初中数学教案汇总
编写教案时,教案中教学步骤要具体、明确,各步骤衔接要自然、紧凑。写好初中数学教案汇总是有技巧的,接下来给大家分享初中数学教案汇总,方便大家学习。
初中数学教案汇总篇1
教学目标
知识与技能:
了解勾股定理的一些证明方法,会简单应用勾股定理解决问题
过程与方法:
在充分观察、归纳、猜想的基础上,探究勾股定理,在探究的过程中,发展合情推理,体会数形结合、从特殊到一般等数学思想。
情感态度价值观:
通过对我国古代研究勾股定理的成就介绍,培养学生的民族自豪感。
教学过程
1、创设情境
问题1国际数学家大会是最高水平的全球性数学学科学术会议,被誉为数学界的“奥运会”。2002年在北京召开了第24届国际数学家大会。下图就是大会会徽的图案。你见过这个图案吗?它由哪些我们学习过的基本图形组成?这个图案有什么特别的含义?
师生活动:教师引导学生寻找图形中的直角三角形和正方形等,并引导学生发现直角三角形的全等关系,指出通过今天的学习,就能理解会徽图案的含义。
设计意图:本节课是本章的起始课,重视引言教学,从国际数学家大会的会徽说起,设置悬念,引入课题。
2、探究勾股定理
观看洋葱数学中关于勾股定理引入的视频,让我们一起走进神奇的数学世界
问题2相传2500多年前,毕达哥拉斯有一次在朋友家作客时,发现朋友家用转铺成的地面图案反应了直角三角形三边的某种数量关系,请你观察下图,你从中发现了什么数量关系?
师生活动:学生先独立观察思考一分钟后,小组交流合作分析图形中两个蓝色正方形与橙色正方形有哪些数量关系,教师参与学生的讨论
追问:由这三个正方形的边长构成的等腰直角三角形三条边长之间又有怎么样的关系?
师生活动:教师引导学生发现正方形的面积等于边长的平方,归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方。
设计意图:从最特殊的等腰直角三角形入手,便于学生观察得到结论
问题3:数学研究遵循从特殊到一般的数学思想,既然我们得到了等腰直角三角形三边的这种特殊的数量关系,那我们不妨大胆猜测在一般的直角三角形(在下图的方格纸中,每个方格的面积是1)中,这种特殊的数量关系也同样成立。
师生活动:学生独立思考后小组讨论,难点是如何证明求以斜边为边长的正方形的面积,可由师生共同总结得出可以通过割、补两种方法,求出其面积。
初中数学教案汇总篇2
知识结构
本节首先给出了相似三角形的定义和表示方法,在此基础上给出相似比的概念,并利用探究法得出三角形相似的预备定理
重难点分析
相似三角形的概念是本节的重点也是本节的难点.相似三角形是研究相似形的最重要和最基本的图形,是在全等三角形知识的基础上的拓广和发展,全等形是相似形的特殊情况,研究相似三角形比研究全等三角形更具有一般性.对应边和对应角子相似三角形中占有重要地位,学生在找对应边及对应角时常常出现错误.
教法建议
1.从知识的逻辑体系出发,在知识的引入时可考虑先给出相似形的概念,在给出相似三角形的概念
2.在知识的引入上,可以从生活实例的角度出发,在生活中找几个相似三角形的例子,在此基础上给出相似三角形的概念
3.在知识的引入上,还可以从知识的建构模式入手,给出几组图形,告诉学生这几组图形都是相似三角形,由学生研究这些图形的边角关系,从而得到对相似三角形的本质认识
4.在相似三角形概念的巩固中,应注意反例的作用,要适当给出或由学生举出不是相似三角形的例子来加深对概念的理解
5.在概念的理解过程中,要注意给出不同层次的图形,要求学生从中找出相似三角形,既增加学生的参与又加深学生对概念的理解
6.在本节内容中对应边及对应角的寻找学生常常出现混淆,教师在教学过程中可设计由浅入深的一系列题组由学生寻找其中的对应边或对应角,并说明根据,有利于知识的掌握
教学设计示例
一、教学目标
1.使学生理解并掌握相似三角形的概念,理解相似比的概念.
2.使学生掌握预备定理,并了解它的承上启下的作用.
3.通过预备定理的条件所构成的图形的三种情况,教给学生对一致性问题的思考方法.
4.通过学习,培养由特殊到一般的唯物辩证法观点.
二、教学设计
类比学习、探索发现.
三、重点、难点
1.教学重点:是相似三角形的概念及预备定理,教学中要让学生加深对相似三角形概念的本质的认识.
2.教学难点:是相似比的概念及找对应边.
四、课时安排
1课时
五、教具学具准备
投影仪、胶片、常用画图工具.
六、教学步骤
【复习提问】
1.什么叫做全等三角形?它在形状上、大小上有何特征?
2.两个全等三角形的对应也和对应角有什么关系?
【讲解新课】
1.相似三角形
相似三角形的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别.为加深学生对相似三角形概念的本质的认识,教学时可预先准备几对相似三角形,让学生观察或测量对应元素的关系,然后直观地得出:两个三角形形状相同,就是他们的对应角相等,对应边成比例.
定义:对应角相等,对应边成比例的三角形,叫做相似三角形
符号“∽”,读作:“相似于”,记作:∽,如图所示.
∽
反之亦然.即相似三角形对应角相等,对应边成比例(性质).
∽,
另外,相似三角形具有传递性(性质).
注:在证两个三角形相似时,通常把表示对应顶点的字母写在对应位置上.
思考问题:(l)所有等腰三角形都相似吗?所有等边三角形呢?为什么?
(2)所有直角三角形都相似吗?所有等腰直角三角形呢?为什么?
2.相似比的概念
相似三角形对应边的比K,叫做相似比(或相似系数).
注:①两个相似三角形的相似比具有顺序性.
如果与的相似比是K,那么与的相似比是.
②全等三角形的相似比为1,这也说明了全等三角形是相似三角形的特殊情形.
3.预备定理:平行三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.∽,如图所示.
教材通过探讨的方法,根据题设中有平行线的条件,结合5.2节例6定理的结论,再根据三角形的定义,从而得出了这两个三角形相似的结论,这里要强调的是:
(1)本定理的导出不仅让学生复习了相似三角形的定义,而且为后面的证明打下了基础,它的重要性是显而易见的.
(2)由本定理的题设所构成的三角形有三种可能,除教材中两种情况外还有如左图所示的情形,它可以看成BC截两边所得,其中,本质上与右图是一致的.
(3)根据两个三角形相似写对应边的比例式时,每个比的前项是同一个三角形的三边,而比的后项是另一个三角形的三条对应边,它们的位置不能写错,作题时务必要认真仔细,如本定理的比例式,防止出现的错误,如出现错误,教师要及时予以纠正.
(4)根据两个三角形相似写对应边的比例式时,还应给学生强调,这两个三角形中相等的角所对的边就是对应边,对应边应写在对应位置.
(5)建议教师在教学中经常采用一些形象性语言,如:有平行就有成比例线段,有平行就有相似三角形.
【小结】
1.本节学习了相似三角形的概念.
2.正确理解相似比的概念,为以后学习相似三角形的性质打下基础.
3.重点学习了预备定理及注意的问题.
初中数学教案汇总篇3
教学设计思想:
本小节依次介绍了平方差公式和完全平方公式,并结合公式讲授如何运用公式进行多项式的因式分解。第一课时的内容是用平方差公式对多项式进行因式分解,首先提出新问题:x2-4与y2-25怎样进行因式分解,让学生自主探索,通过整式乘法的平方差公式,逆向得出用公式法分解因式的方法,发展学生的逆向思维和推理能力,然后让学生独立去做例题、练习中的题目,并对结果通过展示、解释、相互点评,达到能较好的运用平方差公式进行因式分解的目的。第二课时利用完全平方公式进行多项式的因式分解是在学生已经学习了提取公因式法及利用平方差公式分解因式的基础上进行的,因此在教学设计中,重点放在判断一个多项式是否为完全平方式上,采取启发式的教学方法,引导学生积极思考问题,从中培养学生的思维品质。
教学目标
知识与技能:
会用平方差公式对多项式进行因式分解;
会用完全平方公式对多项式进行因式分解;
能够综合运用提公因式法、平方差公式、完全平方公式对多项式进行因式分解;
提高全面地观察问题、分析问题和逆向思维的能力。
过程与方法:
经历用公式法分解因式的探索过程,进一步体会这两个公式在因式分解和整式乘法中的不同方向,加深对整式乘法和因式分解这两个相反变形的认识,体会从正逆两方面认识和研究事物的方法。
情感态度价值观:
通过学习进一步理解数学知识间有着密切的联系。
教学重点和难点
重点:①运用平方差公式分解因式;②运用完全平方式分解因式。
难点:①灵活运用平方差公式分解因式,正确判断因式分解的彻底性;②灵活运用完全平方公式分解因式
关键:把握住因式分解的基本思路,观察多项式的特征,灵活地运用换元和划归思想。
初中数学教案汇总篇4
相反数
一、学习目标
1了解相反数的概念。
2给一个数,能求出它的相反数。
3根据a的相反数是-a,能把多重符号化成单一符号。
二、教学过程
师:请同学们画一条数轴,在数轴上找出表示+6和-6的点,看一看表示这两个数的点有什么特点,这两个数本身有什么特点。先独立思考,然后在小组里交流。
生:人人动用手画数轴,独立思考后,在小组内进行交流。
师:深入了解各小组的交流情况,讨论结束后,提问1、2人,帮助全班同学理清思考问题的思路。
师:请同学们阅读课本,知道什么叫相反数,给出一个数能求出它的相反数。
生:阅读课本第59页,并完成练习一第(1)~(4)题。
师:提问检查学生的学习情况,强调“0的相反数是0”也是相反数定义的`一部分。
师:请同学们先想一想,a可以表示一个什么数,a与-a有什么关系。然后阅读课本第60页,并完成剩余的练习题,由小组长负责检查练习情况。
师:认真了解各小组的学习情况,特别是对简化符号的题和学习困难的学生,要重点对待。
生:认真思考,阅读课本,完成练习。小组长、教师对学习困难生及时进行辅导。
师:请同学们先小结一下本节课的学习内容。然后,看一看习题2.3中,哪些题你能不动笔说出结果,请在四人小组里互相说一说。(除A组第2题外都可以直接说出结果)
生:小结。完成习题1.3中的有关练习。
练习
1在下列各式中分别填上适当的符号,使等号左右两端的数相等;
-(+19)=____________19;
____________10.2=+(+10.2);
____________(+12)=-12;
____________(-25)=+25。
2把下面的多重符号化成单一符号:
-[-(-0.3)]=____________;
-[-(+4)]=____________;
+[+(+5)]=____________;
-[+(-50)]=____________。
3根据a+(-a)=0,那么(-8)+x=0可得x=________________________;由y+(+3.75)=0,可得y=____________。
4下面的说法对不对?请举列说明。
(1)一个有理数的相反数的相反数就是这个有理数本身。
(2)一个有理数的相反数一定比原来的有理数小。
(3)-a是一个负数。
作业
在数轴上记出2,-4.5,0各数与它们的相反数,并指出表示这些数的点离开原点的距离是多少。
初中数学教案汇总篇5
12.6一元二次方程的应用(三)
一、素质教育目标
(一)知识教学点:使学生会用列一元二次方程的方法解决有关增长率问题.
