初中数学教案通用模版
编写教案有助于养成严谨的工作作风和办事认真的习惯;可使备课充分,上起课来有条不紊。好的初中数学教案通用模版应该怎么写?快来看看,小编给大家分享初中数学教案通用模版的写作技巧和示例,供大家参考!
初中数学教案通用模版篇1
教材分析:
一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。
学情分析:
1.学生已学习用求根公式法解一元二次方程。
2.本课的教学对象是九年级学生,学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征。
3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。
教学目标:
1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。
2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。
3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。
教学重难点:
1、重点:一元二次方程根与系数的关系。
2、难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。
板书设计:
一元二次方程根与系数的关系如果ax+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2=,x1x2=。
问题6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用吗?①二次项系数a是否为零,决定着方程是否为二次方程;②当a≠0时,b=0,a、c异号,方程两根互为相反数;③当a≠0时,△=b-4ac可判定根的情况;④当a≠0,b-4ac≥0时,x1+x2=,x1x2=。⑤当a≠0,c=0时,方程必有一根为0。
学生学习活动评价设计:
本节课充分让学生分析、观察、提高了学生的归纳能力及推理论证的能力。
教学反思:
1.一元二次方程根与系数的关系的推导是在求根公式的基础上进行。它深化了两根的和与积同系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为进一步使用打下基础。
2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力。
3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。
4.使学生体会解题方法的多样性,开阔解题思路,优化解题方法,增强择优能力。力求让学生在自主探索和合作交流的过程中进行学习,获得数学活动经验,教师应注意引导。
初中数学教案通用模版篇2
学习目标
1、在同一直角坐标系中,感受图形上点的坐标变化与图形的变化(平移、轴对称、伸长、压缩)之间的关系并能找出变化规律。
2、由坐标的变化探索新旧图形之间的变化。
重点
1、作某一图形关于对称轴的对称图形,并能写出所得图形相应各点的坐标。
2、根据轴对称图形的`特点,已知轴一边的图形或坐标确定另一边的图形或坐标。
难点
体会极坐标和直角坐标思想,并能解决一些简单的问题
学习过程(导入、探究新知、即时练习、小结、达标检测、作业)
第一课时
学习过程:
一、旧知回顾:
1、平面直角坐标系定义:在平面内,两条____________且有公共_________的数轴组成平面直角坐标系。
2、坐标平面内点的坐标的表示方法____________。
3、各象限点的坐标的特征:
二、新知检索:
1、在方格纸上描出下列各点(0,0),(5,4),(3,0),(5,1),(5,-1),
(3,0),(4,-2),(0,0)并用线段依次连接,观察形成了什么图形
三、典例分析
例1、
(1)将鱼的顶点的纵坐标保持不变,横坐标分别加5画出图形,分析所得图形与原来图形相比有什么变化?如果纵坐标保持不变,横坐标分别减2呢?
(2)将鱼的顶点的横坐标保持不变,纵坐标分别加3画出图形,分析所得图形与原来图形相比有什么变化?如果横坐标保持不变,纵坐标减2呢?
例2、(1)将鱼的顶点的纵坐标保持不变,横坐标分别变为原来的2倍画出图形,分析所得图形与原来图形相比有什么变化?
(2)将鱼的顶点的横坐标保持不变,纵坐标分别变为原来的1/2画出图形,分析所得图形与原来图形相比有什么变化?
四、题组训练
1、在平面直角坐标系中,将坐标为(0,0),(2,4),(2,0),(4,4)的点用线段依次连接起来形成一个图案。
(1)这四个点的纵坐标保持不变,横坐标变成原来的1/2,将所得的四个点用线段依次连接起来,所得图案与原来图案相比有什么变化?
(2)纵、横分别加3呢?
(3)纵、横分别变成原来的2倍呢?
归纳:图形坐标变化规律
1、平移规律:2、图形伸长与压缩:
第二课时
一、旧知回顾:
1、轴对称图形定义:如果一个图形沿着对折后两部分完全重合,这样的图形叫做轴对称图形。
中心对称图形定义:在同一平面内,如果把一个图形绕某一点旋转,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形
二、新知检索:
1、如图,左边的鱼与右边的鱼关于y轴对称。
1、左边的鱼能由右边的鱼通过平移、压缩或拉伸而得到吗?
2、各个对应顶点的坐标有怎样的关系?
3、如果将图中右边的鱼沿x轴正方向平移1个单位长度,为保持整个图形关于y轴对称,那么左边的鱼各个顶点的坐标将发生怎样的变化?
三、典例分析,如图所示,
1、右图的鱼是通过什么样的变换得到左图的鱼的。
2、如果将右边的鱼的横坐标保持不变,纵坐标分别变为原来的1倍,画出图形,得到的鱼与原来的鱼有什么样的位置关系。
3、如果将右边的鱼的纵、横坐标都分别变为原来的1倍,得到的鱼与原来的鱼有什么样的位置关系
四、题组练习
1、将坐标作如下变化时,图形将怎样变化?
①(x,y)(x,y+4)②(x,y)(x,y-2)③(x,y)(1/2x,y)
④(x,y)(3x,y)⑤(x,y)(x,1/2y)⑥(x,y)(3x,3y)
2、如图,在第一象限里有一只蝴蝶,在第二象限里作出一只和它形状、大小完全一样的蝴蝶,并写出第二象限中蝴蝶各个顶点的坐标。
3、如图,作字母M关于y轴的轴对称图形,并写出所得图形相应各端点的坐标。
4、描出下图中枫叶图案关于x轴的轴对称图形的简图。
初中数学教案通用模版篇3
一、 教材结构与内容简析
在分析新数学课程标准的基础上确定了本节课在教材中的地位和作用以及确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。
有理数的加减法在整个知识系统中的地位和作用是很重要的。它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。 就第一章而言,有理数的加减法是本章的一个重点。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符号和绝对值),关键是这一节的学习。
数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透的德育目标是:(1)渗透由特殊到一般的辩证唯物主义思想 (2)培养学生严谨的思维品质。
二、 教学目标
根据新课程标准和上述对教材结构与内容分析,考虑到学生已有的认知结构及心理特征 ,制定如下教学目标:
1.了解代数和的概念,理解有理数加减法可以互相转化,会进行加减混合运算;
2. 通过学习理解加减法运算,都可以统一成加法运算,继续渗透数学的转化思想;
3.通过加法运算练习,培养学生的运算能力。
三、教学建议
(一)重点、难点分析
本小节的重点是依据运算法则和运算律准确迅速地进行有理数的加减混合运算,难点是省略符号与括号的代数和的计算.
由于减法运算可以转化为加法运算,所以加减混合运算实际上就是有理数的加法运算。了解运算符号和性质符号之间的关系,把任何一个含有有理数加、减混合运算的算式都看成和式,就可灵活运用加法运算律,简化计算.
(二)教法建议
1.通过习题,复习、巩固有理数的加、减运算以及加减混合运算的法则与技能,讲课前教师要认真总结、分析学生在进行有理数加、减混合运算时常犯的错误,以便在这节课分析习题时,有意识地帮助学生改正.
2.关于“去括号法则”,只要学生了解,并不要求追究所以然.
3.任意含加法、减法的算式,都可把运算符号理解为数的性质符号,看成省略加号的和式。这时,称这个和式为代数和。再例如:-3-4表示-3、-4两数的代数和,-4+3表示-4、+3两数的代数和,3+4表示3和+4的代数和等。代数和概念是掌握有理数运算的一个重要概念,请老师务必给予充分注意。
4.先把正数与负数分别相加,可以使运算简便。
5.在交换加数的位置时,要连同前面的符号一起交换。如:12-5+7 应变成 12+7-5,而不能变成12-7+5。
备注:教学过程我主要说第一小节---去括号
(三)教学过程:根据教材的结构特点,紧紧抓住新旧知识的内在联系,运用类比、联想、转化的思想,突破难点.
