吗?

教师根据学生的回答板书;30-20=10。

提问:计算时你是怎样想的?谁愿意说给大家听。

3、小结:同学们自己动脑思考并与同学合作,学会了一些整十数加、减整十数的计算方法,以后做题时你喜欢用哪种方法就用哪种。

三、巩固应用

1、想想做做第1题。

学生独立列式计算,说说每道算式的意思以及计算时是怎样想的。

2、想想做做第2题。

出示第一组、第二组题让学生按组计算。

让学生自己出一组这样的题并进行计算。全班交流自己的出题情况。

4、想想做做第3题。

谈话:请看第3题,我们来做开火车的游戏。仔细看图,你知道火车怎么开吗,说给大家听听。学生在方框里填数后,一人报得数,全班学生一起订正。

5想想做做第4题。

学生直接写得数。

四、全课总结

这节课同学们积极思考,并与小伙伴讨论,学到了很多知识,你有哪些收获?说给大家听听。

最新教案数学教案篇4

教学内容:教科书第1页的例1、试一试和练一练,练习一的第1~3题。

教学目标:

1、使学生在现实情境中,理解并掌握“求一个数比另一个数多(少)百分之几”的基本思考方法,并能正确解决相关的实际问题。

2、使学生在探索“求一个数比另一个数多(少)百分之几”方法的过程中,进一步加深对百分数的理解,体会百分数与日常生活的密切联系,增强自主探索和合作交流的意识,提高分析问题和解决问题的能力。

教学过程:

一、教学例1

1、出示例1中的两个已知条件,要求学生各自画线段图表示这两个数量之间的关系。

学生画好后,讨论:画几条线段表示这两个数量比较合适?表示哪个数量的线段应该画长一些?大约长多少?你是怎样想的?

提出要求:根据这两个已知条件,你能求出哪些问题?

引导学生分别从差比和倍比的角度提出如“实际造林比计划多多少公顷”“原计划造林比实际少多少公顷”“实际造林面积相当于原计划的百分之几”“原计划造林面积相当于实际的百分之几”等问题。

在学生充分交流的基础上提出例1中的问题:实际造林比原计划多百分之几?

2、引导思考:这个问题是把哪两个数量进行比较?比较时以哪个数量作为单位1?要求实际造林比原计划多百分之几,就是求哪个数量是哪个数量的百分之几?

小结:要求实际造林比原计划多百分之几,就是求实际造林比原计划多的公顷数相当于原计划的百分之几。

启发:根据上面的讨论,你打算怎样列式解答这个问题?

学生列式计算后,进一步追问:实际造林比原计划多的公顷数是怎样计算的?要求4公顷相当于16公顷的百分之几,又是怎样算的?综合算式应该怎样列?

3、进一步引导:此前,曾有人提出“根据两个已知条件,可以求出实际造林面积相当于计划的百分之几”,你会列式解答这个问题吗?

学生列式计算后追问:这里得到的125%与刚才得到的25%这两个百分数有什么关系?

联系学生的讨论明确:从125%中去掉与单位1相同的部分,就是实际造林比原计划多的百分数。

提出要求:根据上面的讨论,要求“实际造林比原计划多百分之几”,还可以怎样列式?

学生列式后追问:“125%—100%”这个算式中,125%表示什么意思?100%呢?

二、教学“试一试”

1、出示问题:原计划造林比实际少百分之几?

启发:根据例题中问题的答案猜一猜,这个问题的答案是什么?

学生作出猜想后,暂不作评价。

提问:这个问题又是把哪两个数量进行比较?比较时以哪个数量作为单位1?要求“原计划造林比实际少百分之几”,就是求哪个数量是哪个数量的百分之几?你打算怎样列式解答?还能列出不同的算式吗?

2、学生列式计算后讨论:这个答案与你此前的猜想一样吗?为什么不一样?

小结:“试一试”与例题中的问题都是把实际造林面积与原计划造林面积进行比较,但由于比较时单位1的数量不同,所以得到的百分数也就不同。

三、指导完成“练一练”

1、要求学生自由读题。

2、提问:你是怎样理解“2005年在读研究生的人数比2004年增加了百分之几”这个问题的?

学生讨论后,要求他们各自列式解答。

3、根据学生在解答过程中的表现,相机提问:计算中有没有遇到什么新的问题?

学生提出问题后,引导他们自主阅读本页教材的底注,并组织适当的交流。

四、指导完成练习一第1~3题

1、做练习一第1题。

可以鼓励学生独立完成填空。如果有学生感到困难,可启发他们先画出相应的线段图,再根据线段图进行思考。

2、做练习一第2题。

先让学生说说对问题的理解,再让学生列式解答。可提醒学生把计算的商保留三位小数。

3、做练习一第3题。

先鼓励学生独立解答,再通过交流让学生说清楚思考的过程。可提醒学生利用计算器进行计算。

五、全课小结

通过本节课的学习,你学会了什么?求一个数比另一个数多(少)百分之几时,通常可以怎样思考?计算过程中还要注意些什么?

