2024年初一数学教案
教案通过明确教学目标、确定教学内容和方法,为教师提供了系统、全面的教学指导。那要怎么写2024年初一数学教案呢?这里提供一些2024年初一数学教案,希望对大家能有所帮助。
2024年初一数学教案篇1
教学目的:
(一)知识点目标:
1.了解正数和负数是怎样产生的。
2.知道什么是正数和负数。
3.理解数0表示的量的意义。
(二)能力训练目标:
1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。
2.会用正、负数表示具有相反意义的量。
(三)情感与价值观要求:
通过师生合作,联系实际,激发学生学好数学的热情。
教学重点:知道什么是正数和负数,理解数0表示的量的意义。
教学难点:理解负数,数0表示的量的意义。
教学方法:师生互动与教师讲解相结合。
教具准备:地图册(中国地形图)。
教学过程:
引入新课:
1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快?
内容:老师说出指令:
向前两步,向后两步;
向前一步,向后三步;
向前两步,向后一步;
向前四步,向后两步。
如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。
[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。
讲授新课:
1.自然数的产生、分数的产生。
2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。
3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。
举例说明:3、2、0.5、 等是正数(也可加上“十”)
-3、-2、-0.5、- 等是负数。
4、数0既不是正,也不是负数,0是正数和负数的分界。
0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。
5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地某银行的存折,说出你知道的信息。
巩固提高:练习:课本P5练习
课时小结:这节课我们学习了哪些知识?你能说一说吗?
课后作业:课本P7习题1.1的第1、2、4、5题。
活动与探究:在一次数学测验中,某班的平均分为85分,把高于平均分的高出部分记为正数。
(1)美美得95分,应记为多少?
(2)多多被记作一12分,他实际得分是多少?
课后反思
2024年初一数学教案篇2
教学目的
1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
2.使学生会列一元一次方程解决一些简单的应用题。
3.会判断一个数是不是某个方程的解。
重点、难点
1.重点:会列一元一次方程解决一些简单的应用题。
2.难点:弄清题意,找出“相等关系”。
教学过程
一、复习提问
一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?
解:设小红能买到工本笔记本,那么根据题意,得
1.2x=6
因为1.2×5=6,所以小红能买到5本笔记本。
二、新授:
问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆? (让学生思考后,回答,教师再作讲评)
算术法:(328-64)÷44=264÷44=6(辆)
列方程:设需要租用x辆客车,可得。
44x+64=328 (1)
解这个方程,就能得到所求的结果。
问:你会解这个方程吗?试试看?
问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”
通过分析,列出方程:13+x=(45+x)
问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?
把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,
因为左边=右边,所以x=3就是这个方程的解。
这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。
问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?
同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?
三、巩固练习
教科书第3页练习1、2。
四、小结。本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。
五、作业 。教科书第3页,习题6.1第1、3题。
2024年初一数学教案篇3
各位领导、老师:
大家好!
今天我将要为大家讲的课题是有理数的加法,首先,我对本节教材进行一些分析。
本节课选自人民教育出版社出版的〈义务教育课程标准实验教科书〉数学七年级(上)。这一节课是本册书第一章第三节第一课时的内容。下面我就从以下六个方面——教材结构与内容简析、教学目标、教学重点难点及关键、教法、学法、教学过程的设计向大家介绍一下我对本节课的理解与设计。
一、教材结构与内容简析
在分析新数学课程标准的基础上确定了本节课在教材中的地位和作用以及确定本节课的教学目标、重点和难点。首先来看一下本节课在教材中的地位和作用。