(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生用数学的意识.
二、教学重点、难点
1.教学重点:学会用列方程的方法解决有关增长率问题.
2.教学难点 :有关增长率之间的数量关系.下列词语的异同;增长,增长了,增长到;扩大,扩大到,扩大了.
三、教学步骤
(一)明确目标.
(二)整体感知
(三)重点、难点的学习和目标完成过程
1.复习提问
(1)原产量+增产量=实际产量.
(2)单位时间增产量=原产量×增长率.
(3)实际产量=原产量×(1+增长率).
2.例1 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增长的百分率是多少?
分析:设平均每月的增长率为x.
则2月份的产量是5000+5000x=5000(1+x)(吨).
3月份的产量是[5000(1+x)+5000(1+x)x]
=5000(1+x)2(吨).
解:设平均每月的增长率为x,据题意得:
5000(1+x)2=7200
(1+x)2=1.44
1+x=±1.2.
x1=0.2,x2=-2.2(不合题意,舍去).
取x=0.2=20%.
教师引导,点拨、板书,学生回答.
注意以下几个问题:
(1)为计算简便、直接求得,可以直接设增长的百分率为x.
(2)认真审题,弄清基数,增长了,增长到等词语的关系.
(3)用直接开平方法做简单,不要将括号打开.
练习1.教材P.42中5.
学生分析题意,板书,笔答,评价.
练习2.若设每年平均增长的百分数为x,分别列出下面几个问题的方程.
(1)某工厂用二年时间把总产值增加到原来的b倍,求每年平均增长的百分率.
(1+x)2=b(把原来的总产值看作是1.)
(2)某工厂用两年时间把总产值由a万元增加到b万元,求每年平均增长的百分数.
(a(1+x)2=b)
(3)某工厂用两年时间把总产值增加了原来的b倍,求每年增长的百分数.
((1+x)2=b+1把原来的总产值看作是1.)
以上学生回答,教师点拨.引导学生总结下面的规律:
设某产量原来的产值是a,平均每次增长的百分率为x,则增长一次后的产值为a(1+x),增长两次后的产值为a(1+x)2,…………增长n次后的产值为S=a(1+x)n.
规律的得出,使学生对此类问题能居高临下,同时培养学生的探索精神和创造能力.
例2 某产品原来每件600元,由于连续两次降价,现价为384元,如果两个降价的百分数相同,求每次降价百分之几?
分析:设每次降价为x.
第一次降价后,每件为600-600x=600(1-x)(元).
第二次降价后,每件为600(1-x)-600(1-x)•x
=600(1-x)2(元).
解:设每次降价为x,据题意得
600(1-x)2=384.
答:平均每次降价为20%.
教师引导学生分析完毕,学生板书,笔答,评价,对比,总结.
引导学生对比“增长”、“下降”的区别.如果设平均每次增长或下降为x,则产值a经过两次增长或下降到b,可列式为a(1+x)2=b(或a(1-x)2=b).
(四)总结、扩展
1.善于将实际问题转化为数学问题,严格审题,弄清各数据相互关系,正确布列方程.培养学生用数学的意识以及渗透转化和方程的思想方法.
2.在解方程时,注意巧算;注意方程两根的取舍问题.
3.我们只学习一元一次方程,一元二次方程的解法,所以只求到两年的增长率.3年、4年……,n年,应该说按照规律我们可以列出方程,随着知识的增加,我们也将会解这些方程.
四、布置作业
教材P.42中A8
五、板书设计
12.6 一元二次方程应用(三)
1.数量关系: 例1…… 例2……
(1)原产量+增产量=实际产量 分析:…… 分析……
(2)单位时间增产量=原产量×增长率 解…… 解……
(3)实际产量=原产量(1+增长率)
2.最后产值、基数、平均增长率、时间
的基本关系:
M=m(1+x)n n为时间
M为最后产量,m为基数,x为平均增长率
12.6一元二次方程的应用(三)
一、素质教育目标
(一)知识教学点:使学生会用列一元二次方程的方法解决有关增长率问题.
(二)能力训练点:进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养学生用数学的意识.
二、教学重点、难点
1.教学重点:学会用列方程的方法解决有关增长率问题.
2.教学难点 :有关增长率之间的数量关系.下列词语的异同;增长,增长了,增长到;扩大,扩大到,扩大了.
三、教学步骤
(一)明确目标.
(二)整体感知
(三)重点、难点的学习和目标完成过程
1.复习提问
(1)原产量+增产量=实际产量.
(2)单位时间增产量=原产量×增长率.
(3)实际产量=原产量×(1+增长率).
2.例1 某钢铁厂去年一月份某种钢的产量为5000吨,三月份上升到7200吨,这两个月平均每月增长的百分率是多少?
分析:设平均每月的增长率为x.
则2月份的产量是5000+5000x=5000(1+x)(吨).
3月份的产量是[5000(1+x)+5000(1+x)x]
=5000(1+x)2(吨).
解:设平均每月的增长率为x,据题意得:
5000(1+x)2=7200
(1+x)2=1.44
1+x=±1.2.
x1=0.2,x2=-2.2(不合题意,舍去).
取x=0.2=20%.
教师引导,点拨、板书,学生回答.
注意以下几个问题:
(1)为计算简便、直接求得,可以直接设增长的百分率为x.
(2)认真审题,弄清基数,增长了,增长到等词语的关系.
(3)用直接开平方法做简单,不要将括号打开.
练习1.教材P.42中5.
学生分析题意,板书,笔答,评价.
练习2.若设每年平均增长的百分数为x,分别列出下面几个问题的方程.
(1)某工厂用二年时间把总产值增加到原来的b倍,求每年平均增长的百分率.
(1+x)2=b(把原来的总产值看作是1.)
(2)某工厂用两年时间把总产值由a万元增加到b万元,求每年平均增长的百分数.
(a(1+x)2=b)
(3)某工厂用两年时间把总产值增加了原来的b倍,求每年增长的百分数.
((1+x)2=b+1把原来的总产值看作是1.)
以上学生回答,教师点拨.引导学生总结下面的规律:
设某产量原来的产值是a,平均每次增长的百分率为x,则增长一次后的产值为a(1+x),增长两次后的产值为a(1+x)2,…………增长n次后的产值为S=a(1+x)n.
规律的得出,使学生对此类问题能居高临下,同时培养学生的探索精神和创造能力.
例2 某产品原来每件600元,由于连续两次降价,现价为384元,如果两个降价的百分数相同,求每次降价百分之几?
分析:设每次降价为x.
第一次降价后,每件为600-600x=600(1-x)(元).
第二次降价后,每件为600(1-x)-600(1-x)•x
=600(1-x)2(元).
解:设每次降价为x,据题意得
600(1-x)2=384.
答:平均每次降价为20%.
教师引导学生分析完毕,学生板书,笔答,评价,对比,总结.
引导学生对比“增长”、“下降”的区别.如果设平均每次增长或下降为x,则产值a经过两次增长或下降到b,可列式为a(1+x)2=b(或a(1-x)2=b).
(四)总结、扩展
1.善于将实际问题转化为数学问题,严格审题,弄清各数据相互关系,正确布列方程.培养学生用数学的意识以及渗透转化和方程的思想方法.
2.在解方程时,注意巧算;注意方程两根的取舍问题.
3.我们只学习一元一次方程,一元二次方程的解法,所以只求到两年的增长率.3年、4年……,n年,应该说按照规律我们可以列出方程,随着知识的增加,我们也将会解这些方程.
四、布置作业
教材P.42中A8
五、板书设计
12.6 一元二次方程应用(三)
1.数量关系: 例1…… 例2……
(1)原产量+增产量=实际产量 分析:…… 分析……
(2)单位时间增产量=原产量×增长率 解…… 解……
(3)实际产量=原产量(1+增长率)
2.最后产值、基数、平均增长率、时间
的基本关系:
M=m(1+x)n n为时间
M为最后产量,m为基数,x为平均增长率
初中数学教案汇总篇6
第6.4因式分解的简单应用
背景材料:
因式分解是初中数学中的一个重点内容,也是一项重要的基本技能和基础知识,更是一种数学的变形方法,在今后的学习中有着重要的作用。因此,除了单纯的因式分解问题外,因式分解在解某些数学问题中有着广泛的作用,因式分解在三角形中的应用,因式分解可以用来证明代数问题,用于代数式的求值,用于求不定方程,用于解应用题解决有关复杂数值的计算,本节课的例题因式分解在数学题中的简单应用。
教材分析:
本节课是本章的最后一节,是学生学习因式分解初步应用,首先要使学生体会到因式分解在数学中应用,其次给学生提供更多机会体验主动学习和探索的“过程”与“经历”,使多数学里拥有一定问题解决的.经验。
教学目标:
1、在整除的情况下,会应用因式分解,进行多项式相除。
2、会应用因式分解解简单的一元二次方程。
3、体验数学问题中的矛盾转化思想。
4、培养观察和动手能力,自主探索与合作交流能力。
教学重点:
学会应用因式分解进行多项式除法和解简单一元二次方程。
教学难点:
应用因式分解解简单的一元二次方程。
设计理念:
根据本节课的内容特点,主要采用师生合作控讨式课堂教学方法,以教师为主导,学生为主体,动手实践训练为主线,创新思维为核心,态度情感能力为目标,引导学生自主探索,动手实践,合作交流。注重使学生经办观察、操作、推理等探索过程。这种教学理念,反映了时代精神,有利于提高学生的数学素养,能有效地激发学生的思维积极性,学生在学习过程中调动各种感官,进行观察与抽象、操作与思考、自主与交流等,进而改进学生的学习方法。
教学过程:
一、创设情境,复习提问
1、将正式各式因式分解
(1)(a+b)2-10(a+b)+25(2)-xy+2x2y+x3y
(3)2a2b-8a2b(4)4x2-9
[四位同学到黑板上演板,本课时用复习“练习引入”也不失为一种好方法,既先复习因式分解的提取分因式和公式法,又为下面解决多项式除法运算作铺垫]
教师订正
提出问题:怎样计算(2a2b-8a2b)÷(4a-b)
二、导入新课,探索新知
(先让学生思考上面所提出的问题,教师从旁启发)
师:如果出现竖式计算,教师可以给予肯定;可能出现(2a2b-8a2b)÷(4a-b)=ab-8a2追问学生怎么得来的,运算的依据是什么?这样暴露学生的思维,让学生自己发现错误之处;观察2a2b-8a2b=2ab(b-4a),其中一个因式正好是除式4a-b的相反数,如果用“换元”思想,我们就可以把问题转化为单项式除以单项式。
(2a2b-8a2b)÷(4a-b)
=-2ab(4a-b)÷(4a-b)
=-2ab
(让学生自己比较哪种方法好)
利用上面的数学解题思路,同学们尝试计算
(4x2-9)÷(3-2x)
学生总结解题步骤:1、因式分解;2、约去公因式)
(全体学生动手动脑,然后叫学生回答,及时表扬,讲练结合,[运用多项式的因式分解和换元的思想,可以把两个多项式相除,转化为单项式的除法]
练习计算
(1)(a2-4)÷(a+2)
(2)(x2+2xy+y2)÷(x+y)
(3)[(a-b)2+2(b-a)]÷(a-b)
三、合作学习
1、以四人为一组讨论下列问题
若A?B=0,下面两个结论对吗?