初中数学教案通用模版篇4
教学目标
1.使学生认识字母表示数的意义,了解字母表示数是数学的一大进步;
2.了解代数式的概念,使学生能说出一个代数式所表示的数量关系;
3.通过对用字母表示数的讲解,初步培养学生观察和抽象思维的能力;
4.通过本节课的教学,使学生深刻体会从特殊到一般的的数学思想方法。
教学建议
1.知识结构:本小节先回顾了小学学过的字母表示的两种实例,一是运算律,二是公式,从中看出字母表示数的优越性,进而引出代数式的概念。
2.教学重点分析:教科书,介绍了小学用字母表示数的实例,一个是运算律,一个是常用公式,上述两种例子应用广泛,且能很好地体现用字母表示数所具有的简明、普遍的优越性,用字母表示是数学从算术到代数的一大进步,是代数的显著特点。运用算术的方法解决问题,是小学学生的思维方法,现在,从具体的数过渡到用字母表示数,渗透了抽象概括的思维方法,在认识上是一个质的飞跃。对代数式的概念课文没有直接给出,而是用实例形象地说明了代数式的概念。对代数式的概念可以从三个方面去理解:
(1)从具体的数到用字母表示数,是抽象思维的开始,体现了特殊与一般的辨证关系,用字母表示数具有简明、普遍的优越性.
(2)代数式中并不要求数和表示数的字母同时出现,单独的一个数和字母也是代数式.如:2,m都是代数式.
等都不是代数式.
3.教学难点分析:能正确说出一个代数式的数量关系,即用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序。用语言表达代数式的意义,具体说法没有统一规定,以简明而不引起误会为出发点。
如:说出代数式7(a-3)的意义。
分析7(a-3)读成7乘a减3,这样就产生歧义,究竟是7a-3呢?还是7(a-3)呢?有模棱两可之感。代数式7(a-3)的最后运算是积,应把a-3作为一个整体。所以,7(a-3)的意义是7与(a-3)的积。
4.书写代数式的注意事项:
(1)代数式中数字与字母或者字母与字母相乘时,通常把乘号简写作“·”或省略不写,同时要求数字应写在字母前面.
如3×a,应写作3.a或写作3a,a×b应写作3.a或写作ab.带分数与字母相乘,应把带分数化成假分数,
FormatImgID_0
.数字与数字相乘一般仍用“×”号.
(2)代数式中有除法运算时,一般按照分数的写法来写.
(3)含有加减运算的代数式需注明单位时,一定要把整个式子括起来.
5.对本节例题的分析:
例1是用代数式表示几个比较简单的数量关系,这些小学都学过.比较复杂一些的数量关系的代数式表示,课文安排在下一节中专门介绍.
例2是说出一些比较简单的`代数式的意义.因为代数式中用字母表示数,所以把字母也看成数,一种特殊的数,就可以像看待原来比较熟悉的数式一样,说出一个代数式所表示的数量关系,只是另外还要考虑乘号可能省略等新规定而已.
6.教法建议
(1)因为这一章知识大部分在小学学习过,讲授新课之前要先复习小学学过的运算律,在学生原有的认知结构上,提出新的问题。这样即复习了旧知识,又引出了新知识,能激发学生的学习兴趣。在教学中,一定要注意发挥本章承上启下的作用,搞好小学数学与初中代数的衔接,使学生有一个良好的开端。
(2)在本节的学习过程中,要使学生理解代数式的概念,首先要给学生多举例子(学生比较熟悉、贴近现实生活的例子),使学生从感性上认识什么是代数式,理清代数式中的运算和运算顺序,才能正确说出一个代数式所表示的数量关系,从而认识字母表示数的意义——普遍性、简明性,也为列代数式做准备。
(3)条件比较好的学校,老师可选用一些多媒体课件,激发学生的学习兴趣,增强学生自主学习的能力。
(4)老师在讲解第一节之前,一定要对全章内容和课时安排有一个了解,注意前后知识的衔接,只有这样,我们老师才能教给学生系统的而不是一些零散的知识,久而久之,学生头脑中自然会形成一个完整的知识体系。
(5)因为是新学期代数的第一节课,老师一定要给学生一个好印象,好的开端等于成功了一半。那么,怎么才能给学生留下好印象呢?首先,你要尽量在学生面前展示自己的才华。比,英语口语好的老师,可以用英语做一个自我介绍,然后为学生说一段祝福语。第二,上课时尽量使用多种语言与学生交流,其中包括情感语言(眉目语言、手势语言等),让学生感受到老师对他的关心。
7.教学重点、难点:
重点:用字母表示数的意义
难点:学会用字母表示数及正确说出一个代数式所表示的数量关系。
教学设计示例
课堂教学过程设计
一、从学生原有的认知结构提出问题
1在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?
(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)
(1)加法交换律a+b=b+a;
(2)乘法交换律a·b=b·a;
(3)加法结合律(a+b)+c=a+(b+c);
(4)乘法结合律(ab)c=a(bc);
(5)乘法分配律a(b+c)=ab+ac
指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;
(2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数
2(投影)从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0.25小时,试问步行、骑车、乘汽车的速度分别是多少?
3若用s表示路程,t表示时间,ν表示速度,你能用s与t表示ν吗?
4(投影)一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?
(用I厘米表示周长,则I=4a厘米;用S平方厘米表示面积,则S=a2平方厘米)
此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与中,用字母表示数也会给运算带来方便;(3)像上面出现的a,5,15÷3,4a,a+b,s/t以及a2等等都叫代数式.那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容.
三、讲授新课
1代数式
单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式.学习代数,首先要学习用代数式表示数量关系,明确代数上的意义
2举例说明
例1填空:
(1)每包书有12册,n包书有__________册;
(2)温度由t℃下降到2℃后是_________℃;
(3)棱长是a厘米的正方体的体积是_____立方厘米;
(4)产量由m千克增长10%,就达到_______千克
(此例题用投影给出,学生口答完成)
解:(1)12n;(2)(t-2);(3)a3;(4)(1+10%)m
例2说出下列代数式的意义:
解:(1)2a+3的意义是2a与3的和;(2)2(a+3)的意义是2与(a+3)的积;
(5)a2+b2的意义是a,b的平方的和;(6)(a+b)2的意义是a与b的和的平方
说明:(1)本题应由教师示范来完成;
(2)对于代数式的意义,具体说法没有统一规定,以简明而不致引起误会为出发点如第(1)小题也可以说成“a的2倍加上3”或“a的2倍与3的和”等等
例3用代数式表示:
(1)m与n的和除以10的商;
(2)m与5n的差的平方;
(3)x的2倍与y的和;
(4)ν的立方与t的3倍的积
分析:用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面
四、课堂练习
1填空:(投影)
(1)n箱苹果重p千克,每箱重_____千克;
(2)甲身高a厘米,乙比甲矮b厘米,那么乙的身高为_____厘米;
(3)底为a,高为h的三角形面积是______;
(4)全校学生人数是x,其中女生占48%?则女生人数是____,男生人数是____
2说出下列代数式的意义:(投影)
3用代数式表示:(投影)
(1)x与y的和;(2)x的平方与y的立方的差;
(3)a的60%与b的2倍的和;(4)a除以2的商与b除3的商的和
五、师生共同小结
首先,提出如下问题:
1本节课学习了哪些内容?2用字母表示数的意义是什么?
3什么叫代数式?
教师在学生回答上述问题的基础上,指出:①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号
六、作业
1一个三角形的三条边的长分别的a,b,c,求这个三角形的周长
2张强比王华大3岁,当张强a岁时,王华的年龄是多少?
3飞机的速度是汽车的40倍,自行车的速度是汽车的1/3,若汽车的速度是ν千米/时,那么,飞机与自行车的速度各是多少?
4a千克大米的售价是6元,1千克大米售多少元?
5圆的半径是R厘米,它的面积是多少?