1、有理数的加法在整个知识系统中的地位和作用是很重要的。初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。运算能力的培养主要是在初一阶段完成。有理数的加法作为有理数的运算的一种,它是有理数运算的重要基础之一,它是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、、研究函数等内容的学习。
2、就第一章而言,有理数的加法是本章的一个重点。有理数这一章分为两大部分——有理数的意义和有理数的运算,有理数的意义是有理数运算的基础,有理数的混合运算是这一章的难点,但混合运算是以各种基本运算为基础的。在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符合和绝对值),关键是这一节的学习。
3、数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生渗透的德育目标是:
(1)渗透由特殊到一般的辩证唯物主义思想
(2)培养学生严谨的思维品质。
二、教学目标
根据新课程标准和上述对教材结构与内容分析,考虑到学生已有的认知结构及心理特征,制定如下教学目标:
1、基础知识目标:
(1)理解有理数加法的意义;
(2)理解并掌握有理数加法的法则;
(3)应用有理数加法法则进行准确运算;
(4)渗透数形结合的思想。
2、能力目标是:
(1)培养学生准确运算的能力;
(2)培养学生归纳总结知识的能力;
3、德育目标是:渗透由特殊到一般的辩证唯物主义思想
4、个性品质目标:培养学生严谨的思维品质。
三、教学重点、难点、关键
有理数加法的意义与小学学习的在正有理数和零的范围内进行的加法运算的意义相同,让学生理解即可,有理数的加法法则的理解与运用是本节的重点内容。因此本节课的重点是:有理数加法法则的理解与运用。由于本阶段的学生很难把握住事物主要特征:如异号两数、绝对值不相等的异号两数和互为相反数之间的关系,这就对法则的理解造成困难。因此我确定本节课的难点是:有理数加法法则的理解。
四、教法
数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。在教学过程中,我注重体现教师的导向作用和学生的主体地位,。本节是新课内容的学习,教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣,使学生轻松愉快地学习,不断克服学生学习中的被动情况,使其在教学过程中在掌握知识的同时发展智力、受到教育。
五、学法
本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当指挥官的角色,亲身参加探索发现,从而获取知识。在法则的得出过程中,我引进了现代化的教学工具微机,让学生在微机演示的一种动态变化中自己发现规律归纳总结,这不但增加了课堂的趣味性提高了学生的能力,而且直接地向学生渗透了数形结合的思想。在法则的应用这一环节我又选配了一些变式练习,通过书上的基本练习达到训练双基的目的,通过变式练习达到发展智力、提高能力的目的。这些我都在教学过程的设计中具体体现。而且在做练习的过程中让学生互相提问,使课堂在学生的参与下积极有序的进行。
六、教学过程的设计
1、引入:再课堂的引入上,开始我本打算选择教材上的例子,但是它过于简单。并且不宜于引起学生的注意,所以我选择了学生们感兴趣的军事问题,让学生在充当指挥官的同时,有一种解决问题的成就感,从而使学生积极主动的学习,并且营造了良好的学习氛围。
2、探索规律:法则的得出重要体现知识的发生,发展,形成过程。我通过了一个小人在坐标轴上来回的移动,使学生在小人的移动过程中体会两个数相加的变化规律。由于采用了形式活泼的教学手段,学生能够全身心的投入到思考问题中去,让学生亲身参加了探索发现及获取知识和技能的全过程。最后由学生对规律进行归纳总结补充,从而得出有理数的加法法则。
3、巩固练习:再习题的配备上,我注意了学生的思维是一个循序渐进的过程,所以习题的配备由难而易,使学生在练习的过程中能够逐步的提高能力,得到发展。并且采用男生出题,女生回答;女生出题,男生回答,活跃课堂气氛,充分调动学生的积极性。使学生在一种比较活跃的氛围中,解决各种问题。同时针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。
4、归纳总结:归纳总结由学生完成,并且做适当的补充。最后教师对本节的课进行说明。
以上是我对本节课的理解和设计。希望各位老师批评指正,以达到提高个人教学能力的目的。说课对我仍是新事物,今后我也将进一步说好课,并希望各位专家领导对本堂说课提出宝贵意见。
2024年初一数学教案篇4
1.教学重点、难点
重点:列代数式。
难点:弄清楚语句中各数量的意义及相互关系。
2.本节知识结构:
本小节是在前面代数式概念引出之后,具体讲述如何把实际问题中的数量关系用代数式表示出来。课文先进一步说明代数式的概念,然后通过由易到难的三组例子介绍列代数式的方法。
3.重点、难点分析:
列代数式实质是实现从基本数量关系的语言表述到代数式的一种转化。列代数式首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式。
如:用代数式表示:比的2倍大2的数。
分析本题属于“…比…多(大)…或…比…少(小)”的类型,首先要抓住这几个关键词。然后从中找出谁是大数,谁是小数,谁是差。比的2倍大2的数换个方式叙述为所求的数比的2倍大2。大和比前边的量,即所求的数为大数,那么比和大之间量,即的2倍则为小数,大后边的量2即为差。所以本小题是已知小数和差求大数。因为大数=小数+差,所以所求的数为:2+2.