(1)A和B同时都为零,即A=0且B=0
(2)A和B至少有一个为零即A=0或B=0
[合作学习,四个小组讨论,教师逐步引导,让学生讲自己的想法,及解题步骤,培养语言表达能力,体会运用因式分解的实际运用作用,增加学习兴趣]
2、你能用上面的结论解方程
(1)(2x+3)(2x-3)=0(2)2x2+x=0
解:
∵(2x+3)(2x-3)=0
∴2x+3=0或2x-3=0
∴方程的解为x=-3/2或x=3/2
解:x(2x+1)=0
则x=0或2x+1=0
∴原方程的解是x1=0,x2=-1/2
[让学生先独立完成,再组织交流,最后教师针对性地讲解,让学生总结步骤:1、移项,使方程一边变形为零;2、等式左边因式分解;3、转化为解一元一次方程]
3、练习,解下列方程
(1)x2-2x=04x2=(x-1)2
四、小结
(1)应用因式分解和换元思想可以把某些多项式除法转化为单项式除法。
(2)如果方程的等号一边是零,另一边含有未知数x的多项式可以分解成若干个x的一次式的积,那么就可以应用因式分解把原方程转化成几个一元一次方程来解。
设计理念:
根据本节课的内容特点,主要采用师生合作讨论式课堂教学方法,以教师为主导,学生为主体,动手实践训练为主线,创新思维为核心,态度情感能力为目标,引导学生自主探索,动手实践,合作交流。注重使学生经办观察、操作、推理等探索过程。这种教学理念,反映了时代精神,有利于提高学生的数学素养,能有效地激发学生的思维积极性,学生在学习过程中调动各种感官,进行观察与抽象、操作与思考、自主与交流等,进而改进学生的学习方法。
初中数学教案汇总篇7
整式的加减——初中数学第一册教案(通用2篇)
整式的加减——初中数学第一册篇1第9课3.4整式的加减(1)
教学目的
1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。
2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。
教学分析
重点:整式的加减运算。
难点:括号前是-号,去括号时,括号内的各项都要改变符号。
突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。
教学过程
一、复习
1、 叙述合并同类项法则。
2、 练习题:(用投影仪显示、学生完成)
3、 叙述去括号与添括号法则。
4、 练习题:(用投影仪显示、学生完成)
5、化简:
y2+(x2+2xy-3y2)-(2x2-xy-2y2)
二、新授
1、引入
整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。
2、例题
例1(P166例1)(学生自学后,教师按以下提示点拔即可)
求单项式5x2y,-2x2y,2xy2,-4xy2的和。
提示:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。
解:(略,见教材P166)
练习:P167 1、2
例2(P166例2)
求3x2-6x+5与4x2-7x-6的和。
解:(3x2-6x+5)+(4x2-7x-6) (每个多项式要加括号)(口述:文字叙述的整式加减,对每个整式要添上括号)
=3x2-6x+5+4x2-7x-6 (去括号)
=7x2+x-1 (合并同类项)
练习:P167 3
例3。(P166例3)(学生自学后,完成练习,教师矫正练习错误)
求2x2+xy+3y2与x2-xy+2y2的差。
解:(2x2+xy+3y2)-(x2-xy+2y2)
=2x2+xy+3y2-x2+xy-2y2
=x2+2xy+y2
3、归纳整式加减的一般步骤。(最好由学生归纳)
整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。
三、练习
补:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B(视时间是否足够而定)
四、小结(用投影仪板演)
1、文字叙述的整式加减,对每一个整式要添上括号。
2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。
五、作业
1、 P169:A:1(3、4),3,5,6,7,8。B:1,2。 (可适当减少些)
整式的加减——初中数学第一册教案篇2整式的加减(1)
教学目的
1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。
2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。
教学分析
重点:整式的加减运算。
难点:括号前是-号,去括号时,括号内的各项都要改变符号。
突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。
教学过程
一、复习
1、叙述合并同类项法则。
2、叙述去括号与添括号法则。
3、化简:
y2+(x2+2xy-3y2)-(2x2-xy-2y2)
二、新授
1、引入
整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。
2、例题
例1(P166例1)
求单项式5x2y,-2x2y,2xy2,-4xy2的和。
分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。
解:(略,见教材P166)
例2(P166例2)
求3x2-6x+5与4x2-7x-6的和。
解:(3x2-6x+5)+(4x2-7x-6) (每个多项式要加括号)
=3x2-6x+5+4x2-7x-6 (去括号)
=7x2+x-1 (合并同类项)
例3。(P166例3)
求2x2+xy+3y2与x2-xy+2y2的差。
解:(2x2+xy+3y2)-(x2-xy+2y2)
=2x2+xy+3y2-x2+xy-2y2
=x2+2xy+y2
3、归纳整式加减的一般步骤。
整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。
三、练习
P167:1,2,3,4。
补:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B
四、小结
1、文字叙述的整式加减,对每一个整式要添上括号。
2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。
五、作业
1、 P169:A:1(3、4),3,5,6,7,8。B:1,2。
基础训练同步练习1。
整式的加减(1)
教学目的
1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。
2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。
教学分析
重点:整式的加减运算。
难点:括号前是-号,去括号时,括号内的各项都要改变符号。
突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。
教学过程
一、复习
1、叙述合并同类项法则。
2、叙述去括号与添括号法则。
3、化简:
y2+(x2+2xy-3y2)-(2x2-xy-2y2)
二、新授
1、引入
整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。
2、例题
例1(P166例1)
求单项式5x2y,-2x2y,2xy2,-4xy2的和。
分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。
解:(略,见教材P166)
例2(P166例2)
求3x2-6x+5与4x2-7x-6的和。
解:(3x2-6x+5)+(4x2-7x-6) (每个多项式要加括号)
=3x2-6x+5+4x2-7x-6 (去括号)
=7x2+x-1 (合并同类项)
例3。(P166例3)
求2x2+xy+3y2与x2-xy+2y2的差。
解:(2x2+xy+3y2)-(x2-xy+2y2)
=2x2+xy+3y2-x2+xy-2y2
=x2+2xy+y2
3、归纳整式加减的一般步骤。
整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。
三、练习
P167:1,2,3,4。
补:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B
四、小结
1、文字叙述的整式加减,对每一个整式要添上括号。
2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。
五、作业
1、 P169:A:1(3、4),3,5,6,7,8。B:1,2。
基础训练同步练习1。
整式的加减(1)
教学目的
1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。
2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。
教学分析
重点:整式的加减运算。
难点:括号前是-号,去括号时,括号内的各项都要改变符号。
突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。
教学过程
一、复习
1、叙述合并同类项法则。
2、叙述去括号与添括号法则。
3、化简:
y2+(x2+2xy-3y2)-(2x2-xy-2y2)
二、新授
1、引入
整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。
2、例题
例1(P166例1)
求单项式5x2y,-2x2y,2xy2,-4xy2的和。
分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。
解:(略,见教材P166)
例2(P166例2)
求3x2-6x+5与4x2-7x-6的和。
解:(3x2-6x+5)+(4x2-7x-6) (每个多项式要加括号)
=3x2-6x+5+4x2-7x-6 (去括号)
=7x2+x-1 (合并同类项)
例3。(P166例3)
求2x2+xy+3y2与x2-xy+2y2的差。
解:(2x2+xy+3y2)-(x2-xy+2y2)
=2x2+xy+3y2-x2+xy-2y2
=x2+2xy+y2
3、归纳整式加减的一般步骤。
整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。
三、练习
P167:1,2,3,4。
补:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B
四、小结
1、文字叙述的整式加减,对每一个整式要添上括号。
2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。
五、作业
1、 P169:A:1(3、4),3,5,6,7,8。B:1,2。
基础训练同步练习1。
整式的加减(1)
教学目的
1、使学生在掌握合并同类项、去括号法则基础上进行整式的加减运算。
2、使学生掌握整式加减的一般步骤,熟练进行整式的加减运算。
教学分析
重点:整式的加减运算。
难点:括号前是-号,去括号时,括号内的各项都要改变符号。
突破:正确理解去括号法则,并会把括号与括号前的符号理解成整体。
教学过程
一、复习
1、叙述合并同类项法则。
2、叙述去括号与添括号法则。
3、化简:
y2+(x2+2xy-3y2)-(2x2-xy-2y2)
二、新授
1、引入
整式的化简,如果有括号,首先要去括号,然后合并同类项,所以去括号和合并同类项是整式加减的基础。
2、例题
例1(P166例1)
求单项式5x2y,-2x2y,2xy2,-4xy2的和。
分析:式子5x2y+(-2x2y)+2xy2+(-4xy2)就是这四个单项式的和。几个整式相加减,通常用括号把每一个整式括号起来,再用加减号连接。
解:(略,见教材P166)
例2(P166例2)
求3x2-6x+5与4x2-7x-6的和。
解:(3x2-6x+5)+(4x2-7x-6) (每个多项式要加括号)
=3x2-6x+5+4x2-7x-6 (去括号)
=7x2+x-1 (合并同类项)
例3。(P166例3)
求2x2+xy+3y2与x2-xy+2y2的差。
解:(2x2+xy+3y2)-(x2-xy+2y2)
=2x2+xy+3y2-x2+xy-2y2
=x2+2xy+y2
3、归纳整式加减的一般步骤。
整式加减实际上就是合并同类项。在运算中,如果遇到括号,按去括号法则,先去括号,再合并同类项。
三、练习
P167:1,2,3,4。
补:已知:A=5a2-2b2-3c2,B=-3a2+b2+2c2,求2A-3B
四、小结
1、文字叙述的整式加减,对每一个整式要添上括号。
2、有括号的要先去括号,如果双有中括号或大括号,要先去小括号,后去中括号,再去大括号。
五、作业
1、 P169:A:1(3、4),3,5,6,7,8。B:1,2。
基础训练同步练习1。
初中数学教案汇总篇8
一、课题
略。
二、教学目标
1.结合具体例子,体会数学与我们的成长密切相关。
2.通过对小学数学知识的归纳,感受到数学学习促进了我们的成长。
3.尝试从不同角度,运用多种方式(观察、独立思考、自主探索、合作交流)有效解决问题。
4.通过对数学问题的自主探索,进一步体会数学学习促进了我们成长,发展了我们的思维。
三、教学重点和难点
重点
难点
1.结合具体例子,体会数学与我们的成长密切相关。
2.通过对小学数学知识的归纳,感受到数学学习促进了我们的成长。
结合具体例子,体会数学与我们的成长密切相关。
四、教学手段
现代课堂教学手段
教学准备
教师准备
录音机、投影仪、剪刀、长方形纸片。
学生准备
预习、剪刀、长方形纸片
五、教学方法
启发式教学
六、教学过程设计
一、导入
教师活动
学生活动
展示图片并播放录音。
宇宙之大(海王星、流星雨),粒子之微(铍原子、氯化钠晶体结构),火箭之速(火箭),化工之巧(陶瓷),地球之变(陨石坑),生物之谜(青蛙),日用之繁(杯子、表),大千世界,天上人间,无处不有数学的贡献,让我们共同走进数学世界,去领略一下数学的风采,体会数学的魅力。
观察图片,听录音。
二、板书课题。
三、导学
教师活动
学生活动
1.现在让我们进入时空的隧道,回忆我们的成长历程:
出生——学前——小学(板书),我们每一天都在接触数学并不断学习它,相信吗?不妨大家从不同阶段来举出一些我们身边或亲身经历的例子,试一试。(积极鼓励)
(师、生共同讨论交流,从具体事例中分析并找出数学信息。)
2.进入小学,我们正式开始学习数学,回忆一下,在小学阶段我们学习的主要数学知识有哪些?