6用代数式表示:
(1)长为a,宽为b米的长方形的周长;
(2)宽为b米,长是宽的2倍的长方形的周长;
(3)长是a米,宽是长的1/3的长方形的周长;
(4)宽为b米,长比宽多2米的长方形的周长
初中数学教案通用模版篇5
一、教学目标
1、了解二次根式的意义;
2、掌握用简单的一元一次不等式解决二次根式中字母的取值问题;
3、掌握二次根式的性质和,并能灵活应用;
4、通过二次根式的计算培养学生的&39;逻辑思维能力;
5、通过二次根式性质和的介绍渗透对称性、规律性的数学美。
二、教学重点和难点
重点:
(1)二次根的意义;
(2)二次根式中字母的取值范围。
难点:确定二次根式中字母的取值范围。
三、教学方法
启发式、讲练结合。
四、教学过程
(一)复习提问
1、什么叫平方根、算术平方根?
2、说出下列各式的意义,并计算
(二)引入新课
新课:二次根式
定义:式子叫做二次根式。
对于请同学们讨论论应注意的问题,引导学生总结:
(1)式子只有在条件a≥0时才叫二次根式,是二次根式吗?呢?
若根式中含有字母必须保证根号下式子大于等于零,因此字母范围的限制也是根式的一部分。
(2)是二次根式,而,提问学生:2是二次根式吗?显然不是,因此二次
根式指的是某种式子的“外在形态”。请学生举出几个二次根式的例子,并说明为什么是二次根式。下面例题根据二次根式定义,由学生分析、回答。
例1当a为实数时,下列各式中哪些是二次根式?
例2x是怎样的实数时,式子在实数范围有意义?
解:略。
说明:这个问题实质上是在x是什么数时,x—3是非负数,式子有意义。
例3当字母取何值时,下列各式为二次根式:
分析:由二次根式的定义,被开方数必须是非负数,把问题转化为解不等式。
解:(1)∵a、b为任意实数时,都有a2+b2≥0,∴当a、b为任意实数时,是二次根式。
(2)—3x≥0,x≤0,即x≤0时,是二次根式。
(3),且x≠0,∴x>0,当x>0时,是二次根式。
(4),即,故x—2≥0且x—2≠0,∴x>2。当x>2时,是二次根式。
例4下列各式是二次根式,求式子中的字母所满足的条件:
分析:这个例题根据二次根式定义,让学生分析式子中字母应满足的条件,进一步巩固二次根式的定义,。即:只有在条件a≥0时才叫二次根式,本题已知各式都为二次根式,故要求各式中的被开方数都大于等于零。
解:(1)由2a+3≥0,得。
(2)由,得3a—1>0,解得。
(3)由于x取任何实数时都有x≥0,因此,x+0。1>0,于是,式子是二次根式。所以所求字母x的取值范围是全体实数。
(4)由—b2≥0得b2≤0,只有当b=0时,才有b2=0,因此,字母b所满足的条件是:b=0。
初中数学教案通用模版篇6
教学目标
1、了解数轴的概念和数轴的画法,掌握数轴的三要素;
2、会用数轴上的点表示有理数,会利用数轴比较有理数的大小;
3、使学生初步了解数形结合的思想方法,培养学生相互联系的观点。
教学建议
一、重点、难点分析
本节的重点是初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数,并会比较有理数的大小。难点是正确理解有理数与数轴上点的对应关系。数轴的概念包含两个内容,一是数轴的三要素:原点、正方向、单位长度缺一不可,二是这三个要素都是规定的。另外应该明确的是,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。通过学习,使学生初步掌握用数轴解决问题的方法,为今后充分利用“数轴”这个工具打下基础。
二、知识结构
有了数轴,数和形得到了初步结合,这有利于对数学问题的研究,数形结合是理解数学、学好数学的方法,本课知识要点如下表:
定义三要素应用
数形结合
规定了原点、正方向、单位长度的直线叫数轴原点
正方向
单位长度帮助理解有理数的概念,每个有理数都可用数轴上的点表示,但数轴上的点并非都是有理数比较有理数大小,数轴上右边的数总比左边的数要大
在理解并掌握数轴概念的基础之上,要会画出数轴,能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数,要知道所有的有理数都可以用数轴上的点表示,会利用数轴比较有理数的大小。
三、教法建议
小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念。数轴是一条具有三个要素(原点、正方向、单位长度)的直线,这三个要素是判断一条直线是不是数轴的根本依据。数轴与它所在的位置无关,但为了教学上需要,一般水平放置的数轴,规定从原点向右为正方向。要注意原点位置选择的任意性。
关于有理数与数轴上的点的对应关系,应该明确的是有理数可以用数轴上的点表示,但数轴上的点与有理数并不存在一一对应的关系。根据几个有理数在数轴上所对应的点的相互位置关系,应该能够判断它们之间的大小关系。通过点与有理数的对应关系及其应用,逐步渗透数形结合的思想。
四、数轴的相关知识点
1、数轴的概念
(1)规定了原点、正方向和单位长度的直线叫做数轴。
这里包含两个内容:一是数轴的三要素:原点、正方向、单位长度缺一不可。二是这三个要素都是规定的。
(2)数轴能形象地表示数,所有的有理数都可用数轴上的点表示,但数轴上的点所表示的数并不都是有理数。
以数轴是理解有理数概念与运算的重要工具。有了数轴,数和形得到初步结合,数与表示数的图形(如数轴)相结合的思想是学习数学的思想。另外,数轴能直观地解释相反数,帮助理解绝对值的意义,还可以比较有理数的大小。因此,应重视对数轴的学习。
2、数轴的画法
(1)画直线(一般画成水平的)、定原点,标出原点“O”。
(2)取原点向右方向为正方向,并标出箭头。
(3)选适当的长度作为单位长度,并标出…,—3,—2,—1,1,2,3…各点。具体如下图。
(4)标注数字时,负数的次序不能写错,如下图。
3。用数轴比较有理数的大小
(1)在数轴上表示的两数,右边的数总比左边的数大。
(2)由正、负数在数轴上的位置可知:正数都有大于0,负数都小于0,正数大于一切负数。
(3)比较大小时,用不等号顺次连接三个数要防止出现“”的写法,正确应写成“”。
五、数轴定义的理解
初中数学教案通用模版篇7
【地位作用】
《有理数的加法运算律》是人教版七年级数学上册第一章《有理数》第三节的内容。本节共计两课时,加法运算律是第二课时的内容,依据教材的安排本节课应是让学生在理解有理数的加法法则的基础上来运用加法运算律,最终能熟练地进行有理数的加法运算,并能用运算律简化运算。加、减法可以统一成为加法,因此加法的运算是本小节的关键,而加法又是学生初中阶段接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键在于本一节的学习。
【教学目标】
知识与技能
通过有理数加法运算法则,使学生掌握有理数加法的运算律,并能用有理数加法进行简化运算。
过程与方法
培养学生观察能力、归纳能力,通过分类结合思想渗透,提高学生运算能力,尤其是简便计算能力的提高。
情感态度与价值观
培养学生把实际问题抽象成数学问题的能力
【教学重点、难点】
重点:有理数加法运算律
难点:灵活运用有理数运算律简便运算
重难点的突破:
1、处理好知识之间的联系。适时复习,以旧带新,相互对比。
2、给出大量具体的例子。让学生亲身经历观察思考、抽象概括、补充完善的过程,从不同的问题情境中抽象出相同的数学模型。
【学情分析】
认知:七年级的学生年龄和认知水平还较低,学生爱表现、有较强的好胜心理等特征,因此,在教学过程中善于结合学生的这些特征是上好这节课的关键所在。
能力:1.学生对正数加正数,正数加零的情况较为熟练,但计算准确率不高。
2.对异号两数相加确定符号,绝对值大减小掌握不好。
3.学生善于形象思维,思维活跃,能积极参与讨论。
【教法与学法】
教法:以引导法为主,辅之以直观演示法、小组讨论法,向学生提供充分从事数学活动的机会,激发学生的学习主动性,使学生主动参与课堂活动的全过程。
学法:在学生的学习方式上,采用动手实践,自主探究与合作交流相结合的方式使学习过程直观化、形象化。通过PK赛的形式调动学生的学习热情,从而掌握简便运算的技巧
【教学过程分析】
回顾复习,承前启后
例题讲解,合作学习
应用练习,巩固新知
归纳总结,反思提高
作业布置
初中数学教案通用模版篇8
教学目标
1.通过实验,使学生相信经过大量的重复实验后得到的频率值确实可以作为随机事件每次发生的机会的估计值,体会随机事件中所隐含着的确定性内涵。
2.使学生知道,通过实验的方法,用频率估计机会的大小,必须要求实验是在相同条件下进行的。且在相同条件下,实验次数越多,就越有可能得到较好的估计值,但个人所得的值也并不一定相同。
3.培养学生合作学习的能力,并学会与他人交流思维的过程和结果。
教学重难点
重点:频率与机会的关系。
难点:如何用频率估计机会的大小?教学准备数枚相同的图钉。
教学过程
一、提出问题
上一节课,通过一系列的实验和观察,我们已经知道:实验是估计机会大小的一种方法。我们可以通过实验,观察某事件出现的频率,当频率值逐渐稳定时,这个值就可以作为我们对该事件发生机会的估计。
实际上,在前面的问题中,即使不做实验,也可以设法预先推测出事件发生的机会,为什么还要花大量时间去进行实验呢?