最新教案数学教案篇5

一次函数知识点

(一)一般地,形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数,其中x是自变量。当b=0时,一次函数y=kx,又叫做正比例函数。

(二)一次函数的图像及性质

1.在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

2.一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)。

3.正比例函数的图像总是过原点。

4.k,b与函数图像所在象限的关系:

当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

当k>0,b>0时,直线通过一、二、三象限;

当k>0,b<0时,直线通过一、三、四象限;

当k<0,b>0时,直线通过一、二、四象限;

当k<0,b<0时,直线通过二、三、四象限;

当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

最新教案数学教案篇6

教学目标:

1、使学生初步了解有关字母排序的变换问题,并会解决简单的字母变换问题(3个字母排序)。

2、初步体会程度规则对字母排序变换的影响,了解变换的周期性。

教学重点:

简单的字母排序的变换问题。

教学难点:

1、体会程序规则对排序的影响。

2、培养学生做事有条理,次序分明。

教学用具:

字母卡片(或数字卡片)、指令条。

教学过程:

一、游戏引入

⑴甲、乙丙三位同学排成一列,顺序为甲、乙、丙。

⑵变为丙、乙、甲的顺序。学生观察,并用一句话概括活动的过程。

引入

生:变换前、后两个人的位置。

师:这就是指令,我们通过执行不同的指令可以重新排列甲、乙、丙3人的顺序位置。

二、情境展示,探索新知。

出示A、B、C三张卡片。

⑴ABC→BAC

想一想:执行了什么指令?你能概括说明吗?

(变换左边两张卡片的位置)

⑵ABC→CAB

想一想:执行了什么指令?

(将最右边一张卡片放到最左边,其余卡片顺次进一格或向右退一格)

⑶ABC→BAC→CBA

想一想:这一过程中执行了什么指令?你能描述吗?

(先执行①指令,再执行②)指令)

师:先执行指令①,再执行指令②记作执行指令序列①②,所以(3)还可以记作:执行指令序列(1)(2)

ABCCBA

⑷尝试填空

①ABC(CAB)(ACB)

即执行指令序列②①

ABC(ACB)

②执行指令序列①②①

ABC(BCA)

③小结:改变卡片的顺序可以通过执行不同的指令来完成,与指令的序列也有关系。

⑸继续填空,感受“周期性”。

①ABC(ABC)

ABC(ABC)

学生填完后,说说有什么感受?

②CBA(CBA)

CBA(CBA)

进一步验证。

③ABC()()()

三、练习拓展,开阔思维。

⒈执行指令序列②①多少次。

ABCABC

⒉寻找指令序列。

①BCA→BAC,可以执行什么指令序列?

②ABC→CBA,可以执行什么指令序列?(根据学生解答分析情况,进入下一环节:这个指令序列可以缩短吗?)

四、我的设计

你能重新设计一种指令序列,连用2次后,把ABC调整为ABC吗?

五、作业。

⒈一个厨师带了一头猪、一条狗和一筐菜过一条河,因为船太小,一次只能带一样东西,但他不在时,狗要咬猪,猪要吃菜,请同学们想一想,应该怎样安排过河?

⒉三张卡片A、B、C,根据①交换右边两张卡片的位置,②将左边第一张移到最右边,其余依次向左退一格。

⑴ABC()

⑵ABC()

⑶ABC()

⑷ABC()

⑸ABC()

最新教案数学教案篇7

活动目标:

1.能够运用多种感官感知"1个"和"许多个"。

2.通过实际操作活动体会"1"和许多的关系。

3.培养幼儿的自我控制能力。

活动准备:

小猫、 小狗、 小鸡、 小鸭的卡片,每种动物卡片需要5张。

活动过程:

一、感知"1"

1.谈话引导:

(1)教师:"小朋友你们喜欢小动物吗?你们最喜欢的动物是什么?"

(2)幼儿自由发言,说出自己最喜欢的小动物。

2.教师展示小动物卡片(每种小动物拿出一张卡片)。

(1)将卡片依次粘贴在黑板上。

(2)提出问题:"老师这里有许多可爱的小动物,你们喜欢其中的哪只动物呢?"

(3)引导幼儿说出图片中的小动物名称,如:一只猫;一只小狗。

(4)教师依次举起小动物卡片,幼儿一一说出动物名称后,教师带领孩子总结说出:它们都是一只。

二、感知"许多"

1.教师展示小动物卡片。

(1)把动物卡片依次排开,把一只小动物的贴在一边,把剩下的动物卡片全部粘到一边。

(2)教师:"小动物们都想和小朋友一起玩,你们看!它们来了,来了许多小动物。"

2.区别"1"和许多教师举起一张动物卡片强调说出"一只猫",指着黑板上全部的小猫卡片说"许多猫"。重复几次,并带领孩子说出。

三、听觉分辨"1"和许多

1.情节引导:"小猫很高兴认识你们,它想给小朋友唱一首歌。你们仔细听,她在唱什么?"