3.指定若干名学生口答,师生共同系统归纳:
数与式:认识、计算、方程、解应用题;
图形:图形的认识、图形的画法、图形的计算;
统计知识。
4.数学知识的学习,不仅开阔了我们的视野,而且改变了我们的思维方式,使我们变得更加聪明了。发挥一下我们的聪明才智,尝试解决下面的2个问题:
(1)投影或小黑板展示下列问题:
①计算并观察下列三组算式:
②已知25×25=625,则24×26=(不要计算)
③你能举出一个类似的例子吗?
④更一般地,若a×a=m,则(a+1)(a-1)=。
(老师点评、表扬)
(2)投影或小黑板展示教材第13页第4题。
通过刚才的解题,可以看出同学们都非常聪明,其实不仅我们每个人离不开数学,而且整个人类、整个社会也离不开数学,同学们课后可以阅读一下第1节第2点《人类离不开数学》,体会数学对促进人类社会发展的&39;重大作用。
布置作业:
(1)谈一谈你对数学的兴趣、学习数学的方法以及学习中存在的困难等;
(2)习题1.1第2、4题。
1.回忆、交流、积极大胆发言。
2.回忆、交流。
3.观察、计算、思考、探索。
4.学生取出剪刀和长方形纸片,小组合作,动手尝试解决。
学生1
学生2
学生拼图(略)
七、练习设计
课堂基础练习
1、下列图形中,阴影部分的面积相等的是.
答案:A与B;C与D
2、三个连续奇数的和是21,它们的积为
答案:315
3、计算:7+27+377+4777
答案:5188
课后延伸练习
1、猜谜语(各打数学中常用字)
千人分在北上下;②1人立在口上边
答案:①乘;②倍
2、在与伙伴玩“24点”游戏中,使数1,5,5,5通过运算得24?
答案:[5-(1÷5)]×5
3、只允许添两个“一”、一个“十”和一个括号,不改变数字顺序,把1,2,3,4,5,6,7,8,9这九个数字连成结果为100的算式:
123456789=100
答案:123-(45+67-89)=100
4、把长方形剪去一个角,它可能是几边形?
答案:三边形,四边形,五边形.
5、有一个正方形池塘如图1-1-2,在它的四个角上有四棵大树,现在为了扩大池塘,要把池塘面积扩大一倍,但是,这四棵树不便搬动,也不能使它淹在水里,而且扩大后的池塘还是正方形,这该怎么办呢?
答案:
能力提高训练
18
19
答案:7个,边长从大到
小依次为11、8、
7、5、3
1、一个长方形,长19cm,宽18cm,如果把这个长方形分割成若干个边长为整数的小正方形,那么这些小正方形最少有多少个?如何分割?
2、在操场上,小华遇到小冯,交谈中顺便问道:“你们班有多少学生?”小冯说:“如果我们班上的学生像孙悟空那样一个能变两个,然后再来这么多学生的,再加上班上学生的,最后连你也算过去,就该有100个了.”那么小冯班上有多少学生?
答案:36
八、板书设计
(一)知识回顾(四)例题解析(六)课堂小结
(二)观察发现例1、例2
(三)解方程(五)课堂练习练习设计
九、教学后记
初中数学教案汇总篇9
教学目标:
1、知识与技能:
⑴、在具体的现实情境中,认识一个角的余角和补角,掌握余角和补角的性质。
⑵、了解方位角,能确定具体物体的方位。
2、过程与方法:
进一步提高学生的抽象概括能力,发展空间观念和知识运用能力,学会推理,并能对问题的结论进行合理的猜想。
3、情感态度与价值观:
体会观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,初步数学中推理的严谨性和结论的确定性,能在独立思考和小组交流中获益。
重、难点及关键:
1、重点:认识角的互余、互补关系及其性质,确定方位是本节课的重点。
2、难点:通过简单的推理,归纳出余角、补角的性质,并能用规范的语言描述性质是难点。
3、关键:了解推理的意义和推理过程是掌握性质的关键。
教学过程:
一、引入新课:
让学生观察意大利著名建筑比萨斜塔。
比萨斜塔建于1173年,工程曾间断了两次很长的时间,历经约二百年才完工。设计为垂直建造,但是在工程开始后不久便由于地基不均匀和土层松软而倾斜。
二、新课讲解:
1、探究互为余角的定义:
如果两个角的和是90(直角),那么这两个角叫做互为余角,其中一个角是另一个角的余角。即:1是2的余角或2是1的余角。
2、练习⑴:
图中给出的各角,那些互为余角?
3、探究互为补角的定义:
如果两个角的和是180(平角),那么这两个角叫做互为补角,其中一个角是另一个角的补角。即:3是4的补角或4是3的补角。
4、练习⑵:
(1)图中给出的各角,那些互为补角?
(2)填下列表:
a的余角a的补角
5
32
45
77
6223
x
结论:同一个锐角的补角比它的余角大90。
(3)填空:
①70的余角是,补角是。
②a(90)的它的余角是,它的补角是。
重要提醒:ⅰ(如何表示一个角的余角和补角)
锐角a的余角是(90a)
a的补角是(180a)
ⅱ互余和互补是两个角的数量关系,与它们的位置无关。
5、讲解例题:
例1:若一个角的补角等于它的余角4倍,求这个角的度数。
解:设这个角是x,则它的补角是(180-x),余角是(90-x)。
根据题意得:
(180-x)=4(90-x)
解之得:x=60
答:这个角的度数是60。
6、练习⑶:
一个角的补角是它的3倍,这个角是多少度?
7、探究补角的性质:
如图1与2互补,3与4互补,如果1=3,那么2与4相等吗?为什么?
教师活动:操作多媒体演示。
学生活动:观察图形的运动,得出结果:4
补角性质:同角或等角的补角相等
教师活动:向学生说明,以上从观察图形得到的`结论,还可以从理论上说明其理由。
∵1+2=180,3+4=180
2=180-1,4=180-3
∵1=3
180-1=180-3
即:2=4
8、探究余角的性质:
如图1与2互余,3与4互余,如果1=3,那么2与4相等吗?为什么?
教师活动:操作多媒体演示。
学生活动:观察图形的运动,得出结果:4
余角性质:同角或等角的余角相等
教师活动:向学生说明,以上从观察图形得到的结论,还可以从理论上说明其理由。
∵1+2=90,3+4=90
2=90-1,4=90-3
∵1=3
90-1=90-3
即:2=4
9、讲解例题:
例2:如图,AOB=90COD=EOD=90,C,O,E在一条直线上,且4,请说出1与3之间的关系?并试着说明理由?
解:3
∵2=COD=90
3+2=AOB=90
3(等角的余角相等)
10、练习⑷:
如图AOB=90COD=90则1与2是什么关系?
11、讲解方位角:
(1)认识方位:
正东、正南、正西、正北、东南、
西南、西北、东北。
(2)找方位角:
ⅰ乙地对甲地的方位角ⅱ甲地对乙地的方位角
12、讲解例题:
例3:选择题:
(1)A看B的方向是北偏东21,那么B看A的方向()
A:南偏东69B:南偏西69C:南偏东21D:南偏西21
(2)如图,下列说法中错误的是()
A:OC的方向是北偏东60
B:OC的方向是南偏东60
C:OB的方向是西南方向
D:OA的方向是北偏西22
(3)在点O北偏西60的某处有一点A,在点O南偏西20的某处有一点B,则AOB的度数是()
A:100B:70C:180D:140
例4:如图.货轮O在航行过程中,发现灯塔A在它南偏东60的方向上,同时,在它北偏东40,南偏西10,西北(即北偏西45)方向上又分别发现了客轮B,货轮C和海岛D.仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D方向的射线.
三、课堂小结:
1、本节课学习了余角和补角,并通过简单的推理,得到出了余角和补角的性质。
2、了解方位角,学会了确定物体运动的方向。
四、课外作业:
1、课本第114页:9、11、12题。
2、学习指要第78-79页:训练二和训练三。
课后反思:
初中数学教案汇总篇10
学习目标
1. 理解三线八角中没有公共顶点的角的位置关系 ,知道什么是同位角、内错角、同旁内角.毛
2. 通过比较、观察、掌握同位角、内错角、同旁内角的特征,能正确识别图形中的同位角、内错角和同旁内角.
重点难点
同位角、内错角、同旁内角的特征
教学过程
一·导入
1.指出右图中所有的邻补角和对顶角?
2. 图中的∠1与∠5,∠3与∠5,∠3与∠6 是邻补角或对顶角吗?
若都不是,请自学课本P6内容后回答它们各是什么关系的角?
二·问题导学
1.如图⑴,将木条,与木条c钉在一起,若把它们看成三条直 线则该图可说成"直线 和直线 与直线 相交" 也可以说成"两条直线 , 被第三条直线 所截".构成了小于平角的角共有 个,通常将这种图形称作为"三线八角"。其中直线 , 称为两被截线,直线 称为截线。
2. 如图⑶是"直线 , 被直线 所截"形成的图形
(1)∠1与∠5这对角在两被截线AB,CD的 ,在截线EF 的 ,形如" " 字型.具有这种关系的一对角叫同位角。
(2)∠3与∠5这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫内错角。
(3)∠3与∠6这对角在两被截线AB,CD的 ,在截线EF的 ,形如" " 字型.具有这种关系的一对角叫同旁内角。
3.找出图⑶中所有的同位角、内错角、同旁内角
4.讨论与交流:
(1)"同位角、内错角、同旁内角"与"邻补角、对顶角"在识别方法上有什么区别?
(2)归纳总结同位角、内错角、同旁内角的特征:
同位角:"F" 字型,"同旁同侧"
"三线八角" 内错角:"Z" 字型,"之间两侧"
同旁内角:"U" 字型,"之间同侧"
三·典题训练
例1. 如图⑵中∠1与∠2,∠3与∠4, ∠1与∠4分别是哪两条直线被哪一条直线所截形成的什么角?
小结 将左右手的大拇指和食指各组成一个角,两食指相对成一条直线,两个大拇指反向的时候,组成内错角;
两食指相对成一条直线,两个大拇指同向的时候,组成同旁内角;
自我检测
⒈如图⑷,下列说法不正确的是( )
A、∠1与∠2是同位角 B、∠2与∠3是同位角
C、∠1与∠3是同位角 D、∠1与∠4不是同位角
⒉如图⑸,直线AB、CD被直线EF所截,∠A和 是同位角,∠A和 是内错角,∠A和 是同旁内角.
⒊如图⑹, 直线DE截AB, AC, 构成八个角:
① 指出图中所有的同位角、内错角、同旁内角.
②∠A与∠5, ∠A与∠6, ∠A与∠8, 分别是哪一条直线截哪两条直线而成的什么角?
⒋如图⑺,在直角ABC中,∠C=90°,DE⊥AC于E,交AB于D .