4.列代数式应注意的问题:
(1)要分清语言叙述中关键词语的意义,理清它们之间的数量关系。如要注意题中的“大”,“小”,“增加”,“减少”,“倍”,“倒数”,“几分之几”等词语与代数式中的加,减,乘,除的&39;运算间的关系。
(2)弄清运算顺序和括号的使用。一般按“先读先写”的原则列代数式。
(3)数字与字母相乘时数字写在前面,乘号省略不写,字母与字母相乘时乘号省略不写。
(4)在代数式中出现除法时,用分数线表示。
5.教法建议:
列代数式是本章教学的一个难点,学生不容易掌握,这样老师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。
2024年初一数学教案篇5
一、素质教育目标
(一)知识教学点
1.使学生理解近似数和有效数字的意义
2.给一个近似数,能说出它精确到哪一痊,它有几个有效数字
3.使学生了解近似数和有效数字是在实践中产生的.
(二)能力训练点
通过说出一个近似数的精确度和有效数字,培养学生把握关键字词,准确理解概念的能力.
(三)德育渗透点
通过近似数的学习,向学生渗透具体问题具体分析的辩证唯物主义思想
(四)美育渗透点
由于实际生活中有时要把结果搞得准确是办不到的或没有必要,所以近似数应运而生,近似数和准确数给人以美的享受.
二、学法引导
1.教学方法:从实际问题出发,启发引导,充分体现学生为主全,注重学生参与意识
2.学生学法,从身边找出应用近似数,准确数的例子→近似数概念→巩固练习
三、重点、难点、疑点及解决办法
1.重点:理解近似数的精确度和有效数字.
2.难点:正确把握一个近似数的精确度及它的有效数字的个数.
3.疑点:用科学记数法表示的近似数的精确度和有效数字的个数.
四、课时安排
1课时
五、教具学具准备
投影仪,自制胶片
六、师生互动活动设计
教者提出生活中应用准确数和近似数的例子,学生讨论回答,学生自己找出类似的例子,教者提出精确度和有效数字的概念,教者提出近似数的有关问题,学生讨论解决.
七、教学步骤
(一)提出问题,创设情境
师:有10千克苹果,平均分给3个人,应该怎样分?
生:平均每人千克
师:给你一架天平,你能准确地称出每人所得苹果的千克数吗?
生:不能
师:哪怎么分
生:取近似值
师:板书课题
【教法说明】通过提出实际问题,使学生认识到研究近似数是必须的,是自然的,从而提高学生近似数的积极性
(二)探索新知,讲授新课
师出示投影1
下列实际问题中出现的数,哪些是精确数,哪些是近似数.
(1)初一(1)有55名同学
(2)地球的半径约为6370千米
(3)中华人民共和国现在有31个省级行政单位
(4)小明的身高接近1.6米
学生活动:回答上述问题后,自己找出生活中应用准确数和近似数的例子.
师:我们在解决实际问题时,有许多时候只能用近似数你知道为什么吗?
启发学生得出两方面原因:1.搞得完全准确有时是办不到的,2.往往也没有必要搞得完全准确.
以开始提出的问题为例,揭示近似数的有关概念
板书:
1.精确度
2.有效数字:一般地,一个近似数,四舍五入到哪一位,就说这个数精确到哪一位,这时,从左边第一个不是0的数字起,到精确的数位止,所有的数字,都叫做这个数的&39;有效数字.
例如:3.3有二个有效数字
3.33有三个有效数字
讨论:近似数0.038有几个有效数字,0.03080呢?
【教法说明】通过讨论学生明确近似数的有效数字需注意的两点:一是从左边第一个不是零的数起;二是从左边第一个不是零的数起,到精确的位数止,所有的数字,教者在有效数字概念对应的文字底下画上波浪线,标上①、②
例1.(出示投影2)
下列由四舍五入吸到近似数,各精确到哪一位,各有哪几个有效数字?