2.教师拿起小猫的卡片,模仿小猫叫一声,"听!小猫叫了一声,喵……"教师模仿小猫叫许多声,"听!小猫叫了很多声,喵……喵……喵"

3.请小朋友分别模仿小鸡、小狗、小鸭叫一声,叫许多声。

四、实际操作

感知"1"和许多教师先把若干1个和许多个物品或图形卡片放到一个盒子里,请小朋友分别从盒子里拿出一张卡片看看上面有一个还是许多个。幼儿操作过程中如果遇到困难,教师及时进行指导

最新教案数学教案篇8

一、教学目标:

知识与技能:理解指数函数的概念,掌握指数函数的图象和性质,培养学生实际应用函数的能力。

过程与方法:通过观察图象,分析、归纳、总结、自主建构指数函数的性质。领会数形结合的数学思想方法,培养学生发现、分析、解决问题的能力。

情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

二、教学重点、难点:

教学重点:指数函数的概念、图象和性质。

教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。

三、教学过程:

(一)创设情景

问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂x次后,得到的细胞分裂的个数y与x之间,构成一个函数关系,能写出x与y之间的函数关系式吗?

学生回答:y与x之间的关系式,可以表示为y=2x。

问题2:一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约是原来的84%。求出这种物质的剩留量随时间(单位:年)变化的函数关系。设最初的质量为1,时间变量用x表示,剩留量用y表示。

学生回答:y与x之间的关系式,可以表示为y=0.84x。

引导学生观察,两个函数中,底数是常数,指数是自变量。

1.指数函数的定义

一般地,函数y?a?a?0且a?1?叫做指数函数,其中x是自变量,函数的定义域是R。x

问题:指数函数定义中,为什么规定“a?0且a?1”如果不这样规定会出现什么情况?

(1)若a<0会有什么问题?

x1则在实数范围内相应的函数值不存在)2(2)若a=0会有什么问题?(对于x0,a无意义)

(3)若a=1又会怎么样?(1x无论x取何值,它总是1,对它没有研究的必要。)

师:为了避免上述各种情况的发生,所以规定a?0且a?1。

练1:指出下列函数那些是指数函数:

?1?(1)y?4x(2)y?x4(3)y??4x(4)y???4?(5(转载于:,n的大小:

设计意图:这是指数函数性质的简单应用,使学生在解题过程中加深对指数函数的图像及性质的理解和记忆。

(五)课堂小结

(六)布置作业

最新教案数学教案篇9

一、教材分析

1.教材背景

作为曲线内容学习的开始,“曲线与方程”这一小节思想性较强,约需三课时,第一课时介绍曲线与方程的概念;第二课时讲曲线方程的求法;第三课时侧重对所求方程的检验.

本课为第二课时

主要内容有:解析几何与坐标法;求曲线方程的方法(直译法)、步骤及例题探求.

2.本课地位和作用

承前启后,数形结合

曲线和方程,既是直线与方程的自然延伸,又是圆锥曲线学习的必备,是后面平面曲线学习的理论基础,是解几中承上启下的关键章节.

“曲线”与“方程”是点的轨迹的两种表现形式.“曲线”是轨迹的几何形式,“方程”是轨迹的代数形式;求曲线方程是用方程研究曲线的先导,是解析几何所要解决的两大类问题的首要问题.体现了坐标法的本质——代数化处理几何问题,是数形结合的典范.

后继性、可探究性

求曲线方程实质上就是求曲线上任意一点(x,y)横纵坐标间的等量关系,但曲线轨迹常无法事先预知类型,通过多媒体演示可以生动展现运动变化特点,但如何获得曲线的方程呢?通过创设情景,激发学生兴趣,充分发挥其主体地位的作用,学习过程具有较强的探究性.

同时,本课内容又为后面的轨迹探求提供方法的准备,并且以后还会继续完善轨迹方程的求解方法.

数学建模与示范性作用

曲线的方程是解析几何的核心.求曲线方程的过程类似于数学建模的过程,它贯穿于解析几何的始终,通过本课例题与变式,要总结规律,掌握方法,为后面圆锥曲线等的轨迹探求提供示范.

数学的文化价值

解析几何的发明是变量数学的第一个里程碑,也是近代数学崛起的两大标志之一,是较为完整和典型的重大数学创新史例.解析几何创始人特别是笛卡儿的事迹和精神——对科学真理和方法的追求、质疑的科学精神等都是富有启发性和激励性的教育材料.可以根据学生实际情况,条件允许时指导学生课后收集相关资料,通过分析、整理,写出研究报告.