下面让我们看另一类问题:
一枚图钉被抛起后钉尖触地的`机会有多大?
二、分组实验
1.两个学生一个小组,一人抛掷,一人记录
每个小组抛掷40次,记录出现钉尖触地的频数
教师负责把各小组的结果登录在黑板上
2.然后把每小组的结果合起来,分别计算抛掷80次、120次、160次、200次、240次、180次、320次、360次、400次、480次、520次、560次后出现钉尖触地的频数及频率
3.列出统计表,绘制折线图
4.根据实验结果估计一下钉尖触地的机会是百分之几?
5.课本第105页表15.2.1和图15.2.2是一位同学在抛掷图钉的实验中画的统计表和折线图。这与你实验的结果相同吗?为什么?
三、深入思考
如果两个小组使用的是两种不同形状的图钉,那么这两种图钉钉尖触地的机会相同吗?
能把两个小组的实验数据合起来进行实验吗?
四、概括小结
从上面的问题可以看出:
1.通过实验的方法用频率估计机会的大小,必须要求实验是在相同条件下进行的。比如,以同样的方式抛掷同一种图钉。
2.在相同的条件下,实验次数越多,就越有可能得到较好的估计值,但每人所得的值也并不一定相同。
五、用心观察
我们已经知道,在相同条件下,实验次数越多,就越有可能得到较好的估计值。那么,总共要做多少次实验才认为得到的结果比较可靠呢?
观察课本第105页表15.2.1和图15.2.2。
当实验进行到多少次以后,所得频率值就趋于平稳了?
(小结:实验到频率值较稳定时,结果比较可靠。这个频率值也就可以作为这个事件发生机会的估计值。)
六、巩固练习
课本第107页练习第1、2题。
七、课堂小结
这节课你有什么收获?还有哪些问题需要老师帮你解决的?
注意:通过实验的方法用频率估计机会大小,必须要求实验是在相同条件下进行的。
八、布置作业
1、课本第108页习题15.2第2题
2、课本第106页做一做
2、数字之积为奇数与偶数的机会
初中数学教案通用模版篇9
一、教材、学情分析
“扇形统计图”是义务教育课程标准实验教科书浙江教育出版社七年级上册第六章第四节的学习内容,是从生活中实际问题出发,结合新课程标准的理念,创造使用教材设计的一节课。生活中经常需要收集数据,而统计图是展示数据的重要方法,经常出现在报刊杂志媒体中,为此教科书安排了扇形统计图的认识和制作。
学生在小学里曾经学习过扇形统计图,对扇形统计图的意义、特点和制作有初步的了解。本节课数据的收集是从学生身边熟悉的简单问题入手,让学生体会数据在现实生活中的作用,理解扇形统计图的特点,并能从中获得有用的信息,进而养成数据说话的习惯,初一学生积极要求上进喜欢表现自己,课堂上应该给学生广阔的舞台,让学生充分思考、合作交流和探究,品尝学习带来的快乐。
二、教学目标
知识与技能目标:
1、通过实际问题认识扇形统计图的含义和特点;
2、能从扇形统计图中获取正确的信息,并能作出合理的解释和推断。
过程与方法目标:
1、在收集数据的过程当中,学会合作学习,并了解收集数据的方法步骤;
2、在从扇形统计图中获取信息的过程当中,学会相互交流、相互评价;
3、在决策和形成猜想中的过程当中,感受收集和利用数据是非常重要的。
情感与态度目标:
1、通过从身边的一些简单问题,体验数据在解决不少现实问题中是有用的;
2、在问题解决的过程当中,品尝发现带来的欢乐,树立学好数学的自信心。
三、教学重点和难点
重点:在合作讨论的过程当中体会数据在现实生活中的作用,理解扇形统计图的特点,学会制作扇形统计图。
难点:从扇形统计图中尽可能多并且正确地获取信息、利用数据进行分析、作出判断。
四、教学和活动过程
(一)教学准备阶段
1、利用PowerPoint制作一个简单课件(没有多媒体教室可采用小黑板展示);
2、布置学生准备,圆规、铅笔、彩色笔、计算器、剪刀等工具。
(二)教学流程
1、引入前面我们学习了折线统计图和条形统计图,今天我们将学习另外一种统计图——扇形统计图,大家小学里已经学过,有印象吗?能回忆起来是怎样的一个图吗?学生回答(是一个圆分成几部分),下面先让大家欣赏一个扇形统计图。(展示)同学们暑假肯定看了奥运会,能知道中国得了多少枚金牌吗?(32)
射击412。5%
球类825%
水上项目825%
力量型项目928。125%
田径26。25%
体操13。125%
从这个统计图中同学们能知道中国在什么项目上有优势,什么项目上薄弱呢?大家知道吗?美国在什么项目上有优势?(田径)
引入设计说明:
1、从学生感兴趣的奥运会引入,激发学生的兴趣,调节课堂气氛。2、突出扇形统计图的优点——能直观反映各部分在总体中所占的比例,区别于折线型统计图和条形统计图。
今天这节课我们来更深入一步认识一下扇形统计图,并教大家如何来画扇形统计图。
2、出示课本学生快餐营养成份统计图,学生观察、思考,老师介绍扇形统计图的特点。
用圆和扇形分别表示关于总体和各个组成部分数据的统计图叫做扇形统计图(或称饼形图),特点是能直观地、生动地反映各部分在总体中所占的比例。
第一问、第二问学生回答;
第三问先说明什么是圆心角,顶点在圆心的角,课本上有摩天轮图(学生观察)。我们可以更直观向学生介绍,用事先准备好圆纸片对折,再对折,把圆分成相等四部分,这个直角就是圆心角。
这样学生更直观、清楚地理解了圆心角的概念。
还有奔驰汽车的标志,把圆分成相等的三部分,圆心角为120。
总结:圆心角的度数为所占的比例乘以360。
请一个学生回答第三问。
3、做一做,P152,第(2)小题后面部分,老师分析。
4、合作活动,师生互动(主要让学生学会画扇形统计图)
提出问题—→调查情况—→收集数据—→整理数据—→画图
问题:同学们从家里到学校交通情况。
学生举手,一个学生点数,另一个学生记录,得出有关数据。
①步行20人40%144不妨设有50名学生,统计数据若如下(根据现场统计情况有不同的数据)。
②骑自行车15人30%108
③坐公交10人20%72
④其他5人10%36
画图步骤:1、画一个圆;
2、按各组成部分所占的比例算出各个扇形的圆心角度数;
3、根据算出的各圆心角的度数画出各个扇形,并注明相应的百分比,各比例的名称可以注在图上,也可用图例表明。
注意:不用彩色,也可用白色、涂黑、斜线、网状等表示,学会动手画出扇形统计图。
学生再看例题:气象资料统计图,计算圆心角度数需用计算器。
5、课内练习,学生板演,一个学生计算数据,一个学生画出扇形统计图。
6、作业1)P153①②③④,思考题⑤
2)收集扇形统计图,渠道来自报纸、杂志、上网查询。
3)自己设计一个调查方案,用调查的数据制作一个扇形统计图。
五、教学设计说明
新课程标准下的教学设计应全面贯彻六大基本理念,更加侧重理念③和理念④,本节课突出生动有趣的特点,学习方式多样化,让学生成为课堂的主人。引入的情景设计是学生身边的问题,例题采用学生自己收集数据、整理数据,最后画图,让学生感到一种自己研究成果的成就感,相比之下,比课本的气象资料更具有感染力。作业中有一题是自己设计一个调查方案,培养学生动手能力、实践能力,这就是新课程大力倡导的。
初中数学教案通用模版篇10
问题描述:
初中数学教学案例
初中的,随便那个年级.2000字.案例和反思
1个回答分类:数学20__-11-30
问题解答:
我来补答
2.3平行线的性质
一、教材分析:
本节课是人民教育出版社义务教育课程标准实验教科书(五四学制)七年级上册第2章第3节平行线的性质,它是平行线及直线平行的继续,是后面研究平移等内容的基础,是“空间与图形”的重要组成部分.