①指出当BC、DE被AB所截时,∠3的同位角、内错角和同旁内角.
②试说明∠1=∠2=∠3的理由.(提示:三角形内角和是1800)
相交线与平行线练习
课型:复习课: 备课人:徐新齐 审核人:霍红超
一.基础知识填空
1、如图,∵AB⊥CD(已知)
∴∠BOC=90°( )
2、如图,∵∠AOC=90°(已知)
∴AB⊥CD( )
3、∵a∥b,a∥c(已知)
∴b∥c( )
4、∵a⊥b,a⊥c(已知)
∴b∥c( )
5、如图,∵∠D=∠DCF(已知)
∴_____//______( )
6、如图,∵∠D+∠BAD=180°(已知)
∴_____//______( )
(第1、2题) (第5、6题) (第7题) (第9题)
7、如图,∵ ∠2 = ∠3( )
∠1 = ∠2(已知)
∴∠1 = ∠3( )
∴CD____EF ( )
8、∵∠1+∠2 =180°,∠2+∠3=180°(已知)
∴∠1 = ∠3( )
9、∵a//b(已知)
∴∠1=∠2( )
∠2=∠3( )
∠2+∠4=180°( )
10.如图,CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.
二.基础过关题:
1、如图:已知∠A=∠F,∠C=∠D,求证:BD∥CE 。
证明:∵∠A=∠F ( 已知 )
∴AC∥DF ( )
∴∠D=∠ ( )
又∵∠C=∠D ( 已知 ),
∴∠1=∠C ( 等量代换 )
∴BD∥CE( )。
2、如图:已知∠B=∠BGD,∠DGF=∠F,求证:∠B + ∠F =180°。
证明:∵∠B=∠BGD ( 已知 )
∴AB∥CD ( )
∵∠DGF=∠F;( 已知 )
∴CD∥EF ( )
∵AB∥EF ( )
∴∠B + ∠F =180°( )。
3、如图,已知AB∥CD,EF交AB,CD于G、H, GM、HN分别平分∠AGF,∠EHD,试说明GM ∥HN.
初中数学教案汇总篇11
一、课题引入
为了让学生更好地理解正数与负数的概念,作为教师有必要了解数系的发展.从数系的发展历程来看,微积分的基础是实数理论,实数的基础是有理数,而有理数的基础则是自然数.自然数为数学结构提供了坚实的基础.
对于“数的发展”(也即“数的扩充”),有着两种不同的认知体系.一是数的自然扩充过程,如图1所示,即数系发展的自然的、历史的体系,它反映了人类对数的认识的历史发展进程;另一是数的逻辑扩充过程,如图2所示,即数系发展所经历的理论的、逻辑的体系,它是策墨罗、冯诺伊曼、皮亚诺、高斯等数学家构造的一种逻辑体系,其中综合反映了现代数学中许多思想方法.
二、课题研究
在实际生活中,存在着诸如上升5m,下降5m;收入5000元,支出5000元等各种具体的数量.这些数量不仅与5、5000等数量有关,而且还含有上升与下降、收入与支出等实际的意义.显然上升5m与下降5m,收入5000元与支出5000元的实际意义是不同的.
为了准确表达诸如此类的一些具有相反意义的量,仅用小学学过的正整数、正分数、零,是不够的.如果把收入5000元记作5000元,那么支出5000元显然是不可以也同样记作5000元的.收入与支出是“意义相反”的两回事,是不能用同一个数来表达的.因此,为了准确表达支出5000元,就有必要引入了一种新数—负数.
我们把所学过的大于零的数,都称为正数;而且还可以在正数的前面添加一个“+”号,比如在5的前面添加一个“+”号就成了“+5”,把“+5”称为一个正数,读作“正5”.
在正数的前面添加一个“-”号,比如在5的前面添加一个“-”号,就成了“-5”,所有按这种形式构成的数统称为负数.“-5”读作“负5”,“-5000”读作“负5000”.
于是“收入5000元”可以记作“5000元”,也可以记作“+5000元”,同时“支出5000元”就可以记作“-5000元”了.这样具有相反意义的两个数量就有了不同的表达方式.
利用正数与负数可以准确地表达或记录诸如上升与下降、收入与支出、海平面以上与海平面以下、零上与零下等一些“具有相反意义的量”.再如,某个机器零件的实际尺寸比设计尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一个机器零件的实际尺寸比设计尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比赛中,如果甲队赢了乙队2个球,那么可以把甲队的净胜球数记作“+2”,把乙队的净胜球数记作“-2”.
借助实际例子能够让学生较好地理解为什么要引入负数,认识到负数是为了有效表达与实际生活相关的一些数量而引入的一种新数,而不是人为地“硬造”出来的一种“新数”.
三、巩固练习
例1博然的父母6月共收入4800元,可以将这笔收入记作+4800元;由于天气炎热,博然家用其中的1600元钱买了一台空调,又该怎样记录这笔支出呢?
思路分析:“收入”与“支出”是一对“具有相反意义的量”,可以用正数或负数来表示.一般来说,把“收入4800元”记作+4800元,而把与之具有相反意义的量“支出1600元”记作-1600元.
特别提醒:通常具有“增加、上升、零上、海平面以上、盈余、上涨、超出”等意义的数量,都用正数来表示;而与之相对的、具有“减少、下降、零下、海平面以下、亏损、下跌、不足”等意义的数量则用负数来表示.
再如,若游泳池的水位比正常水位高5cm,则可以将这时游泳池的水位记作+5cm;若游泳池的水位比正常的水位低3cm,则可以将这时游泳池的水位记作-3cm;若游泳池的水位正好处于正常水位的位置,则将其水位记作0cm.
例2周一证券交易市场开盘时,某支股票的开盘价为18.18元,收盘时下跌了2.11元;周二到周五开盘时的价格与前一天收盘价相比的涨跌情况及当天的收盘价与开盘价的涨跌情况如下表:单位:元
日期周二周三周四周五
开盘+0.16+0.25+0.78+2.12
收盘-0.23-1.32-0.67-0.65
当日收盘价
试在表中填写周二到周五该股票的收盘价.
思路分析:以周二为例,表中数据“+0.16”所表示的实际意义是“周二该股票的开盘价比周一的收盘价高出了0.16元”;而表中数据“-0.23”则表示“周二该股票收盘时的收盘价比当天的开盘价降低了0.23元”.
因此,这五天该股票的开盘价与收盘价分别应该按如下的方式进行计算:
周一该股票的收盘价是18.18-2.11=16.07元;周二该股票的收盘价为16.07+0.16-0.23=16.00元;周三该股票的收盘价为16.00+0.25-1.32=14.93元;周四的该股票的收盘价为14.93+0.78-0.67=15.04元;周五该股票的收盘价为15.04+2.12-0.65=16.51元.
例3甲、乙、丙三支球队以主客场的形式进行双循环比赛,每两队之间都比赛两场,下表是这三支球队的比赛成绩,其中左栏表示主队,上行表示客队,比分中前后两数分别是主客队的进球数,例如3∶2表示主队进3球客队进2球.
初中数学教案汇总篇12
学生的发展是新课程标准实施的出发点和归宿,课程改革的重点是面向全体学生,以学生的发展为主体,转变学生的学习方式。“二次函数的图像的性质”这一课题,通过对传统教法的改进,以全新的自主的学习方式让学生接受问题挑战,充分展示自己的观点和见解,给学生创设一种宽松、愉快、和谐、民主的科研氛围,让学生感受“二次函数的性质”的探究发现过程,体验研究过程,体验成功的快乐。
教学目标
知识目标
1、利用计算机制作动画(让学观察抛物线的形成过程)培养学生以运动变化的观点来观察问题、分析问题、解决问题的意识。
2、会用描点法画出二次函数的图像,能通过图像认识二次函数的性质
3、通过具体例子,在探索二次函数图像和性质的过程中,学会利用配方法将数字系数的二次函数表达式表示成:y=a(x-h)^2+k的形式,从而确定二次函数图像的顶点和对称轴。
4、通过一般式与顶点式的互化过程,了解互化的必要性。培养学生认识“事物都是相互联系、相互制约”的辩证唯物主义观点。
5、在经历“观察、猜测、探索、验证、应用”的过程中,渗透从“形”到“数”和从“数”到“形”的转化,培养了学生的转化、迁移能力,实现感性到理性的升华。
情感目标
1、通过主动操作、合作交流、自主评价,改进学生的学习方式及学习质量,激发学生的兴趣,唤起好奇心与求知欲,点燃起学生智慧的火花,使学生积极思维,勇于探索,主动获取知识。
2、让学生在猜想与探究的过程中,体验成功的快乐,培养他们主动参与的意识、协同合作的意识、勇于创新和实践的科学精神。
能力目标
1、拟通过本节课的学习,培养学生的观察能力、探索能力、数形结合能力、归纳概括能力,综合培养学生的思维能力及创新能力。
2、培养学生运用运动变化的观点来分析、探讨问题的意识。
教学重点:二次函数的性质
教学难点:通过研究、、、这几类函数图像,得出平移规律,并总结概括出二次函数的性质。
教学方法:
运用问题解决理论指导教学,力求体现“自主学习、动手实践、合作交流”的教学理念。
教学设备:计算机、网络
[教学内容]
步骤教学内容呈现方式
复习我们已经学习了一次函数与反比例函数,那么一次函数,反比例函数的图像分别是、.用媒体方式呈现,让学生填空,然后提交.
探索二次函数的图象是什么呢?(课前已经做过)
(1)画出图像经过了哪些过程?
(2)列表时自变量取了几个数?哪几个数?
(3)找几位同学展示一下自己画的图像。
(4)想一想,列表时如何合理选值?以什么数为中心?当x取互为相反数的值时,y的值如何?让学生结合老师强调的作图注意事项,再画函数的图图像。
然后老师用画函数工具作出的图像。由学生观察作比较。
教会学生用画函数工具画图,让学生比较两种画法,弄清学生自己所画的不足之处.
(2)观察函数的图象,你能得出什么结论?
用几何画板呈现已画好的函数图象,让学生观察图象上的点变化的过程,确认函数值随着自变量的变化而变化的规律.
让学生归纳函数的图象的性质.
老师作总结.
归纳:(1)二次函数的图象是抛物线,并且开口向上;
(2)二次函数的图象的对称轴是轴;
(3)抛物线与对称轴的交点叫做抛物线的顶点,那么二次函数的顶点坐标是;
(4)在对称轴的左边随着的增大而减小;在对称轴的右边随着的增大而增大.
实践一
一、1.利用画函数图象工具在同一直角坐标系下画出下列函数的图象,并观察图象,说出图象性质:
(1);
(2).
利用画函数图象工具。观察、比较两图象之间的关系。
2.练习:利用画函数图象工具在同一直角坐标系下画出下列函数的图象,并观察图象,说出图象性质:
(1);
(2).
学生观察、总结、交流
二、1.利用画函数图象工具在同一直角坐标系下画出下列函数的图象,并观察图象,说出图象性质,寻找两图象之间的关系:
(1),;
(2),.
利用画函数图象工具.
2.练习:利用画函数图象工具在同一直角坐标系下画出下列函数的图象:
,,
观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置.你能说出抛物线的开口方向及对称轴、顶点的位置吗?
利用画函数图象工具.