(1)43.8(2).03086(3)2.4万
学生口述解题过程,教者板书.
对于近似数2.4万学生又能认为是精确到十分位,这时可组织学生讨论近似数与5.4和近似数5.4万中的两个4的数位有什么不同,从而得出正确的答案.
【教法说明】对于疑点问题,通过启发讨论,适时点拨,远比教者直接告诉正确答案,理解深刻得多.
巩固练习见课本122页练习2、3页
例2(出示投影3)
下列由四舍五入得来的近似数,各精确到哪一位,各有几个有效数字?
2024年初一数学教案篇6
教学目标:
1、了解证明的必要性,知道推理要有依据;熟悉综合法证明的格式,能说出证明的步骤.
2、能用符号语言写出一个命题的题设和结论.
3、通过对真命题的分析,加强推理能力的训练,培养学生逻辑思维能力.
教学重点:证明的步骤与格式.
教学难点:将文字语言转化为几何符号语言.
教学过程:
一、复习提问
1、命题“两直线平行,内错角相等”的题设和结论各是什么?
2、根据题设,应画出什么样的图形?(答:两条平行线a、b被第三条直线c所截)
3、结论的内容在图中如何表示?(答:在图中标出一对内错角,并用符号表示)
二、例题分析
例1、 证明:两直线平行,内错角相等.
已知:a∥b,c是截线.
求证:∠1=∠2.
分析:要证∠1=∠2,
只要证∠3=∠2即可,因为
∠3与∠1是对顶角,根据平行线的性质,
易得出∠3=∠2.
证明:∵a∥b(已知),
∴∠3=∠2(两直线平行,同位角相等).
∵∠1=∠3(对顶角相等),
∴∠1=∠2(等量代换).
例2、 证明:邻补角的平分线互相垂直.
已知:如图,∠AOB+∠BOC=180°,
OE平分∠AOB,OF平分∠BOC.
求证:OE⊥OF.
分析:要证明OE⊥OF,只要证明∠EOF=90°,即∠1+∠2=90°即可.
三、课堂练习:
1、平行于同一条直线的两条直线平行.
2、两条平行线被第三条直线所截,同位角的平分线互相平行.
四、归纳小结
主要通过学生回忆本节课所学内容,从知识、技能、数学思想方法等方面加以归纳,有利于学生掌握、运用知识.然后见投影仪.
五、布置作业
课本P143 5、(2),7.
六、课后思考:
1、垂直于同一条直线的两条直线的位置关系怎样?
2、两条平行线被第三条直线所截,内错角的平分线位置关系怎样?
3、两条平行线被第三条直线所截,同旁内角的平分线位置关系怎样?
2024年初一数学教案篇7
教学目标和要求:
1.理解单项式及单项式系数、次数的概念.
2.会准确迅速地确定一个单项式的系数和次数.
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识.
4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力.
教学重点和难点:
重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数.难点:单项式概念的建立.
教学过程:
一、复习引入:
1、列代数式
(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务.让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育.)
2、请学生说出所列代数式的意义.
3、请学生观察所列代数式包含哪些运算,有何共同运算特征.
由小组讨论后,经小组推荐人员回答,教师适当点拨.
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性.)
二、讲授新课:
1.单项式:
通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并归纳得出单项式的概念:由数与字母的乘积组成的代数式称为单项式.然后教师补充,单独一个数或一个字母也是单项式,
如a,5.
2.练习:判断下列各代数式哪些是单项式?
(1);(2)abc;(3)b2;(4)-5ab2;(5)y;(6)-xy2;(7)-5.
(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)
3.单项式系数和次数:
直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的.以
四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念.
单项式的系数:单项式中的数字因数叫做这个单项式的系数.
单项式的&39;次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.
4.例题:
例1:判断下列各代数式是否是单项式.如不是,请说明理由;如是,请指出它的系数和次数.①x+1;②;③πr2;④-a2b
答:①不是,因为原代数式中出现了加法运算;
②不是,因为原代数式是1与x的商;
③是,它的系数是π,次数是2;
④是,它的系数是-,次数是3.
例2:下面各题的判断是否正确?