二、教学目标:
知识与技能:掌握平行线的性质,能应用性质解决相关问题.
数学思考:在平行线的性质的探究过程中,让学生经历观察、比较、联想、分析、归纳、猜想、概括的全过程.
解决问题:通过探究平行线的性质,使学生形成数形结合的数学思想方法,以及建模能力、创新意识和创新精神.
情感态度与价值观:在探究活动中,让学生获得亲自参与研究的情感体验,从而增强学生学习数学的热情和勇于探索、锲而不舍的精神.
三、教学重、难点:
重点:平行线的性质
难点:“性质1”的探究过程
四、教学方法:
“引导发现法”与“动像探索法”
五、教具、学具:
教具:多媒体课件
学具:三角板、量角器.
六、教学媒体:
大屏幕、实物投影
七、教学过程:
(一)创设情境,设疑激思:
1.播放一组幻灯片.内容:①火车行驶在铁轨上;②游泳池;③横格纸.
2.声音:日常生活中我们经常会遇到平行线,你能说出直线平行的条件吗?
学生活动:
思考回答.①同位角相等两直线平行;②内错角相等两直线平行;③同旁内角互补两直线平行;
教师:首先肯定学生的回答,然后提出问题.
问题:若两直线平行,那么同位角、内错角、同旁内角各有什么关系呢?
引出课题——平行线的性质.
(二)数形结合,探究性质
1.画图探究,归纳猜想
任意画出两条平行线(a‖b),画一条截线c与这两条平行线相交,标出8个角(如图).
问题一:指出图中的同位角,并度量这些角,把结果填入下表:
第一组
第二组
第三组
第四组
同位角
∠1
∠5
角的度数
数量关系
学生活动:画图——度量——填表——猜想
结论:两直线平行,同位角相等.
问题二:再画出一条截线d,看你的猜想结论是否仍然成立?
学生:探究、讨论,最后得出结论:仍然成立.
2.教师用《几何画板》课件验证猜想
3.性质1.两条直线被第三条直线所截,同位角相等.(两直线平行,同位角相等)
(三)引申思考,培养创新
问题三:请判断内错角、同旁内角各有什么关系?
学生活动:独立探究——小组讨论——成果展示.
教师活动:引导学生说理.
因为a‖b因为a‖b
所以∠1=∠2所以∠1=∠2
又∠1=∠3又∠1+∠4=180°
所以∠2=∠3所以∠2+∠4=180°
语言叙述:
性质2两条直线被第三条直线所截,内错角相等.
(两直线平行,内错角相等)
性质3两条直线被第三条直线所截,同旁内角互补.
(两直线平行,同旁内角互补)
(四)实际应用,优势互补
1.(抢答)
(1)如图,平行线AB、CD被直线AE所截
①若∠1=110°,则∠2=°.理由:.
②若∠1=110°,则∠3=°.理由:.
③若∠1=110°,则∠4=°.理由:.
(2)如图,由AB‖CD,可得()
(A)∠1=∠2(B)∠2=∠3
(C)∠1=∠4(D)∠3=∠4
(3)如图,AB‖CD‖EF,
那么∠BAC+∠ACE+∠CEF=()
(A)180°(B)270°(C)360°(D)540°
(4)谁问谁答:如图,直线a‖b,
如:∠1=54°时,∠2=.
学生提问,并找出回答问题的同学.
2.(讨论解答)
如图是一块梯形铁片的残余部分,量得∠A=100°,
∠B=115°,求梯形另外两角分别是多少度?
(五)概括存储(小结)
1.平行线的性质1、2、3;
2.用“运动”的观点观察数学问题;
3.用数形结合的方法来解决问题.
(六)作业第69页2、4、7.
八、教学反思:
①教的转变:本节课教师的角色从知识的传授者转变为学生学习的组织者、引导者、合作者与共同研究者.在引导学生画图、测量、发现结论后,利用几何画板直观地、动态地展示同位角的关系,激发学生自觉地探究数学问题,体验发现的乐趣.
②学的转变:学生的角色从学会转变为会学.本节课学生不是停留在学会课本知识的层面上,而是站在研究者的角度深入其境.
③课堂氛围的转变:整节课以“流畅、开放、合作、‘隐’导”为基本特征,教师对学生的思维活动减少干预,教学过程呈现一种比较流畅的特征,整节课学生与学生、学生与教师之间以“对话”、“讨论”为出发点,以互助、合作为手段,以解决问题为目的,让学生在一个较为宽松的环境中自主选择获得成功的方向,判断发现的价值.
初中数学教案通用模版篇11
活动目标:
1、通过观察、操作认识三角形的特征,认识三角形。
2、培养幼儿的观察能力和操作能力。
活动准备:
1、三角形图形、画点的底图、水笔、三角形组合的挂图、教室周围布置三角形的实物。
2、正方形的蜡光纸、剪刀、胶水、图画纸。
活动过程:
1、导入:有个图形宝宝来我们班做客,你们想知道是什么图形宝宝吗?
2、出示三角形,让幼儿说出三角形的名称,然后让幼儿找出教室周围与三角形相似的实物。
3、提出问题:“你怎么知道它们是和三角形宝宝一样的图形?”引导幼儿用手摸摸三角形的角和边,体会三角形的外形——三个角,三条边。
4、出示三角形组合的挂图:
1)引导幼儿找出挂图的图案都是三角形组成的。
2)请幼儿说说怎么知道是三角形组成的。
5、出示左图,请幼儿用直线与点连接起来成三角形。
6、老师与小朋友一起讲评连接三角形的情况。
7、剪贴花:
1)出示范例:引导幼儿观察老师的花是用什么图形粘贴的。
2)提出问题:没有三角形的`蜡光纸怎么办?(引导幼儿用正方形折剪成三角形进行粘贴。
初中数学教案通用模版篇12
一、说教材
1、本课在在教材中的地位和作用《分式的加减》这节课是代数运算的基础,分两课时完成,我所设计的是第一课时的教学,主要内容是同分母的分式相加减及简单的异分母的分式相加减。学生已掌握了分数的加减法运算,同时也学习过分式的基本性质,这为本节课的学习打下了基础,而掌握好本节课的知识,将为《分式的加减》第二课时以及《分式方程》的学习做好必备的知识储备。
2、教学目标
①知识与技能:会进行简单的分式加减运算,具有一定的代数化归能力,能解决一些简单的实际问题;
②过程与方法:使学生经历探索分式加减运算法则的过程,理解其算理;
3、情感态度与价值观:培养学生大胆猜想,积极探究的学习态度,发展学生有条理思考及代数表达能力,体会其价值。
4、重点、难点
①重点:掌握分式的加减运算
②难点:异分母的分式加减运算及简单的分式混合运算
二、说教法
本课我主要以“创设情景——引导探究——类比归纳——拓展延伸”为主线,启发和引导贯穿教学始终,通过师生共同研究探讨,体现以教为主导、学为主体、练为主线的教学过程。
三、说学法
根据学生的认知水平,我设计了“自主探索、合作交流、猜想归纳和巩固提高”四个层次的学法。四、说教学过程
(一)创设情境,导入新知
第一环节:提出问题
问题1:甲工程队完成一项工程需n天,乙工程队要比甲队多用3天才能完成这项工程,两队共同工作一天完成这项工程的几分之几?