3.学情分析

我所授课班级的学生数学基础比较好,思维活跃,在刚刚学习了“曲线的方程和方程的曲线”后,学生对这种必须同时具备纯粹性和完备性的概念有了初步的认识,对用代数方法研究几何问题的科学性、准确性和优越性等已有了初步了解,对具体(平面)图形与方程间能否对应、怎样对应的学习已经有了自然的求知欲望.

二、目标分析

1.教学目标

知识技能目标

理解坐标法的作用及意义.

掌握求曲线方程的一般方法和步骤,能根据所给条件,选择适当坐标系求曲线方程.

过程性目标

通过学生积极参与,亲身经历曲线方程的获得过程,体验坐标法在处理几何问题中的优越性,渗透数形结合的数学思想.

通过自主探索、合作交流,学生历经从“特殊——一般——特殊”的认知模式,完善认知结构.

通过层层深入,培养学生发散思维的能力,深化对求曲线方程本质的理解.

情感、态度与价值观目标

通过合作学习,学生间、师生间的相互交流,感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,逐步养成质疑的科学精神.

展现人文数学精神,体现数学文化价值及其在在社会进步、人类文明发展中的重要作用.

2.教学重点和难点

重点:求曲线方程的方法、步骤

难点:几何条件的代数化

依据:求曲线方程是解几研究的两大类问题之一,既是重点也是难点,是高考解答题取材的源泉.主要包括两种类型求曲线的方程:一是已知曲线形状时常用待定系数法;二是动点轨迹方程探求,本课的重点主要是探索动点的曲线方程.

曲线与方程是贯穿平面解几的知识,是解析几何的核心.求曲线方程是几何问题得以代数研究的先决,求曲线方程的过程类似数学建模的过程,是课堂上必须突破的难点.

三、教学方法及教材处理

1.教学方法:探究发现教学法.

遵循以学生为主体,教师为主导,发展为主旨的现代教育原则,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,通过学生主动探索、积极参与、共同交流与协作,在教师的引导和合作下,学生“跳一跳”就能摘得果实,于问题的分析和解决中实现知识的建构和发展,通过不断探究、发现,让学习过程成为心灵愉悦的主动认知过程,使师生的生命活力在课堂上得到充分的发挥.

2.学法指导

学生学法:互相讨论、探索发现

由于学生在尝试问题解决的过程中常会在新旧知识联系、策略选择、思想方法运用等方面遇到一定的困难,需要教师指导.作为学生活动的组织者、引导者、参与者,教师要帮助学生重温与问题解决有关的旧知,给予学生思考的时间和表达的机会,共同对(解题)过程进行反思等,在师生(生生)互动中,给予学生启发和鼓励,在心理上、认知上予以帮助.

这样,在学法上确立的教法,能帮助学生更好地获得完整的认知结构,使学生思维、能力等得到和谐发展.

3.设计理念:

求曲线方程就是将曲线上点的几何表示形式转化为代数表示形式。在这转化过程中,学生通过积极参与、勇于探索的学习方式,让学生的学习过程成为教师指导下的再创造,这也正是建构主义理论的本质要求;遵循学生认知规律,尊重学生个体差异,立足教材,通过对例题的再创造,体现理论联系实际、循序渐进和因材施教的教学原则,让不同层次的学生得到不同层度的发展;通过激发兴趣,强调自主探索与合作交流,让学生逐步地从学会走向会学,由被动走向主动,由课堂走向社会,为学生的终身学习和终身发展奠定良好的基础,也是当前新课程所追求的基本理念.

四、教学过程(教学设计)

根据本课教学内容几何特性外化的特点,抓住形成轨迹的动点具备的几何条件,运用坐标化的手段及等价转化与数形结合的思想方法,突破难点,突出重点.本课的教学设计思路是:

创设情景——从感性的轨迹(图形)认识,到解决生活上的实例,激发学生的求知欲望,抓住学生迫切一试的认知心理,自然引入坐标法的意义及曲线方程的求法.

例题探求——例题一体现知识的承前启后.通过例题一的呈现,学生借助已有的知识经验,自主探求获得问题的求解,在教师的引导下,让学生感受求曲线方程的含义及求解步骤;例题二及变式解决建系难点,建系的开放性,对学生是一种挑战,也是一种创造;两个例题由浅入深,循序渐进,体现因材施教.至此,学生已能初步了解求曲线方程的一般方法和步骤了.

归纳步骤——学生亲身经历求曲线方程的过程,让学生归纳(用自己的语言)、表述求解的步骤,体现从“特殊——一般”认知规律,逐步实现教学目标.

变式练习——通过对例题的变式,由学生求解、回答变式后的含义,深化对认知结构的理解,初步体会数学的理性与严谨,逐步养成质疑与反思的习惯.

反馈练习——利用学生探索而发展来的认知水平,运用获得的知识解决情景创设中的实际问题,一方面可以考察学生运用所学数学知识解决实际问题的意识和能力;另一方面是学生思维的自然顺应,自然释放,是“一般——特殊”的过程.全面完成教学目标.