①-7xy2的系数是7;②-x2y3与x3没有系数;③-ab3c2的次数是0+3+2;
④-a3的系数是-1;⑤-32x2y3的次数是7;⑥πr2h的系数是.
答:①错,应是?7;②错;?x2y3系数为?1,x3系数为1;③错,次数应该是1+3+2;④正确;⑤错,次数为2+3=5;⑥正确
强调应注意以下几点:
①圆周率π是常数;
②当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等;
③单项式次数只与字母指数有关.
5.游戏:
规则:一个小组学生说出一个单项式,然后指定另一个小组的学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准.
(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识.)
三、课堂小结:
①单项式及单项式的系数、次数.
②根据教学过程反馈的信息对出现的问题有针对性地进行小结.
③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的.
教学后记:
本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习.为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫.
针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习同类项打下坚实的基础.
2024年初一数学教案篇8
教学目标
1.掌握等边三角形的性质和判定方法.2.培养分析问题、解决问题的能力.
教学重点:等边三角形的性质和判定方法.
教学难点:等边三角形性质的应用
教学过程
I创设情境,提出问题
回顾上节课讲过的等边三角形的有关知识
1.等边三角形是轴对称图形,它有三条对称轴.
2.等边三角形每一个角相等,都等于60°
3.三个角都相等的三角形是等边三角形.
4.有一个角是60°的等腰三角形是等边三角形.
其中1、2是等边三角形的性质;3、4的等边三角形的判断方法.
II例题与练习
1.△ABC是等边三角形,以下三种方法分别得到的△ADE都是等边三角形吗,为什么?
①在边AB、AC上分别截取AD=AE.
②作∠ADE=60°,D、E分别在边AB、AC上.
③过边AB上D点作DE∥BC,交边AC于E点.
2.已知:如右图,P、Q是△ABC的边BC上的两点,,并且PB=PQ=QC=AP=AQ.求∠BAC的大小.
分析:由已知显然可知三角形APQ是等边三角形,每个角都是60°.又知△APB与△AQC都是等腰三角形,两底角相等,由三角形外角性质即可推得∠PAB=30°.
3.P56页练习1、2
III课堂小结:1.等腰三角形和性质;等腰三角形的条件
V布置作业:1.P58页习题12.3第ll题.
2.已知等边△ABC,求平面内一点P,满足A,B,C,P四点中的任意三点连线都构成等腰三角形.这样的点有多少个?
2024年初一数学教案篇9
教学目标:
1通过学生身边可以尝试、探索的场景,经历有理数加法法则得出的过程,理解有理数加法法则的合理性。2能进行简单的有理数加法运算。3发展观察、归纳、猜测验证等能力。
重点难点:
重点:有理数加法法则的得出,和的符号的确定;难点:异号两数相加
教学过程
一激情引趣,导入新课
1我们早知道正有理数和零可以做加法运算,所有的有理数是否都可以进行加法运算呢?这就是我们这节课要研究的问题,先来分析一下,所有的有理数相加的时候有哪些情况呢?请你想一想
2从前有一个文盲记录家里的收入和支出的时候是这样的,用一颗红豆代表收入一文钱,用一颗黑豆代表支出一文钱,有一个月他发现记账的盒子里有10颗红豆6颗黑豆,他发现红豆比黑豆多了4颗,于是他不仅知道了这个月结余了4文钱还知道了自己这个月的收入和支出情况。我们可以用一个图形来表示他这种记账方式。“○”,“●”分别表红豆和黑豆。
,这个图形其实就是一个有理数的加法算式:(+10)+(-6)=+4下面我们借助数轴来理解有理数的加法运算。
二合作交流,探究新知
以原点为起点,规定向东的方向为正方向,向西的方向为负方向,一个单位代表1千米
1同号两数相加
小亮从O点出发,先向西移动2个千米休息一会儿,再向西移动3个千米,两次走路的总效果等于从点O出发向_____走了_______千米,用式子表示为_______________.
从上,你发现了吗,同号两数相加结果的符号怎么确定?结果的绝对值怎么确定?请把你的发现填在下面的框里。
同号两数相加,取__________的符号,并把它们的_____________相加。
2异号两数相加
(1)小明先从点O出发,先向东走4千米,发现口袋里的钥匙丢了,急急忙忙掉头向西走了1千米,找到了掉在路边的钥匙,小明这两次走路的效果总等于从点O出发向___走了____千米,用式子表示为_________________________.