问题2:2001年,2002年,2003年某地的森林面积(单位:公顷)分别是S1,S2,S3,2003年与2002年相比,森林面积增长率提高了多少?
老师活动:组织学生分组讨论,再共同研究学生活动:小组讨论、探究、发言设计意图:通过创设这两个问题情境,引入分式的加减运算,既体现了分式加减运算的意义,又让学生经历从实际问题建立分式模型的过程,并在此基础上激发学生寻求解决问题的方法。
第二环节:同分母分式相加减
想一想:(1)同分母的分数如何加减?如:2/3+5/3=(2+5)/3,:2/3—5/3=(2—5)/3;(2)思考:类比分数的加减法则,你能归纳出分式的加减法则吗?老师活动:鼓励学生通过类比、探究并大胆猜想分式的加减运算法则学生活动:分组进行讨论、交流,并多举类似例子进行类比,而后,小组发表意见,说明自己的推测。
在学生通过交流得到猜想的基础上出示做一做:做一做:(1)1/a+2/a=_____________2(2)x/(x—2)–4/(x—2)=___________(3)(x+2)/(x+1)–(x—1)/(x+1)+(x—3)/(x+1)=___________教师通过让学生练习“做一做”的题目,加以验证和领悟,法则的形成打下基础,并导出分式加减运算法则:同分母的`分式相加减,分母不变,把分子相加减老师活动:引入习题“做一做”,适当纠正学生的语言,并板书法则学生活动:通过个体练习,领悟规律,再小组交流,形成法则设计意图:引导学生通过类比分数运算方法,大胆猜想分式的加减法则
(二)主动探究,拓展延伸
第三环节:异分母的分式相加减想一想:
(1)异分母的分数如何相加减?如:1/2+2/3=?:1/2—2/3=?。
(2)你认为异分母的分式应该如何加减?如:1/a+2/b=?老师活动:提出问题,引导、启发学生通过异分母分数相加减的方法类比得到异分母分式相加减的方法学生活动:参与交流、讨论、归纳异分母分式加减的方法设计意图:进一步锻炼学生的类比思想;同时通过讨论解决分式的通分,使学生掌握异分母分式转化为同分母分式的方法,培养学生的转化思想,为下节课做好准备
(三)例题教学
第四环节:解决问题
(1)回到开始提出的两个问题:s3?s2s2?s111?问题一:(?)s2s1nn?3问题二:
(2)例题1:计算(课本P81页)老师活动:出示习题,巡视、引导、纠正学生活动:自主完成
设计意图:进一步提高学生对异分母分式的加减运算能力
(四)随堂练习
第五环节:巩固深化
老师活动:巡视、引导学生活动:个体练习、板演设计意图:检验学生是否掌握分式的加减运算方法(五)课堂小结第六环节:提高认识老师活动:本节课我们学了哪些知识?在运用过程中需要注意些什么?你有什么收获?学生活动
归纳总结
(1)同分母分式加减法则
(2)简单异分母分式的加减设计意图:锻炼学生及时总结的良好习惯和归纳能力(六)作业布置第七环节:反思提炼课本P27第1、2题五、板书设计
初中数学教案通用模版篇13
教学目标:
1、通过解题,使学生了解到数学是具有趣味性的。
2、培养学生勤于动脑的习惯。
教学过程:
一、出示趣味题
师:老师这里有一些有趣的问题,希望大家开动脑筋,积极思考。
1、小卫到文具店买文具,他买毛笔用去了所带钱的一半,买铅笔用去了剩下钱的一半,最后用去剩下的8分,问小卫原有()钱?
2、苹苹做加法,把一个加数22错写成12,算出结果是48,问正确结果是()。
3、小明做减法,把减数30写成20,这样他算出的得数比正确得数多(),如果小明算出的结果是10,正确结果是()。
4、同学们种树,要把9棵树分3行种,每一行都是4棵,你能想出几种
办法来用△表示。
5、把一段布5米,一次剪下1米,全部剪下要()次。
6、李小松有10本本子,送给小刚2本后,两人本子数同样多,小刚原来
有()本本子。
二、小组讨论
三、指名讲解
四、评价
1、同学互评
2、老师点评
五、小结
师:通过今天的学习,你有哪些收获呢?
初中数学教案通用模版篇14
一、教材内容及设置依据
【教材内容】本节教材的主要内容是通过对有理数加法、减法的运算的回顾,学习包括分数和小数的有理数的加减混合运算,理解其方法;应用有理数的加减混合运算,解决实际问题。
【设置依据】教材内容的确定主要根据知识的社会作用性、教育性原则(对培养学生的数学思维、数学能力,以及形成辨证唯物主义世界观的重要作用)、后继教育原则(为进一步深造、参加实际工作和适应日常生活准备条件)、可接受性原则(即考虑学生的认识水平、接受能力、生理心理特征,又要着眼于学生的不断发展);还要与现实生活、科技发展相适应,逐步深透现代教学思想。
二、教材的地位和作用
本节内容是在学习了有理数的加法、有理数的减法的基础上学习的,是前面知识的延伸和加强,同时又是后面所要学习的有理数的乘法、除法及有理数的混合运算的基础,
特别是减法可以转化为加法为后面的除法可以转化为乘法的学习提供了
类比依据。也为后面学习代数式的合并同类项及有关的恒等变形奠定了基础,因此具有承上启下的重要作用。
三、对重点、难点的处理
【对重点的处理】本节的重点是有理数加减混合运算的方法及在实际生活中的应用。为了突出重点,教师应尽量从实际问题引入、应尽可能的在课堂上创设具体教学情境,注重使学生在具体情境中体会运算的方法。同时我们也可以根据学生的接受情况和每节课的具体情况,尽可能的把每节课的“课堂练习”和“习题”的内容划分成不同的板块,如:1、知识巩固型2、实际应用型3、方法多变型4、知识拓展型等。
【对难点的处理】对于难点的处理,因为新教材“强调要给学生足够的空间和时间”,因此教学时我们应尽量从学生已有的生活经验和已有的知识经验出发,或用“已知”去解决“未知”的思想引导学生,鼓励学生大胆的猜测、交流,充分的探索。同时淡化形式,突出实质(不出现代数和的定义,只是让学生理解有理数的加减运算可以统一成加法以及加法运算可以写成省略括号及前面加号的形式,重点是让学生通过具体情境对“代数和”加以体会)
四、关于教学方法的选用
根据本节课的内容和学生的实际水平,本节课可采用的方法:
1、情境体验:通过教师创设贴近学生生活实际的教学情境,让学生融会到课堂中去,产生共鸣,激发兴趣,鼓励学生观察、分析、探索,加深其对本节内容的理解,培养学生解决问题的能力。
2、引导发现法:它符合辩证唯物主义中内因与外因相互作用的观点,符合教学论中的自觉性和积极性、巩固性、可接受性、教学与发展相结合、教师的主导作用与学生的主体地位相统一等原则。引导发现法的关键是通过教师的引导启发,充分调动学生学习的主动性。
3、小组合作、探究讨论:通过合作讨论,使学生形成一个“学习共同体”,在这个共同体内相互交流、相互沟通、相互启发、相互补充,分享彼此的思考、经验和知识,交流彼此的情感、体验和观念,共同体验成功的喜悦,使学生体会到集体的力量,形成合作的意识,产生合作的愿望。
五、关于学法的指导
“授人以鱼,不如授人以渔”,在教給学生知识的同时,要教给他们好的学习方法,让他们“会学习”在本节课的教学中,在提出问题后,要鼓励学生分析、探索、讨论,确定出问题解决的办法。通过小组探究交流,得到解决问题的不同方法,开拓了思路,培养了思维能力。同时意识到:数学是生活实际中的数学、大自然中的数学,萌生了用数学解决实际问题的意识、愿望。
六、课时安排:1课时
教学程序:
一、复习铺垫:
首先利用多媒体出示一组有关有理数的加法、减法的题目,让学生进行速算比赛,看谁做的又对又快。
1、45+(-23)2、9-(-5)
3、-28-(-37)4、(-13)+0
5、(-29)+(-31)6、(-16)-(-12)-24-(-18)7、1.6-(-1.2)-2.58、(-42)+57+(-84)+(-23)
从四排学生中个推选一名学生代表板演6、7、8、题。
通过比赛的方式,符合学生的心理特点,迎合了学生好胜的心理,激起了学生学习的内在动力,激发了学习的兴趣。
然后教师与学生一起对题目进行评判,对优胜的学生进行表扬,对其他学生加以鼓励,使他们意识到“胜败乃兵家常事”,关键要有信心,要有高昂的斗志。通过练习,学生已在不知不觉中复习了有理数的加法、减法法则,特别是减法法则,加深了印象,这符合教学论中的巩固性原则,为后面学习有理数的加减混合运算奠定了基础。
二、新知探索:
1、出示引例1:一架飞机作特技表演,起飞后的高度变化如下表:高度变化记作
上升4.5千米+4.5千米
下降3.2千米-3.2千米
上升1.1千米+1.1千米
下降1.4千米-1.4千米
此时飞机比起飞点高了多少米?