最新教案数学教案篇10

教学目标:

1、通过练习,能正确地列式解答不同类型的应用题。

2、进一步提高学生的分析能力与解题能力。

3、通过思考题的解答,提高学生思维的灵活性。

教学重点:正确地解答连除应用题;能正确地解答不同类型的应用题。

教学难点:能正确地解答不同类型的应用题。

教学过程:

一、基本练

1、引入:我们学习了很多类型的两步计算的应用题,你们来说说都学了哪些呢?(生讲师板:连乘、连除、除加、除减、乘加、乘减。)

请小朋友来做做下面这几道题是属于哪种类型的。

2、独立做:

(1)电视厂3个装配小组装配电视机3456台,每个装配小组有18人。平均每人装配多少台?

(2)玩具厂每个人每小时制作6个于玩具,9个工人工作8个时可以制作多少玩具?

(3)校办工厂计划每小时生产粉笔90盒,实际24小时生产粉笔2520盒。平均每小时比计划多生产多少盒?

独立做、个别说想法

小结:都是不同的类型

应用题有这么多不同的类型,那么怎么做才使我做正确呢?(要读题目、分析题目,想好了再写不能乱列式。)

二、对比练

1、(1)6匹马8天共吃草576千克,平均1匹马1天吃草多少千克?

(2)1匹马1天吃草12千克,6匹马8天共吃草多少千克?

独立做、个别汇报、比较两题有什么相同与不同之处?一题是连除、一题是连乘。

2、(1)玩具厂一月份12天生产积木9360盒,二月份比一月份每天多生产260盒。二月份每天生产积木多少盒?

(2)玩具厂一月份12天生产积木9360盒,三月份比一月份每天少生产260盒。三月份每天生产积木多少盒?

独立做、个别汇报、比较两题有什么相同与不同之处?

一题是除加、一题是除减。

3、小结:做题时特别要注意读题目、分析题目。

4、根据线段列式计算。

5、先从括号里选择条件和问题,把应用题补充完整,再解答。

百货商场运来4箱热水瓶,每箱有8只,?

(每只热水瓶84元。共值2688元。)

(每只热水瓶多少元?一共值多少元?)

三、思考题

1、2个小朋友2分削2支铅笔。照这样计算,4个小朋友削铅笔要几分?

2、3只猫3天吃3只老鼠。照这样计算,6只猫6天吃几只老鼠?

独立思考、说说想法。

四、作业:课堂作业第47页。

最新教案数学教案篇11

一、情况分析:

大部分入学前,都受过学前教育,可是每个学生的基础都不一样,一部分学生会数10以内的各数,会认这些数,会写这些数;一部分学生已能计算10以内的加减法;但也有一部分学生对课堂学习不太适应,课堂上集中注意力较短。

而且学生在幼儿园的学习习惯、行为习惯养成不好。刚跨入小学,对学校的一切都感到陌生和不适应,但他们天真、活泼,有着强烈的好奇心和求知欲,可塑性强。所以这一学期以培养学生养成良好的生活习惯,学习习惯和培养学生的学习兴趣为工作重心。

根据这些情况,在教学时,我应从学生的学习兴趣出发,注意建立良好的师生情感,让学生爱教师、爱数学,并通过以后的学习,体会到学数学的乐趣和作用。

二、教学目标:

根据新课标的要求,结合教科书第一册的内容和我班的实际情况,从知识技能、数学思考、解决问题、情感与态度等这四个方面确定全册的教学目标。

(一)知识与技能

1.经历从日常生活中抽象出数的过程,能熟练地数出数量在20以内物体的个数,会区分几个和第几个。会用数表示物体的个数或事物的顺序,能比较数的大小,掌握10以内各数与20以内数的组成,能认、读、写0-20各数。

2.初步了解数位和计数单位:知道个位、十位上的数各表示什么意义。

3.结合具体情境,初步体会加减法的含义。

4.知道加减法各部分的名称,初步体会加减法之间的互逆关系,能熟练地口算10以内的加减法和20以内进位加法。

5.认识符号“>”、“<”、“=”,会用这些符号表示20以内数的大小。

6.通过实物和模型辨认长方体、正方体、圆柱、球等立体图形,能辨认长方形、三角形、正方形、圆等平面图形,会用这些图形进行拼图。

7.初步了解事物比较和分类的方法,结合实际,能把同类事物进行比较和分类。

8.初步认识钟表,会认整时和半时。

9.初步学习对日常生活中的数据进行收集和整理,会看、填写简单的统计图和统计表。

最新教案数学教案篇12

古典概型

学情分析

(二)教学目标

1.知识与技能:

(1)通过试验理解基本事件的概念和特点;

(2)通过具体实例分析,抽离出古典概型的两个基本特征,并推导出古典概型下的概率计算公式;