(2)小李先从点O出发,先向东走了1米,突然想起今天家里有事,赶紧掉头向西往家里走,走了3千米到达家中,小李两次走路的总效果等于等于吃哦从点O出发,向___走了
_____千米。用式子表达为_______________________.
从上面例子,你发现了异号两数怎么做吗?把你的结论填在下框中。
异号两数相加,绝对值不相等时,取__________________的符号,并用_________的绝对值
减去_______________的绝对值。
3一个数和零相加,以及互为相反数相加
(1)某个人第一批货获得利润3万元,第二批货物保本,这两批货物总的利润是多少万元?
(2)某人第一批货物的利润是5万元,第二批货物亏损5万元,这两批货物总的利润是多少?
从上问题,你发现了什么?把你的结论写在下框中,
互为相反数的两个相加得_______,一个数和零相加,任得____________________.
三应用迁移,拓展提高
例1计算(1)(-8)+(-12)(2)(-3.75)+(-0.25)
(3)(-5)+9(4)(–10)+7
例2计算(1)(-3)+(2)(-)+(-)
例3填空
(1)-7+____=0(2)(+)+______=-(3)____+(-)=(4)__+=
四课堂练习,巩固提高
P21
五反思小结巩固提高
有理数的加法法则有哪些?请你把它们写在下面:
1
2
3
4
六作业p24-25A组1-4B1
2024年初一数学教案篇10
学习目标:
1.理解平行线的意义两条直线的两种位置关系;
2.理解并掌握平行公理及其推论的内容;
3.会根据几何语句画图,会用直尺和三角板画平行线;
学习重点:探索和掌握平行公理及其推论.
学习难点:对平行线本质属性的理解,用几何语言描述图形的性质
一、学习过程:预习提问
两条直线相交有几个交点?
平面内两条直线的位置关系除相交外,还有哪些呢?
(一)画平行线
1、 工具:直尺、三角板
2、 方法:一"落";二"靠";三"移";四"画"。
3、请你根据此方法练习画平行线:
已知:直线a,点B,点C.
(1)过点B画直线a的平行线,能画几条?
(2)过点C画直线a的平行线,它与过点B的平行线平行吗?
(二)平行公理及推论
1、思考:上图中,①过点B画直线a的平行线,能画 条;
②过点C画直线a的平行线,能画 条;
③你画的直线有什么位置关系? 。
②探索:如图,P是直线AB外一点,CD与EF相交于P.若CD与AB平行,则EF与AB平行吗?为什么?
二、自我检测:(一)选择题:
1、下列推理正确的是 ( )
A、因为a//d, b//c,所以c//d B、因为a//c, b//d,所以c//d
C、因为a//b, a//c,所以b//c D、因为a//b, d//c,所以a//c
2.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为( )
A.0个 B.1个 C.2个 D.3个
(二)填空题:
1、在同一平面内,与已知直线L平行的直线有 条,而经过L外一点,与已知直线L平行的直线有且只有 条。
2、在同一平面内,直线L1与L2满足下列条件,写出其对应的位置关系:
(1)L1与L2 没有公共点,则 L1与L2 ;
(2)L1与L2有且只有一个公共点,则L1与L2 ;
(3)L1与L2有两个公共点,则L1与L2 。
3、在同一平面内,一个角的两边与另一个角的两边分别平行,那么这两个角的大小关系是 。
4、平面内有a 、b、c三条直线,则它们的交点个数可能是 个。
三、CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°.
2024年初一数学教案篇11
【学习过程】
一、阅读教材
二、独立完成下列预习作业:
1、单项式和多项式统称整式.
2、表示÷的商,可以表示为.
3、长方形的面积为10,长为7cm,宽应为cm;长方形的面积为S,长为a,宽应为.
4、把体积为20的水倒入底面积为33的圆柱形容器中,水面高度为cm;把体积为V的水倒入底面积为S的圆柱形容器中,水面高度为.
一般地,如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式.