让学生分组探究讨论,让学生发表自己的见解,不难得出两种算法:
①4.5+(-3.2)+1.1+(-1.4)②4.5-3.2+1.1-1.4
=1.3+1.1+(-1.4)=1.3+1.1-1.4
=2.4+(-1.4)=2.4-1.4
=1千米=1千米
教师随之提出问题:比较以上两种算法,你发现了什么?通过学生的合作讨论、教师的引导、规纳、总结可得出:加减法混合运算可以统一成加法;加法运算可以写成省略括号及前面加号的形式。使学生在解决问题的过程中体会到“代数和“的含义。这里不要求出现“代数和”的名称。通过小组合作,探究讨论,让每一个学
初中数学教案通用模版篇15
教学目标
1、使学生能把简单的与数量有关的词语用代数式表示出来;
2、初步培养学生观察、分析和抽象思维的能力
教学重点和难点
重点:把实际问题中的数量关系列成代数式?
难点:正确理解题意,从中找出数量关系里的运算顺序并能准确地写成代数式???
教学手段
现代课堂教学手段
教学方法
启发式教学
教学过程
(一)、从学生原有的认知结构提出问题
1、用代数式表示乙数:(投影)
(1)乙数比x大5;(x+5)
(2)乙数比x的2倍小3;(2x-3)
(3)乙数比x的倒数小7;(-7)
(4)乙数比x大16%?((1+16%)x)
(应用引导的方法启发学生解答本题)
2、在代数里,我们经常需要把用数字或字母叙述的一句话或一些计算关系式,列成代数式,正如上面的练习中的问题一样,这一点同学们已经比较熟悉了,但在代数式里也常常需要把用文字叙述的一句话或计算关系式(即日常生活语言)列成代数式?本节课我们就来一起学习这个问题?
(二)、讲授新课
例1用代数式表示乙数:
(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;
(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%?
分析:要确定的乙数,既然要与甲数做比较,那么就只有明确甲数是什么之后,才能确定乙数,因此写代数式以前需要把甲数具体设出来,才能解决欲求的乙数?
解:设甲数为x,则乙数的代数式为
(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x?
(本题应由学生口答,教师板书完成)
最后,教师需指出:第4小题的答案也可写成x+16%x?
例2用代数式表示:
(1)甲乙两数和的2倍;
(2)甲数的与乙数的的差;
(3)甲乙两数的平方和;
(4)甲乙两数的和与甲乙两数的差的积;
(5)乙甲两数之和与乙甲两数的差的积?
分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式?
解:设甲数为a,乙数为b,则
(1)2(a+b);(2)a-b;(3)a2+b2;
(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)?
(本题应由学生口答,教师板书完成)
此时,教师指出:a与b的和,以及b与a的和都是指(a+b),这是因为加法有交换律?但a与b的差指的是(a-b),而b与a的差指的是(b-a)?两者明显不同,这就是说,用文字语言叙述的句子里应特别注意其运算顺序?
例3用代数式表示:
(1)被3整除得n的数;
(2)被5除商m余2的数?
分析本题时,可提出以下问题:
(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?
(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?
解:(1)3n;(2)5m+2?
(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)?
例4设字母a表示一个数,用代数式表示:
(1)这个数与5的和的3倍;(2)这个数与1的差的;
(3)这个数的5倍与7的.和的一半;(4)这个数的平方与这个数的的和?
分析:启发学生,做分析练习?如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”?
解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a?
(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力?)
例5设教室里座位的行数是m,用代数式表示:
(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?
(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?
分析本题时,可提出如下问题:
(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)
解:(1)m(m+6)个;(2)(m)m个?
(三)、课堂练习
1?设甲数为x,乙数为y,用代数式表示:(投影)
(1)甲数的2倍,与乙数的的和;(2)甲数的与乙数的3倍的差;
(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商?
2?用代数式表示:
(1)比a与b的和小3的数;(2)比a与b的差的一半大1的数;
(3)比a除以b的商的3倍大8的数;(4)比a除b的商的3倍大8的数?
3?用代数式表示:
(1)与a-1的和是25的数;(2)与2b+1的积是9的数;
(3)与2x2的差是x的数;(4)除以(y+3)的商是y的数?
〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)?〕
(四)、师生共同小结
首先,请学生回答:
1?怎样列代数式?2?列代数式的关键是什么?
其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:
(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);
(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;
(3)把用日常生活语言叙述的数量关系,列成代数式,是为今后学习列方程解应用题做准备?要求学生一定要牢固掌握
练习设计
1、用代数式表示:
(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?
(2)体校里男生人数是x,女生人数是y,教练人数与学生人数之比是1∶10,教练人数是多?
2、已知一个长方形的周长是24厘米,一边是a厘米,
求:(1)这个长方形另一边的长;(2)这个长方形的面积?
板书设计
§3.2代数式
(一)知识回顾(三)例题解析(五)课堂小结
例1、例2
(二)观察发现(四)课堂练习练习设计
教学后记
由于列代数式的内容既是本章的重点,又是本书的重点,同时也是学生学习过程中的一个难点,故在设计其教学过程时,注意所选例题及练习题由易到难,循序渐进,使学生逐步地掌握好这一内容,为今后的学习打下一个良好的基础?同时,也使学生的抽象思维能力得到初的培养。
初中数学教案通用模版篇16
教学目标 1, 通过对数“零”的意义的探讨,进一步理解正数和负数的概念;
2, 利用正负数正确表示相反意义的量(规定了指定方向变化的量)
3, 进一步体验正负数在生产生活实际中的广泛应用,提高解决实际问题的能力,激发学习数学的兴趣。
教学难点 深化对正负数概念的理解
知识重点 正确理解和表示向指定方向变化的量
教学过程(师生活动) 设计理念
知识回顾与深化 回顾:上一节课我们知道了在实际生产和生活中存在着两种不同意义的量,为了区分这两种量,我们用正数表示其中一种意义的量,那么另一种意义的量就用负数来表示.这就是说:数的范围扩大了(数有正数和负数之分).那么,有没有一种既不是正数又不是负数的数呢?
问题1:有没有一种既不是正数又不是负数的数呢?
学生思考并讨论.
(数0既不是正数又不是负数,是正数和负数的分
界,是基准.这个道理学生并不容易理解,可视学生的讨论情况作些启发和引导,下面的例子供参考)
例如:在温度的表示中,零上温度和零下温度是两种不同意义的量,通常规定零上温度用正数来表示,零下温度用负数来表示。那么某一天某地的温度是
零上7℃,最低温度是零下5℃时,就应该表示为+7℃
和-5℃,这里+7℃和-5℃就分别称为正数和负数 .