(3)会求一些简单的古典概率问题。

2.过程与方法:经历探究古典概型的过程,体验由特殊到一般的数学思想方法。

3.情感与价值:用具有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。

(三)教学重、难点

重点:理解古典概型的概念,利用古典概型求解随机事件的概率。

难点:如何判断一个试验是否为古典概型,弄清在一个古典概型中基本事件的总数和某随机事件包含的基本事件的个数。

(四)教学用具

多媒体课件,投影仪,硬币,骰子。

(五)教学过程

[情景设置]

[温故知新]

(1)回顾前几节课对概率求取的方法:大量重复试验。

(2)由随机试验方法的不足之处引发矛盾冲突:我们需要寻求另外一种更为简单易行的方式,提出建立概率模型的必要性。

[探究新知]

一、基本事件

思考:试验1:掷一枚质地均匀的硬币,观察可能出现哪几种结果?

试验2:掷一枚质地均匀的骰子,观察可能出现的点数有哪几种结果?

定义:一次试验中可能出现的每一个结果称为一个基本事件。

思考:掷一枚质地均匀的骰子

(1)在一次试验中,会同时出现“1点”和“2点”这两个基本事件吗

(2)随机事件“出现点数小于3”与“出现点数大于3”包含哪几个基本事件?

掷一枚质地均匀的硬币

(1)在一次试验中,会同时出现“正面向上”和“反面向上”这两个基本事件吗

(2)“必然事件”包含哪几个基本事件?

基本事件的特点:(1)任何两个基本事件是互斥的;

(2)任何事件(除不可能事件)都可以表示成基本事件的和。

二、古典概型

思考:从基本事件角度来看,上述两个试验有何共同特征?

古典概型的特征:(1)试验中所有可能出现的基本事件的个数有限;

(2)每个基本事件出现的可能性相等。

师生互动:由学生和老师各自举出一些生活实例并分析是否具备古典概型的两个特征。

向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这一试验能用古典概型来描述吗?为什么?

(2)08年北京奥运会上我国选手张娟娟以出色的成绩为我国赢得了射箭项目的第一枚奥运金牌。你认为打靶这一试验能用古典概型来描述吗?为什么?

三、求解古典概型

思考:古典概型下,每个基本事件出现的概率是多少?随机事件出现的概率又如何计算?

(1)基本事件的概率

试验1:掷硬币

P(“正面向上”)=P(“反面向上”)=

试验2:掷骰子

P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)=

结论:古典概型中,若基本事件总数有n个,则每一个基本事件出现的概率为

(2)随机事件的概率

掷骰子试验中,记事件A为“出现点数小于3”,事件B为“出现点数大于3”,如何求解P(A)与P(B)?

结论:古典概型中,若基本事件总数有n个,A事件所包含的基本事件个数为m,则

P(A)=

古典概型的概率计算公式:

[实战演练]

例1.标准化考试的选择题有单选和不定项选择两种类型。假设考生不会做,随机从A、B、C、D四个选项中选择正确的答案,请问哪种类型的选择题更容易答对?

分析:解决这个问题的关键在于本题什么情况下可以看成古典概型。如果考生掌握了所考察的部分或全部知识,这都不满足古典概型的第2个条件—等可能性,因此,只有在假定考生不会做,随机地选择了一个答案的情况下,才为古典概型。

最新教案数学教案篇13

活动目标:

1、尝试发现和记录、表述生活中的数字信息。

2、通过发现数字信息的过程增加对生活的观察,感受数字给我们生活带来的方便。

活动准备:

1、经验准备:有观察生活中数字的兴趣;有一定的生活经验(气象、汽车等方面)。

2、物质准备:演示PPT、电脑;记录纸、笔;生活用品、食品、玩具等(有数字标识)。

活动过程:

一、观察数字密码

1、发现数字在生活中的运用

师:今天我带来了一些数字,请你一边看一看猜一猜它们表示什么意思?

分别出示手机号码、天气、温度、门牌号、车牌号等图片,引导小朋友说一说。

小结:这些东西对生活有什么帮助?

我们可以联系别人、知道时间可以方便我们上学、知道温度可以及时的增减衣服、了解到车是谁的、朋友的家住在哪里等,有了这些信息给我们的生活提供了不少的方便。

2、了解数学的功能

师:刚才的图片都出现了一样共同的东西,是什么?

出示数字0-9

请回忆一下平时你在哪些地方或是东西上看到数字的,上面写着什么数字,表示什么意思?

幼儿自由表述

小结:数字朋友无处不在,他其实就在我们许多熟悉的东西里,变成了有趣的数字密码,你能找到它,并且解开密码吗?

二、实践活动:寻找数字密码

1、了解实物

今天数字和我们捉迷藏,想考考你们能不能找到他们,他们就躲在你身后的这些物品里,你们想找吗?

先看看你拿是什么,然后找到数字,把它记下来好吗?