三、1.利用画函数图象工具在同一直角坐标系下画出下列函数的图象,并观察图象,说出图象性质,寻找三个图象之间的关系:
(1),;
(2),;
(3),.
利用画函数图象工具.
2.不画出图象,你能说明抛物线与之间的关系吗?
四、1.利用画函数图象工具在同一直角坐标系下画出下列函数的图象,并观察图象,说出图象性质,寻找三个图象之间的关系:
(1),,;
(2),,;
(3),,.
利用画函数图象工具.教师指出就叫抛物线的顶点式。
2.把抛物线向左平移3个单位,再向下平移4个单位,所得的抛物线的函数关系式为.
讨论二次函数的图象可由函数怎样平移而得到?
归纳:由函数的图象沿对称轴向上(下)平移个单位(为向上,为向下),
向右(左)平移个单位(为向右,为向左)得到函数的图象.
实践二1.由二次函数解析式能否写出它的一般式.
2.讨论二次函数的图象怎样画,它的开口方向、对称轴和顶点坐标分别是什么?学生努力把它变形为顶点式
牛刀小试(1)抛物线,当x=时,y有最值,是.
(2)当m=时,抛物线开口向下.
(3)已知函数是二次函数,它的图象开口,当x时,y随x的增大而增大.
(4)抛物线的开口,对称轴是,顶点坐标是,它可以看作是由抛物线向平移个单位得到的.
(5)函数,当x时,函数值y随x的增大而减小.当x时,函数取得最值,最值y=.
(6)画图填空:抛物线的开口,对称轴是,顶点坐标是,它可以看作是由抛物线向平移个单位得到的.
(7)将抛物线如何平移可得到抛物线()
A.向左平移4个单位,再向上平移1个单位
B.向左平移4个单位,再向下平移1个单位
C.向右平移4个单位,再向上平移1个单位
D.向右平移4个单位,再向下平移1个单位
(8)抛物线可由抛物线向平移个单位,再向平移个单位而得到.
(9)二次函数的对称轴是.
(10)二次函数的图象的顶点是,当x时,y随x的增大而减小.
通过网络完成,然后反馈.
小结1、会用描点法画出二次函数的图象,概括出图象的特点及函数的性质.
2、会用工具画出、、、这几类函数的图象,通过比较,了解这几类函数的性质.
3、熟练掌握二次函数、、、这几类函数图象间的平移规律.
4、能通过配方把二次函数化成+k的形式,从而确定这类二次函数的性质.
作业1.在同一直角坐标系中,画出下列函数的图象.
(1)(2)
2.填空:
(1)抛物线,当x=时,y有最值,是.
(2)当m=时,抛物线开口向下.
(3)已知函数是二次函数,它的图象开口,当x时,y随x的增大而增大.
3.已知抛物线,求出它的对称轴和顶点坐标,并画出函数的图象.
4.利用配方法,把下列函数写成+k的形式,并写出它们的图象的开口方向、对称轴和顶点坐标.
(1)
(2)
初中数学教案汇总篇13
【教学目标】
1、了解因式分解的概念和意义;
2、认识因式分解与整式乘法的相互关系——相反变形,并会运用它们之间的相互关系寻求因式分解的方法。
【教学重点、难点】
重点是因式分解的概念,难点是理解因式分解与整式乘法的相互关系,并运用它们之间的相互关系寻求因式分解的方法。
【教学过程】
㈠、情境导入
看谁算得快:(抢答)
(1)若a=101,b=99,则a2-b2=___________;
(2)若a=99,b=-1,则a2-2ab+b2=____________;
(3)若x=-3,则20x2+60x=____________。
㈡、探究新知
1、请每题答得最快的.同学谈思路,得出最佳解题方法。(多媒体出示答案)(1)a2-b2=(a+b)(a-b)=(101+99)(101-99)=400;
(2)a2-2ab+b2=(a-b)2=(99+1)2=10000;
(3)20x2+60x=20x(x+3)=20x(-3)(-3+3)=0。
2、观察:a2-b2=(a+b)(a-b),a2-2ab+b2=(a-b)2,20x2+60x=20x(x+3),找出它们的特点。(等式的左边是一个什么式子,右边又是什么形式?)
3、类比小学学过的因数分解概念,得出因式分解概念。(学生概括,老师补充。)
板书课题:§6.1因式分解
因式分解概念:把一个多项式化成几个整式的积的形式叫做因式分解,也叫分解因式。
㈢、前进一步
1、让学生继续观察:(a+b)(a-b)=a2-b2,(a-b)2=a2-2ab+b2,20x(x+3)=20x2+60x,它们是什么运算?与因式分解有何关系?它们有何联系与区别?
2、因式分解与整式乘法的关系:
因式分解
结合:a2-b2(a+b)(a-b)
整式乘法
说明:从左到右是因式分解其特点是:由和差形式(多项式)转化成整式的积的形式;从右到左是整式乘法其特点是:由整式积的形式转化成和差形式(多项式)。
结论:因式分解与整式乘法的相互关系——相反变形。
㈣、巩固新知
1、下列代数式变形中,哪些是因式分解?哪些不是?为什么?
(1)x2-3x+1=x(x-3)+1;(2)(m+n)(a+b)+(m+n)(x+y)=(m+n)(a+b+x+y);
(3)2m(m-n)=2m2-2mn;(4)4x2-4x+1=(2x-1)2;(5)3a2+6a=3a(a+2);
(6)x2-4+3x=(x-2)(x+2)+3x;(7)k2++2=(k+)2;(8)18a3bc=3a2b·6ac。
2、你能写出整式相乘(其中至少一个是多项式)的两个例子,并由此得到相应的两个多项式的因式分解吗?把结果与你的同伴交流。
㈤、应用解释
例检验下列因式分解是否正确:
(1)x2y-xy2=xy(x-y);(2)2x2-1=(2x+1)(2x-1);(3)x2+3x+2=(x+1)(x+2).
分析:检验因式分解是否正确,只要看等式右边几个整式相乘的积与右边的多项式是否相等。
练习计算下列各题,并说明你的算法:(请学生板演)
(1)872+87×13
(2)1012-992
㈥、思维拓展
1.若x2+mx-n能分解成(x-2)(x-5),则m=,n=
2.机动题:(填空)x2-8x+m=(x-4)(),且m=
㈦、课堂回顾
今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。
㈧、布置作业
作业本(1),一课一练
(九)教学反思:
初中数学教案汇总篇14
一、教材分析:
1、教材所处的地位:
二次函数是沪科版初中数学九年级(上册)第22章的内容,在此之前,学生在八年级已经学过了函数及一次函数的内容,对于函数已经有了初步的认识。从一次函数的学习来看,学习一种函数大致包括以下内容:通过具体实例认识这种函数;探索这种函数的图象和性质,利用这种函数解决实际问题;探索这种函数与相应方程不等式的关系。本章“二次函数”的学习也是从以上几个方面展开的。本节课的主要内容在于使学生认识并了解两个变量之间的二次函数的关系,为二次函数的后续学习奠定基础
2、教学目的要求:
(1)学生经历从实际问题中抽象出两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系;
(2)让学生学习了二次函数的定义后,能够表示简单变量之间的二次函数关系;
(3)知道实际问题中存在的二次函数关系中,多自变量的取值范围的要求。
(4)把数学问题和实际问题相联系,使学生初步体会数学与人类生活的密切联系及对人类历史发展的作用。
3、教学重点和难点
本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点:
重点:
(1)二次函数的概念
(2)能够表示简单变量之间的二次函数关系.
难点:
具体的分析、确定实际问题中函数关系式
二.教法、学法分析:
下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:
1、教法研究
教学中教师应当暴露概念的再创造过程,鼓励学生不但要动口、动脑,而且要动手,学生经过自己亲身的实践活动,形成自己的经验、猜想,产生对结论的感知,这不仅让学生对所学内容留下了深刻的印象,而且能力得到培养,素质得以提高,充分地调动学生学习的热情,让学生学会主动学习,学会研究问题的方法,培养学生的能力。本节课的设计坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。
2、学法研究
初中学生的思维方式往往还是比较具象的,要让他们在问题的探究过程中充分体验问题的发现、解决及最终表述的方式方法,遇到困难可以和同伴、老师进行交流甚至争论,这样既可以加深学生对问题的理解又可以让学生体验获得学习的快乐。
3、教学方式
(1)由于本节课的内容是学生在学习了《一次函数》和《正比例函数》的基础上的加深,所以可以利用学生已有的知识在问题一、二中放手让学生先去探究探究两个问题中的变量之间的关系,在得到具体的关系式后,再引导学生观察关系式都有着什么样的特点,可以和多项式中的二次三项式或一元二次方程比较认识,并最终得出二次函数的一般式及二次项系数的取值为什么不为零的道理。
(2)要特别提醒学生注意:二次函数是解决实际生活生产的一个很有效的模板,因而对二次函数解析式中自变量的取值范围一定要从理论上和实际中加以综合讨论和认定。
(3)可以多让学生解决实际生活中的一些具有二次函数关系的实例来加深和提高学生对这一关系模型的理解。
三.教学流程分析:
这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。
1、温故知新—揭示课题
由回顾所学过的正比例函数,一次函数入手,引入函数大家庭中还会认识那一种函数呢?再由例子打篮球投篮时篮球运动的轨迹如何?何时达到最高点?引入二次函数。
2、自我尝试、合作探究—探求新知
通过学生自己独立解决运用函数知识表述变量间关系,即自我探讨环节;合作探究环节,学生间互动,集群体力量,共破难关,来自主探究新知,从而通过观察,归纳得到二次函数的解析式,获取新知。
3、小试身手—循序渐进
本组题目是对新学的直接应用,目的在于使学生能辨认二次函数,准确指出a、b、c,并应用其定义求字母系数的值,能应用二次函数准确表示具体问题中的变量间关系。本组题目的解决以学生快速解答为主,重点对第2题分析解决方法。这一环节主要由学生处理解决,以检查学生的掌握程度。
4、课堂回眸—归纳提高
本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。
5、课堂检测—测评反馈
共有6个题目,由学生独自处理第1、2、3、4、5小题,再发表自己的看法,第6小题可由学生或独自或同组交流均可。教师多以巡视为主,注意掌握学生对本节的掌握情况。
6、作业布置
作业我选择“同步作业”里的题目,其中基础训练为必做题,全员均做;综合应用为选做题,可供学有余力的学生能力提升用。
四、对本节课的一点看法
通过引入实例,丰富学生认识,理解新知识的意义,进而摆脱其原型,从而进行更深层次的研究,这种“数学化”的方法是认识事物规律的重要方法之一,通过教学让学生初步掌握这种方法,对于学生良好思维品质的形成有重要作用,对于学生的终身发展也有一定的作用。
初中数学教案汇总篇15
【关键词】函数;函数思想方法;初中数学
函数概念,首先出现在初中数学课本.初中课本对函数概念是这样描述的:“设在一个变化过程中,有两个变量x和y,如果对于变量x的每一个确定的值,变量y都有唯一确定的值与它对应,那么就说,x是自变量,y是x的函数.”
函数概念的出现,开始了变量教学的新起点,打破了在此之前的常量教学的旧格局,许许多多的数学问题都可以利用函数概念来解析,利用函数思想方法来处理,甚至对于一些数学难题,一旦用上了函数思想方法,即迎刃而解,达到非常好的效果.因此,我们必须十分重视函数概念的教学,重视函数思想方法的应用.