那么当温度是零度时,我们应该怎样表示呢?(表示为0℃),它是正数还是负数呢?由于零度既不是零上温度也不是零下温度,所以,0既不是正数也不是负数•
问题2:引入负数后,数按照“两种相反意义的量”来分,可以分成几类? “数0耽不是正数,也不是负数”也应看作是负数定义的一部分.在引入
负数后,0除了表示一个也没有以外,还是正数和负数的分界.了解。的这一层意义,也有助于对正负数的理解;且对数的顺利扩张和有理毅概念的建立都有帮助。
所举的例子,要考虑学生的可接受性.“数0既不是正数,也不是负数”应从相反意义的1这个角度来说明.这个问题只要初步认识即
可,不必深究.
分析问题
解决问题 问题3:教科书第6页例题
说明:这是一个用正负数描述向指定方向变化情况的例子, 通常向指定方向变化用正数表示;向指定方向的相反方向变化用负数表示。这种描述在实际生活中有广泛的应用,应予以重视。教学中,应让学生体验“增长”和“减少”是两种相反意义的量,要求写出“体重的增长值”和“进出口额的增长率”,就暗示着用正数来表示增长的量。
归纳:在同一个问题中,分别用正数和负数表示的量具有相反的意义(教科书第6页).
类似的例子很多,如:
水位上升-3m,实际表示什么意思呢?
收人增加-10%,实际表示什么意思呢?
等等。
可视教学中的实际情况进行补充.
这种用正负数描述向指定方向变化情况的例子,在实际生活中有广泛的应用,按题意找准哪种
意义的量应该用正数表示是解题的关健.这种描述具有相反数的影子,例如第(1)题中小明的体重可说成是减少-2kg,但现在
不必向学生提出.
巩固练习 教科书第6页练习
阅读思考
教科书第8页 阅读与思考是正负数应用的很好例子,要花时间让学生讨论交流
小结与作业
课堂小结 以问题的形式,要求学生思考交流:
1,引人负数后,你是怎样认识数0的,数0的意义有哪些变化?
2,怎样用正负数表示具有相反意义的量?
(用正数表示其中一种意义的量,另一种量用负数表示;特别地,在用正负数表示向指定方向变化的量时,通常把向指定方向变化的量规定为正数,而把向指定方向的相反方向变化的量规定为负数.)
本课作业 1, 必做题:教科书第7页习题1.1第3,6,7,8题
2, 选做题:教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
1,本课主要目的是加深对正负数概念的理解和用正负数表示实际生产生活中的向指
定方向变化的量。
2,“数0既不是正数,也不是负数,’(要从0不属于两种相反意义的量中的任何一种上来理解)也应看作是负数定义的一部分.在引人负数后,除了表示一个也没有以外,还是正数和负数的分界。了解0的这一层意义,也有助于对正负数的理解,且对数的顺利扩张和有理数概念的建立都有帮助.由于上节课的重点是建立两种相反意义量的概念,考虑到学生的可接受性,所以作为知识的回顾和深化而放到本课.
3,教科书的例子是用正负数表示(向指定方向变化的)量的实际应用,用这种方式描述的例子很多,要尽量使学生理解.
4,本设计体现了学生自主学习、交流讨论的教学理念,教学中要让学生体验数学知识在实际中的合理应用,在体验中感悟和深化知识.通过实际例子的学习激发学生学习数学的兴趣.
初中数学教案通用模版篇17
一、课题
略。
二、教学目标
1.结合具体例子,体会数学与我们的成长密切相关。
2.通过对小学数学知识的归纳,感受到数学学习促进了我们的成长。
3.尝试从不同角度,运用多种方式(观察、独立思考、自主探索、合作交流)有效解决问题。
4.通过对数学问题的自主探索,进一步体会数学学习促进了我们成长,发展了我们的思维。
三、教学重点和难点
重点
难点
1.结合具体例子,体会数学与我们的成长密切相关。
2.通过对小学数学知识的归纳,感受到数学学习促进了我们的成长。
结合具体例子,体会数学与我们的成长密切相关。
四、教学手段
现代课堂教学手段
教学准备
教师准备
录音机、投影仪、剪刀、长方形纸片。
学生准备
预习、剪刀、长方形纸片
五、教学方法
启发式教学
六、教学过程设计
一、导入
教师活动
学生活动
展示图片并播放录音。
宇宙之大(海王星、流星雨),粒子之微(铍原子、氯化钠晶体结构),火箭之速(火箭),化工之巧(陶瓷),地球之变(陨石坑),生物之谜(青蛙),日用之繁(杯子、表),大千世界,天上人间,无处不有数学的贡献,让我们共同走进数学世界,去领略一下数学的风采,体会数学的魅力。
观察图片,听录音。
二、板书课题。
三、导学
教师活动
学生活动
1.现在让我们进入时空的隧道,回忆我们的成长历程:
出生——学前——小学(板书),我们每一天都在接触数学并不断学习它,相信吗?不妨大家从不同阶段来举出一些我们身边或亲身经历的例子,试一试。(积极鼓励)
(师、生共同讨论交流,从具体事例中分析并找出数学信息。)
2.进入小学,我们正式开始学习数学,回忆一下,在小学阶段我们学习的主要数学知识有哪些?
3.指定若干名学生口答,师生共同系统归纳:
数与式:认识、计算、方程、解应用题;
图形:图形的认识、图形的画法、图形的计算;
统计知识。
4.数学知识的学习,不仅开阔了我们的视野,而且改变了我们的思维方式,使我们变得更加聪明了。发挥一下我们的聪明才智,尝试解决下面的2个问题:
(1)投影或小黑板展示下列问题:
①计算并观察下列三组算式:
②已知25×25=625,则24×26=(不要计算)
③你能举出一个类似的例子吗?
④更一般地,若a×a=m,则(a+1)(a-1)=。
(老师点评、表扬)
(2)投影或小黑板展示教材第13页第4题。
通过刚才的解题,可以看出同学们都非常聪明,其实不仅我们每个人离不开数学,而且整个人类、整个社会也离不开数学,同学们课后可以阅读一下第1节第2点《人类离不开数学》,体会数学对促进人类社会发展的&39;重大作用。
布置作业:
(1)谈一谈你对数学的兴趣、学习数学的方法以及学习中存在的困难等;
(2)习题1.1第2、4题。
1.回忆、交流、积极大胆发言。
2.回忆、交流。
3.观察、计算、思考、探索。
4.学生取出剪刀和长方形纸片,小组合作,动手尝试解决。
学生1
学生2
学生拼图(略)
七、练习设计
课堂基础练习
1、下列图形中,阴影部分的面积相等的是.
答案:A与B;C与D
2、三个连续奇数的和是21,它们的积为
答案:315
3、计算:7+27+377+4777
答案:5188
课后延伸练习
1、猜谜语(各打数学中常用字)
千人分在北上下;②1人立在口上边
答案:①乘;②倍
2、在与伙伴玩“24点”游戏中,使数1,5,5,5通过运算得24?
答案:[5-(1÷5)]×5
3、只允许添两个“一”、一个“十”和一个括号,不改变数字顺序,把1,2,3,4,5,6,7,8,9这九个数字连成结果为100的算式:
123456789=100
答案:123-(45+67-89)=100
4、把长方形剪去一个角,它可能是几边形?
答案:三边形,四边形,五边形.
5、有一个正方形池塘如图1-1-2,在它的四个角上有四棵大树,现在为了扩大池塘,要把池塘面积扩大一倍,但是,这四棵树不便搬动,也不能使它淹在水里,而且扩大后的池塘还是正方形,这该怎么办呢?
答案:
能力提高训练
18
19
答案:7个,边长从大到
小依次为11、8、
7、5、3
1、一个长方形,长19cm,宽18cm,如果把这个长方形分割成若干个边长为整数的小正方形,那么这些小正方形最少有多少个?如何分割?
2、在操场上,小华遇到小冯,交谈中顺便问道:“你们班有多少学生?”小冯说:“如果我们班上的学生像孙悟空那样一个能变两个,然后再来这么多学生的,再加上班上学生的,最后连你也算过去,就该有100个了.”那么小冯班上有多少学生?
答案:36
八、板书设计
(一)知识回顾(四)例题解析(六)课堂小结
(二)观察发现例1、例2
(三)解方程(五)课堂练习练习设计
九、教学后记