出示记录纸:一边画实物,一边记数字,你们还有什么问题吗?

2、幼儿记录数字密码

如果记不住可以把东西拿到座位上记录,实物要画清楚,数字要记准确,让人一看就明白。

三、猜密码游戏

1、请小朋友来介绍下自己的的数字密码。

2、两两猜猜密码:找一个小伙伴两人一组来猜猜画的内容。

3、与老师互动猜密码:与客人老师互动,介绍自己的密码。

4、小结:数字真有趣,在不同的物品上表示不同的意思,有不同的作用,给我们的生活带来了许多的方便,有了数字我们的生活会更美好,我们回家后再找找哪里还有数字好吗?(崔威威)

最新教案数学教案篇14

教学内容:

人教版义务教育课程标准实验教科书《小学数学》五年级上册第五单元第84-86页。

教学目标:

通过用面积单位测量三角形的面积探索出计算三角形的方法,从而概括出求三角的面积公式,通过间接测量体会数学的简捷美。

教学过程:

一、用直接测量法计算面积

1.老师指导学生把给定的三角形画在绘画纸(1㎝1㎝)上,如下图:

2.学生计算三角形的面积。

3.汇报,可能说:正好是一个单位的面积太少了,计算三角形的面积也太难了吧。

二、用转化法计算面积

老师引导学生:学习平行四边形面积时,把平行四边形转化为长方形,现在我们如何把三角形变成学过的图形使计算变得比较简便呢?学生可能说:

1.在直角三角形的右上角再画一个同样的直角三角形,就变成一个长方形,长方形的面积是12㎝2,三角形的面积是长方形的一半,是6㎝2。锐角三角形和钝角三角形就不好办了。

2.在锐角三角形右边的右边再画一个同样的三角形,就变成一个平行四边形,平行四边形的面积是12㎝2,三角形的面积是平行四边形的一半,是6㎝2。

3.还可以用同样的方法计算钝角三角形的面积是6㎝2。

4.在直角三角形的左边再画一个同样的三角形,也是变成一个平行四边形。这样,所有的三角形都变成平行四边形,面积是平行四边形的一半。

5.在高的一半的地方剪开,上半部分旋转一下,变成一个平行四边形,它的面积与三角形的一样,是6㎝2。

三、概括面积公式

老师适时引导学生用任意三角形通过间接测量法归纳三角形的面积公式,学生可能说:

1.计算平行四边形面积用间接测量法测量底和高的长度,三角形也是底和高互相垂直,也应该是测量底和高的长度。

2.用两个完全同样的三角形拼成一个平行四边形,平行四边形的面积=底高,三角形的面积是平行四边形面积的一半,所以三角形的面积S=ah2。

3.在高的一半的地方剪开,上半部分旋转一下,变成一个平行四边形,平行四边形的底就是三角形的底,它的高是三角形的高的'一半,平行四边形的面积就是三角形的面积,三角形的面积=平行四边形的面积=底高的一半,所以三角形的面积S=ah2。

四、运用知识,解决问题

1.出示例1:

2.辨认图形,运用面积公式列式计算。

S=ah2

=100332

=1650(㎝2)

3.做一做:见教材。

五、巩固练习

练习十六第85页第1、2、3题。

学习三角形的面积时,教材出于默认的理由而没有编排数格子,从平行四边形不可能完全测量可以推出三角形更不可能完全测量。因此造成了三角形面积教学忽视培养二维空间观念的后果。本设计让学生继续数格子,目的在于使学生能直观地找到将未知图形转化成已知图形的方法。完整单位的格子少,不完整单位的格子其形状不规则,转化和探索成学生必须的选择。在数格子的过程中学生既认识用面积单位测量的局限性和长度测量的便捷性,又可以体验转化方法的多样性和各种方法的内在联系。

在学习中,学生认识到面积的计算都必须依靠互相垂直两条线段,长方形的两条边互相垂直,这两条边长度相乘的积就是它的面积;平行四边形垂直的两条线段不再是邻边,而是底和高,所以底和高长度相乘的积是它的面积;而三角形用底和高的长度算不出面积,还得再乘上一个系数1/2。

最新教案数学教案篇15

教学目标

1.使学生理解圆面积公式的推导过程,掌握求圆面积的方法并能正确计算;

2.培养学生动手操作的能力,启发思维,开阔思路;

3.渗透初步的辩证唯物主义思想。

教学重点和难点

圆面积公式的推导方法。

教学过程设计

(一)复习准备

我们已经学习了圆的认识和圆的周长,谁能说说圆周长、直径和半径三者之间的关系?

已知半径,圆周长的一半怎么求?