◆◆分式和整式统称有理式◆◆
三、合作交流,解决问题:
分式的分母表示除数,由于除数不能为0,故分式的分母不能为0,即当B≠0时,分式才有意义.分子分母相等时分式的值为1、分子分母互为相反数时分式的值为-1.
1、当x时,分式有意义;
2、当x时,分式有意义;
3、当b时,分式有意义;
4、当x、y满足时,分式有意义;
四、课堂测控:
1、下列各式,,,,,,,,x+y,,,,,0中,
是分式的有;
是整式的有;
是有理式的有
3、下列各式中,无论x取何值,分式都有意义的是()
A.B.C.D.
4、当x时,分式的值为零
5、当x时,分式的值为1;当x时,分式的值为-1.
2024年初一数学教案篇12
教学目标
(一)知识认知要求
1、回顾收集数据的方式。
2、回顾收集数据时,如何保证样本的代表性。
3、回顾频率。频数的概念及计算方法。
4、回顾刻画数据波动的统计量:极差、方差、标准差的概念及计算公式。
5、能利用计算器或计算机求一组数据的算术平均数。
(二)能力训练要求
1、熟练掌握本章的知识网络结构。
2、经历数据的收集与处理的过程,发展初步的统计意识和数据处理能力。
3、经历调查。统计等活动,在活动中发展学生解决问题的能力。
(三)情感与价值观要求
1、通过对本章内容的回顾与思考,发展学生用数学的意识。
2、在活动中培养学生团队精神。
教学重点
1、建立本章的知识框架图。
2、体会收集数据的方式,保证样本的代表性,频率。频数及刻画数据离散程度的统计量在实际情境中的意义和应用。
教学难点
收集数据的方式。抽样时保证样本的代表性。频率。频数。刻画数据离散程度的统计量在不同情境中的应用。
教学过程
一、导入新课
本章的内容已全部学完。现在如何让你调查一个情况。并且根据你获得数据,分析整理,然后写出调查报告,我想大家现在心里应该有数。
例如,我们要调查一下“上网吧的人的年龄”这一情况,我们应如何操作?
先选择调查方式,当然这个调查应采用抽样调查的方式,因为我们不可能调查到所有上网吧的人,何况也没有必要。
同学们感兴趣的话,下去以后可以以小组为单位,选择自己感兴趣的事情做调查,然后再作统计分析,然后把调查结果汇报上来,我们可以比一比,哪一个组表现最好?
二、讲授新课
1、举例说明收集数据的'方式主要有哪几种类型。
2、抽样调查时,如何保证样本的代表性?举例说明。
3、举出与频数。频率有关的几个生活实例?
4、刻画数据波动的统计量有哪些?它们有什么作用?举例说明。
针对上面的几个问题,同学们先独立思考,然后可在小组内交流你的想法,然后我们每组选出代表来回答。
(教师可参与到学生的讨论中,发现同学们前面知识掌握不好的地方,及时补上)。
收集数据的方式有两种类型:普查和抽样调查。
例如:调查我校八年级同学每天做家庭作业的时间,我们就可以用普查的形式。
在这次调查中,总体:我校八年级全体学生每天做家庭作业的时间;个体:我校八年级每个学生每天做家庭作业的时间。
用普查的方式可以直接获得总体情况。但有时总体中个体数目太多,普查的工作量较大;有时受客观条件的限制,无法对所有个体进行普查;有时调查具有破坏性,不允许普查,此时可用抽样调查。
例如把上面问题改成“调查全国八年级同学每天做家庭作业的时间”,由于个体数目太多,普查的工作量也较大,此时就采取抽样调查,从总体中抽取一个样本,通过样本的特征数字来估计总体,例如平均数。中位数。众数。极差。方差等。
上面我们回顾了为了了解某种情况而采取的调查方式:普查和抽样调查,但抽样调查必须保证数据具有代表性,因为只有这样,你抽取的样本才能体现出总体的情况,不然,就会失去可靠性和准确性。
例如对我们班里某门学科的成绩情况,有时不仅知道平均成绩,还要知道90分以上占多少,80到90分之间占多少,……,不及格的占多少等,这时,我们只要看一下每个学生的成绩落在哪一个分数段,落在这个分数段的分数有几个,表明数据落在这个小组的频数就是多少,数据落在这个小组的频率就是频数与数据总个数的商。