一、函数思想方法的特性
函数思想方法,就是用运动和变化的观点,分析和研究具体问题中的数量关系,通过函数的形式,把这种关系表示出来并加以研究,从而获得问题的解决办法.函数思想方法,作为中学数学的思想方法,它具有以下特性:
1.函数概念的抽象性引起函数思想方法的复杂性
函数概念,体现一个变量与另一个变量的一种对应,也体现一个集合到另一个集合的一种映射,在初中数学来讲,则是一个变数与另一个变数的一种关系.什么叫对应,什么叫映射,什么叫关系,对初中生来说,是非常陌生的,这些抽象词汇,造成了学生对函数概念理解上的困难.因此,函数思想方法作为函数概念的外延,就显得非常复杂了.一个连函数概念都不理解的人,怎么能掌握函数思想方法呢?函数与图像的亲密对应,引发了数形结合方法;函数的等价变换,引发了化归思想方法;还有其他的,如换元法、配方法、综合法、分析法等.正确认识函数思想方法的复杂性,使教师更加重视函数概念的教学,更加重视函数思想方法的研究,提高教学的责任心.
2.函数概念的生活性引起函数思想方法的广阔性
函数概念虽然很抽象,但函数的具体应用却渗透到我们生活中的各个领域.可以说,我们的生活离不开函数,我们的每一个生产活动也离不开函数,许多关于数量的科学研究问题,只有引入函数才能表达清楚.生活中的每一个问题,只要引入变量,就可以与函数联系起来,而函数的变化千姿百态,目不暇接,于是,就产生千姿百态的函数思想方法.例如初中数学的路程问题、浓度问题、一次方程和二次方程的解法问题,高中数学体现在生产中的增产节支问题、生产的成本核算问题、一次不等式和二次不等式的求解问题、解三角形问题、面积问题、体积问题等,都可以引入变量,转变为函数问题.这一转变,使人们的函数思想方法打开了更为广阔的前景,解决问题思路也就左右逢源.
3.函数变化的奇异性引起函数思想方法的多样性
函数的变化经常出现奇妙的效果,三角形的边与角的关系通过三角式联系得天衣无缝,懂得了这些道理,不上山者能测山高,不过河者能测河宽,就显得不足为奇了.二次函数与抛物线的联系也是如胶似漆,看见二次函数就应该想到抛物线,看见抛物线也应该想到二次函数,二次函数的变化便引起抛物线的运动,而抛物线的运动又使二次函数变得奇异无穷.一次函数与直线的关系也是如此,一次函数的变化与直线的运动,引出许多美妙的数学问题,呈现出多姿多彩的思维效果.本来是生活中的实际问题、如产值最大问题、原料最省问题,还有生产设计问题、最优决策问题,列出了函数,掌握了函数与函数图像的变化规律,那么,解决问题就如囊中取物.
二、函数思想方法在初中数学教学中的应用
函数概念是初中数学概念的灵魂,函数思想方法是数学方法的主线,它能把数学概念、数学命题、数学原则、数学方法贯穿起来,使得数学内容达到更高层次的和谐与统一.因此,函数概念和函数思想方法在初中数学教学中起到了统帅的作用.数学教师若能抓住函数思想方法这条主线,再把其他思想方法连贯起来,应用于教学的各个环节,可以肯定地说,教学效果是很好的.我们在这方面作了一些有价值的探索.
1.函数思想方法应用于数学教学的全过程
函数的概念是动态的概念,函数思想方法是一种动态的思想方法,这正符合动态式的数学教学的要求.引进函数概念之后,实现了数与点的结合、函数与图形的结合,还实现了数与形的灵活转换、符号语言与图形语言的灵活转换.我们要帮助学生从局部的、静止的、割裂的认知结构中解放出来,学会运用动态的、变化的、联系的观点来理解数学知识,这乃是提高数学质量的重要途径.正是考虑到动态教学的新理念,于是,应该把体现动态思想方法的函数思想方法应用于教学的全过程,在课堂教学、课外作业、科研辅导等教学环节,只要能用函数思想方法来处理的,都应运用.这需要毅力,需要创造,需要教师从现有教材中挖掘与函数概念有关系的数学知识点,然后考虑运用函数思想方法解决它.
例1若关于实数x的不等式(k2-2k-3)x2-(k-3)x-1<0恒成立,求k的取值范围.
这不是一个简单的一元二次不等式,而是已知这个不等式恒成立,反过来求k的取值范围.这与函数概念有关吗?诚然,不等式的左边可以看做关于变量x的函数,记为y=(k2-2k-3)x2-(k-3)x-1,它的图像是抛物线,按题意,不等式恒成立,也就是说,函数值y恒小于零,则函数的图像,即抛物线总在x轴的下方,并且与x轴没有交点.根据抛物线的这个特点,可以确定,抛物线开口向下,二次项系数a=k2-2k-3<0,又可以确定,抛物线全部落在下半平面,与x轴没有交点,则二次方程没有实数根,Δ=(k-3)2+4(k2-2k-3)<0.这是一次成功的转化,把题意转化为解下列不等式组:
a=k2-2k-3<0,Δ=(k-3)2+4(k2-2k-3)<0
(k+1)(k-3)<0①(5k+1)(k-3)<0②-<k<3.
故k的取值范围是-<k<3.
这个数学问题的解决,确实是运用了函数思想,把不等式问题转化为函数问题,再把函数问题转化为图形问题,最后又把图形的特征转化为另一个不等式组的计算,这样的一条龙似的解题过程相当流畅,不仅充分体现了函数思想与方程思想、数形结合思想、转化思想的高度统一,同时也是函数思想方法解决问题的一个典型范例.
例2已知(1-2x)7=a0+a1x+…+a7x7,求代数式a1+a2+…+a7的值.
这个问题初中生能解决吗?初看起来,有点像二项展开式,是高中的问题.按高中知识来做,那就得把左边按二项式定理展开,对比两边系数,分别求出a1,a2,…,a7的值,最后把它们加起来,就得代数式a1+a2+…+a7的值,难度不小啊!
认真观察一下,这也是一个函数问题.把已知问题看做函数,记为y=(1-2x)7=a0+a1x+…+a7x7.
当x=0时,y=(1-2×0)7=a0=1;
当x=1时,y=(1-2×1)7=a0+a1+…+a7=-1,
所以a1+a2+…+a7=(a0+a1+…+a7)-a0=-1-1=-2.
一个看起来似乎是高中的数学问题,用了函数思想方法,却变成了初中生也能接受的数学问题.函数思想方法的功能不小啊!
2.函数思想方法要与其他数学知识紧密结合
函数思想方法确实是解决数学问题的有力武器,但绝不是万能武器.不是说所有数学问题都能用函数思想方法解决,而是说,凡能转化为函数问题的,就应该尽量转化.这也体现函数概念与其他数学知识的紧密结合.
3.函数思想方法应用于解决实际数学问题
我们的生活空间是一个巨大的数学空间,生活中的每一个实际问题大都能转化为数学问题,其中相当大的部分可以用函数思想方法来处理.为了强化函数思想方法的应用,更为了培养学生运用函数思想方法解决实际问题的能力,让学生学会解决身边发生的经济问题,学会解决经济发展过程中的一些社会问题.为此,我们应该努力创设良好的学习环境,使学生在学习中得到锻炼.
例3数学竞赛队的3位教师和若干名参赛学生准备乘飞机到北京参加全国性比赛,按当地飞机票价,乘飞机往返每人需交3000元.但民航服务站对师生乘坐飞机有优惠的临时规定:第一种优惠方案是教师买全票,学生买半票;第二种优惠方案为师生一律按六折优惠购票.你认为,应采取哪一种优惠方案?
这是发生在学生身边的与经济有关的生活问题,采取哪种方案,当然应以节约为原则,哪种方案为竞赛队节约开支,就采取哪种方案.考虑把旅费与学生人数建立函数关系,若设学生人数为x,两种优惠方案的旅费分别为y1和y2,则
y1=3000×3+1500x=9000+1500x,
y2=3000×0.6×(x+3)=1800×(x+3).
y1<y2?圳9000+1500x<1800x+5400?圳x>12;
y1>y2?圳9000+1500x>1800x+5400?圳x<12;
y1=y2?圳9000+1500x=1800x+5400?圳x=12.
当学生人数多于12人时,采取第一种优惠方案;当学生人数少于12人时,采取第二种优惠方案;当学生人数等于12人时,采取哪种优惠方案都可以.
函数思想方法在解决数学问题中的确起到非常重要的作用,我们应加强这一方法的教学探讨和学习训练,把数学教学推向新水平.
【参考文献】
初中数学教案汇总篇16
教学目标
1、使学生能把简单的与数量有关的词语用代数式表示出来;
2、初步培养学生观察、分析和抽象思维的能力
教学重点和难点
重点:把实际问题中的数量关系列成代数式?
难点:正确理解题意,从中找出数量关系里的运算顺序并能准确地写成代数式???
教学手段
现代课堂教学手段
教学方法
启发式教学
教学过程
(一)、从学生原有的认知结构提出问题
1、用代数式表示乙数:(投影)
(1)乙数比x大5;(x+5)
(2)乙数比x的2倍小3;(2x-3)
(3)乙数比x的倒数小7;(-7)
(4)乙数比x大16%?((1+16%)x)
(应用引导的方法启发学生解答本题)
2、在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式?本节课我们就来一起学习这个问题?
(二)、讲授新课
例1用代数式表示乙数:
(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;
(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%?
分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数?
解:设甲数为x,则乙数的代数式为
(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x?
(本题应由学生口答,教师板书完成)
最后,教师需指出:第4小题的答案也可写成x+16%x?
例2用代数式表示:
(1)甲乙两数和的2倍;
(2)甲数的与乙数的的差;
(3)甲乙两数的平方和;
(4)甲乙两数的和与甲乙两数的差的积;
(5)乙甲两数之和与乙甲两数的差的积?
分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式?
解:设甲数为a,乙数为b,则
(1)2(a+b);(2)a-b;(3)a2+b2;
(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)?
(本题应由学生口答,教师板书完成)
此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律?但a与b的差指的是(a-b),而b与a的差指的是(b-a)?两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序?
例3用代数式表示:
(1)被3整除得n的数;
(2)被5除商m余2的数?
分析本题时,可提出以下问题:
(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?
(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?
解:(1)3n;(2)5m+2?
(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)?
例4设字母a表示一个数,用代数式表示:
(1)这个数与5的和的3倍;(2)这个数与1的差的;
(3)这个数的5倍与7的.和的一半;(4)这个数的平方与这个数的的和?
分析:启发学生,做分析练习?如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”?
解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a?
(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力?)
例5设教室里座位的行数是m,用代数式表示:
(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?
(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?
分析本题时,可提出如下问题:
(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)
解:(1)m(m+6)个;(2)(m)m个?
(三)、课堂练习
1?设甲数为x,乙数为y,用代数式表示:(投影)
(1)甲数的2倍,与乙数的的和;(2)甲数的与乙数的3倍的差;
(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商?
2?用代数式表示:
(1)比a与b的和小3的数;(2)比a与b的差的一半大1的数;
(3)比a除以b的商的3倍大8的数;(4)比a除b的商的3倍大8的数?