(出示一个整圆)哪部分是圆的面积?(指名用手指一指。)

这节课我们一起来学习圆的面积怎么计算。

(板书课题:圆的面积)

(二)学习新课

1.我们以前学过的三角形、平行四边形和梯形的面积公式,都是转化成已知学过的图形推导出来的,怎样计算圆的面积呢?我们也要把圆转化成已学过的图形,然后推导出圆面积的计算公式。

决定圆的大小的是什么?(半径)所以,分割圆时要保留这个数据,沿半径把圆分成若干等份。

展示曲变直的变化图。

2.动手操作学具,推导圆面积公式。

为了研究方便,我们把圆等分成16份。圆周部分近似看作线段,其用自己的学具(等分成16份的圆)拼摆成一个你熟悉的、学过的平面图形。

思考:

(1)你摆的是什么图形?

(2)所摆的图形面积与圆面积有什么关系?

(3)图形的各部分相当于圆的什么?

(4)你如何推导出圆的面积?

(学生开始动手摆,小组讨论。)

指名发言。(在幻灯前边说边摆。)

①拼出长方形,学生叙述,老师板书:

②还能不能拼出其它图形?

学生可以拼出:等等刚才,我们用不同思路都能推导出圆面积的公式是:S=r2。这几种思路的共同特点都是将圆转化成已学过的图形,并根据转化后的图形与圆面积的关系推导出面积公式。

例1一个圆的半径是4厘米,它的面积是多少平方厘米?

S=r2=3.1442=3.1416=50.24(平方厘米)

答:它的面积是50.24平方厘米。

想一想;求圆面积S应知道什么?如果给d和C,又怎样求圆面积?

(三)巩固反馈

1.求下面各圆的面积。

r=2(单位:分米)d=6(单位:分米)

2.选择题。

用2米长的绳子把小羊拴在草地上的木框上,羊吃到地上的草的最大面积是多少?

(1)3.1422=12.56(米)

(2)3.1422=12.56(平方米)

(3)3.1432=28.26(平方米)

3.思考题:

已知正方形的面积是18平方米,求圆的面积。(如图)

课堂教学设计说明

1.使学生运用迁移的方法,把新知识转化为旧知识,把圆转化成已经学过的图形。

2.在面积公式推导过程中,老师介绍分割圆的方法,展示由曲变直的过程,然后引导学生动手操作,小组讨论,从各个角度推导出圆面积公式。培养学生动手操作,口头表达和逻辑思维的能力,渗透了极限和转化思想。

3.安排了坡度适当、由易到难的练习题,使学生由浅入深地掌握了知识,形成了技能。同时,还注意培养学生逻辑推理的能力。

最新教案数学教案篇16

一、活动目标:

1、找出事物外形、颜色、功能等明显特征,发现相似之处,进行简单的分类。

2、做自己能做的事情,感受独立做事的快乐和满足。

二、活动准备:

1、经验准备:幼儿已有初步的分类经验。

2、材料准备:提供各种不同材质、不同颜色、不同样式的小手套和小袜子;红、绿两个玩具筐;乐曲《找朋友》;幼儿用书第页

三、指导要点

1、活动重点:学会比较,找出物体的相同特征。

2、活动难点:发现环境中物体、图形的相似之处,进行初步而简单的求同和分类。

3、指导要点:通过指导幼儿操作,观察物体的颜色、形状、种类,发现相同的特征并进行简单分类。

四、活动过程

1、操作探索,发现物体相似之处。

(1)创设问题情境。

利用娃娃家中混成一堆的小手套、小袜子的问题情境引发幼儿的关注:“小娃娃要出去玩游戏,可是找不到一样的袜子和手套了,谁能帮他找找呢?”

(2)找配对。

找出成双成对的袜子、手套。帮助有困难的幼儿,如拿出一双袜子或手套中的一只,请幼儿寻找另一只。

(3)找错误。

创设有错的问题情境,请幼儿找错,观察辨别手套、袜子的相同和不同。如:拿出两只不一样的袜子,对幼儿说:“我觉得这两种一样,你们觉得对吗?”“你们说说它们哪儿不一样?”引导幼儿边说边指出不一样的地方。

2、根据明显特征,进行简单的求同和分类。

(1)袜子、手套送回家。

提示幼儿找一找、看一看、分一分。如:将小袜子放在红筐里,将小手套放在绿筐里,在小筐上贴上相应的标志。

(2)游戏:找朋友

幼儿听着音乐,找找与自己某一特征一样的朋友。如:“找呀找呀找朋友,找到一个好朋友。我们都是女孩子,你是我的好朋友。”或者:“我们都穿着红色的衣服,你是我的好朋友。”

5、活动延伸

指导幼儿完成幼儿用书。

五、评价要素

能否通过观察、比较,发现环境中物体、图形的相似之处,进行初步而简单的求同和分类。

六、活动建议

1、在引导幼儿观察对比事物的不同时,根据小班幼儿细微观察能力不足的年龄特点,可选择具有明显差异的物品来进行对比。

2、在游戏“找朋友”的游戏中,幼儿只要说出某一点相同的特征即可。

73390