3?用代数式表示:
(1)与a-1的和是25的数;(2)与2b+1的积是9的数;
(3)与2x2的差是x的数;(4)除以(y+3)的商是y的数?
〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)?〕
(四)、师生共同小结
首先,请学生回答:
1?怎样列代数式?2?列代数式的关键是什么?
其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:
(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);
(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;
(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备?要求学生一定要牢固掌握
练习设计
1、用代数式表示:
(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?
(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?
2、已知一个长方形的周长是24厘米,一边是a厘米,
求:(1)这个长方形另一边的长;(2)这个长方形的面积?
板书设计
§3.2代数式
(一)知识回顾(三)例题解析(五)课堂小结
例1、例2
(二)观察发现(四)课堂练习练习设计
教学后记
由于列代数式的内容既是本章的重点,又是本书的重点,同时也是学生学习过程中的一个难点,故在设计其教学过程时,注意所选例题及练习题由易到难,循序渐进,使学生逐步地掌握好这一内容,为今后的学习打下一个良好的基础?同时,也使学生的抽象思维能力得到初的培养。
初中数学教案汇总篇17
教学目标:
知识与技能:理解倒数的意义,会求有理数的倒数。了解有理数除法的意义,理解有理数除法的法则,会进行有理数的除法运算.
过程与方法:通过有理数除法的法则的导出及运用,学生能体会转化的思想。
感知数学知识具有普遍联系性、相互转化性。
情感与态度:通过有理数乘法运算的推广,体会知识系统的完整性。
体会在解决问题的过程中与他人合作的重要性。通过对解决问题的过程的反思,获得解决问题的经验。
教学重点:有理数的除法法则及其运用
教学难点:(1)商的符号的确定。(2)0不能作除数的理解。
教材分析: 乘法与除法互为逆运算,小学已经学过。通过实例引入,说明它在有理数的范围内也成立。本节内容在学生已有有理数乘法知识的基础上,通过学生经历从具体情景中抽象出法则的&39;过程,使他们发现其中的规律,掌握必要的运算技能,使学生在有理数运算的学习中继续发展数感,在符号法则的学习中增强符号感。
教具: 多媒体课件
教学方法 :引导发现法类比归纳法
课时安排:一课时
创设情境
问题:有四名同学参加数学测验,以90分为标准,超过得分数记为正数,不足的分数记为负数,评分记录如下:+5、-20。-19。-14。求:这四名同学的平均成绩是超过80分或不足80分?学生在教师的激情互动中,思考列式(+5-20-19-14)÷4
化简:(-48)÷4=?(但不知如何计算)
揭示课题
从实际生活引入,体现数学知识源于生活及数学的现实意义。
复习回顾前置补偿
求下列各数的倒数:
(1)-;(2)4;(3)0.2(4)-0.25;(5)-1
学生对老师的提问进行抢答为学习今天的有理数除法先复习小学倒数概念
探究活动一 课件出示练习题
填空:
①8÷(-2)=8×();
②6÷(-3)=6×();
③-6÷()=-6×;
④-6÷()=-6×。
教师强调0没有倒数。学生填空后试着得出互为倒数的概念(乘积是1的两个数互为倒数)
培养学生发现问题总结问题的能力
探究活动二 引例1计算:(-6)÷2
根据除法是乘法的逆运算,引导学生将有理数的除法运算转化为学生已知的乘法运算。
强调0不能作除数。(举例强化已导出的法则)学生自主探究有理数的除法运算转化为学生一致的乘法运算
学生归纳导出法则(一):除以一个数等于乘以这个数的倒数
小组合作交流探究发现结果
探究活动三
(举例强化已导出的法则)
例1计算(1)(-105)÷7[
(2)6÷(-0.25)
(3)(-0.09)÷(-0.3)
教师强调(1)除法法则与乘法法则相近,只是“乘”“除”二字不同,很容易记。.(2)此法则是有理数的除法运算的又一种方法。
学生自己观察回忆,进行自主学习和合作交流,得出有理数的除法法则(两数相除,同号得正,异号得负,并把绝对值相乘。0除以任何不等于0的数都得0)
激发学生学习的积极性和主动性满足学生的表现欲和探究欲)
强化练习课本例2计算:
(1)(-)÷(-6)÷(-)
(2)(-)÷(-)
学生试着独立完成有理数的除法法则的灵活应用,并渗透了除法、分数、比可互相转化。
反馈矫正
课本69—70页第1、2、3题学生独立完成并小组互评巩固法则,调动学生积极性
归纳小节1、学习内容:倒数的概念及求法;有理数的除法
2、通过本节的学习,你有哪些体会?请与同学交流。
同学之间进行交流,小结本节内容培养了学生总结问题的能力
作业布置必做题:课本70页第1,3,4题
选做题:若ab≠0,则可能的取值是_______.综合考查,学以致用。不同的学生得到不同的发展
附:板书设计
2.9有理数的除法
例1计算:练习处:
例2计算:
教学反思:
《有理数的除法》一课是传统内容,在设计理念上,我努力体现“以学生为主”的思想,从学生已有的知识经验出发,展开教学,使学生自然进入状态,一切都很顺畅,达到了课前设计的构想。在教学中,突出了学生在教学学习过程的主体地位,突出了探索式学习方式,让学生经历了观察、实践、猜测、推理、交流、反思等活力,既应用了基本概念、基础知识又锻炼了学生能力。
在这节课中,本人认为也有不足之处,由于学生的层次各异,在总结问题时,中等以下和学习有困难的学生明显信心不足,要注意和他们交流、帮助他们把复杂的问题化为简单的问题。
初中数学教案汇总篇18
绝对值(一)
一、素质教育目标
(一)知识教学点
1.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念.
2.给出一个数,能求它的绝对值.
(二)能力训练点
在把绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.
(三)德育渗透点
1.通过解释绝对值的几何意义,渗透数形结合的思想.
2.从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性.
(四)美育渗透点
通过数形结合理解绝对值的意义和相反数与绝对值的联系,使学生进一步领略数学的和谐美.
二、学法引导
1.教学方法:采用引导发现法,辅之以讲授,学生讨论,力求体现“教为主导,学为主体”的教学要求,注意创设问题情境,使学生自得知识,自觅规律.
2.学生学法:研究+6和-6的不同点和相同点→绝对值概念→巩固练习→归纳小结(绝对值代数意义)
三、重点、难点、疑点及解决办法
1.重点:给出一个数会求出它的绝对值.
2.难点:绝对值的几何意义,代数定义的导出.
3.疑点:负数的绝对值是它的相反数.
四、课时安排
2课时
五、教具学具准备
投影仪(电脑)、三角板、自制胶片.
六、师生互动活动设计
教师提出+6和-6有何相同点和不同点,学生研究讨论得出绝对值概念;教师出示练习题,学生讨论解答归纳出绝对值代数意义.
七、教学步骤
(一)创设情境,复习导入
师:以上我们学习了数轴、相反数.在练习本上画一个数轴,并标出表示-6,,0及它们的相反数的点.
学生活动:一个学生板演,其他学生在练习本上画.
【教法说明】绝对值的学习是以相反数为基础的,在学生动手画数轴的同时,把相反数的知识进行复习,同时也为绝对值概念的引入奠定了基础,这里老师不包办代替,让学生自己练习.
(二)探索新知,导入 新课
师:同学们做得非常好!-6与6是相反数,它们只有符号不同,它们什么相同呢?
学生活动:思考讨论,很难得出答案.
师:在数轴上标出到原点距离是6个单位长度的点.
学生活动:一个学生板演,其他学生在练习本上做.
师:显然A点(表示6的点)到原点的距离是6,B点(表示-6的点)到原点距离是6个单位长吗?
学生活动:产生疑问,讨论.
师:+6与-6虽然符号不同,但表示这两个数的点到原点的距离都是6,是相同的.我们把这个距离叫+6与-6的绝对值.
[板书]2.4绝对值(1)
【教法说明】针对“互为相反数的两数只有符号不同”提出问题:“它们什么相同呢?”在学生头脑中产生疑问,激发了学生探索知识的欲望,但这时学生很难回答出此问题,这时教师注意引导再提出要求:“找到原点距离是6个单位长度的点”这时学生就有了一个攀登的台阶,自然而然地想到表示+6,-6的点到原点的距离相同,从而引出了绝对值的概念,这样一环紧扣一环,
绝对值(一)
一、素质教育目标
(一)知识教学点
1.能根据一个数的绝对值表示“距离”,初步理解绝对值的概念.
2.给出一个数,能求它的绝对值.
(二)能力训练点
在把绝对值的代数定义转化成数学式子的过程中,培养学生运用数学转化思想指导思维活动的能力.
(三)德育渗透点
1.通过解释绝对值的几何意义,渗透数形结合的思想.
2.从上节课学的相反数到本节的绝对值,使学生感知数学知识具有普遍的联系性.
(四)美育渗透点
通过数形结合理解绝对值的意义和相反数与绝对值的联系,使学生进一步领略数学的和谐美.
二、学法引导
1.教学方法:采用引导发现法,辅之以讲授,学生讨论,力求体现“教为主导,学为主体”的教学要求,注意创设问题情境,使学生自得知识,自觅规律.
2.学生学法:研究+6和-6的不同点和相同点→绝对值概念→巩固练习→归纳小结(绝对值代数意义)
三、重点、难点、疑点及解决办法
1.重点:给出一个数会求出它的绝对值.
2.难点:绝对值的几何意义,代数定义的导出.
3.疑点:负数的绝对值是它的相反数.
四、课时安排
2课时
五、教具学具准备
投影仪(电脑)、三角板、自制胶片.
六、师生互动活动设计
教师提出+6和-6有何相同点和不同点,学生研究讨论得出绝对值概念;教师出示练习题,学生讨论解答归纳出绝对值代数意义.
七、教学步骤
(一)创设情境,复习导入
师:以上我们学习了数轴、相反数.在练习本上画一个数轴,并标出表示-6,,0及它们的相反数的点.
学生活动:一个学生板演,其他学生在练习本上画.
【教法说明】绝对值的学习是以相反数为基础的,在学生动手画数轴的同时,把相反数的知识进行复习,同时也为绝对值概念的引入奠定了基础,这里老师不包办代替,让学生自己练习.
(二)探索新知,导入 新课
师:同学们做得非常好!-6与6是相反数,它们只有符号不同,它们什么相同呢?
学生活动:思考讨论,很难得出答案.
师:在数轴上标出到原点距离是6个单位长度的点.
学生活动:一个学生板演,其他学生在练习本上做.
师:显然A点(表示6的点)到原点的距离是6,B点(表示-6的点)到原点距离是6个单位长吗?
学生活动:产生疑问,讨论.
师:+6与-6虽然符号不同,但表示这两个数的点到原点的距离都是6,是相同的.我们把这个距离叫+6与-6的绝对值.
[板书]2.4绝对值(1)
【教法说明】针对“互为相反数的两数只有符号不同”提出问题:“它们什么相同呢?”在学生头脑中产生疑问,激发了学生探索知识的欲望,但这时学生很难回答出此问题,这时教师注意引导再提出要求:“找到原点距离是6个单位长度的点”这时学生就有了一个攀登的台阶,自然而然地想到表示+6,-6的点到原点的距离相同,从而引出了绝对值的概念,这样一环紧扣一环,