刻画数据波动的统计量有极差。方差。标准差。它们是用来描述一组数据的稳定性的。一般而言,一组数据的极差。方差或标准差越小,这组数据就越稳定。
三、建立知识框架图
通过刚才的几个问题回顾思考了我们这一章的重点内容,下面构建本章的知识结构图。
四、随堂练习
例1一家电脑生产厂家在某城市三个经销本厂产品的大商场调查,产品的销量占这三个大商场同类产品销量的40%。由此在广告中宣传,他们的产品在国内同类产品的销售量占40%。请你根据所学的统计知识,判断该宣传中的数据是否可靠:________,理由是________。
分析:这是一道判断说理型题,它要求借助于统计知识,作出科学的判断,同时运用统计原理给予准确的解释。因此,该电脑生产厂家凭借挑选某城市经销本产品情况,断然说他们的产品在国内同类产品的销量占40%,宣传中的数据是不可靠的,其理由有二:第一,所取样本容量太小;第二,样本抽取缺乏代表性和广泛性。
例2在举国上下众志成城抗击“非典”的斗争中,疫情变化牵动着全国人民的心。请根据下面的疫情统计图表回答问题:
(1)图10是5月11日至5月29日全国疫情每天新增数据统计走势图,观察后回答:
①每天新增确诊病例与新增疑似病例人数之和超过100人的天数共有__________天;
②在本题的统计中,新增确诊病例的人数的中位数是___________;
③本题在对新增确诊病例的统计中,样本是__________,样本容量是__________。
(2)下表是我国一段时间内全国确诊病例每天新增的人数与天数的频率统计表。(按人数分组)
①100人以下的分组组距是________;
②填写本统计表中未完成的空格;
③在统计的这段时期中,每天新增确诊
病例人数在80人以下的天数共有_________天。
2024年初一数学教案篇13
学习目标
1.掌握多项式、多项式的项及其次数,常数项的概念。
2.确定一个多项式的项、项数和次数。
3.由单项式与多项式归纳出整式概念。
4.在自主探索的学习过程中,引导学生观察、归纳、理解多项式,并与单项式进行比较,运用化归思想,让学到的知识系统化。
重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念。
难点:多项式的次数。
学法指导
从实际问题引入多项式的项,项数和次数的概念,通过具体分析所列式子,归纳多项式,注意和单项式的概念进行比较,帮助学生理解。在掌握单项式和多项式相关概念的过程中,体会式子是解决问题和进行交流的重要工具之一,体会在实际问题情景中运用整式的意义,进一步发展学生数学符号感。
《2.1.3多项式》同步四维训练含答案
新学期,两摞规格相同准备发放的数学课本整齐地叠放在讲台上,请根据图中所给出的数据信息,解答下列问题:
(1)请写出整齐叠放在桌面上的x本数学课本最上面距离地面的高度(用含x的整式表示);
(2)桌面上有56本与题(1)中相同的数学课本整齐叠放成一摞,若从中取走14本,求余下的数学课本最上面距离地面的高度.
《2.1.2多项式》课时练习含答案
1.下列说法中正确的是()
A.多项式ax2+bx+c是二次多项式
B.四次多项式是指多项式中各项均为四次单项式
C.-ab2,-x都是单项式,也都是整式
D.-4a2b,3ab,5是多项式-4a2b+3ab-5中的项
2.如果一个多项式是五次多项式,那么它任何一项的次数()
A.都小于5B.都等于5
C.都不小于5D.都不大于5
3.一组按规律排列的多项式:a+b,a2-b3,a3+b5,a4-b7,…,其中第10个式子是()
A.a10+b19B.a10-b19
C.a10-b17D.a10-b21
4.若xn-2+x3+1是五次多项式,则n的值是()
A.3B.5C.7D.0
5.下列整式:①-x2;②a+bc;③3xy;④0;⑤+1;⑥-5a2+a.其中单项式有,多项式有.(填序号)
6.一个关于a的二次三项式,二次项系数为2,常数项和一次项系数都是-3,则这个二次三项式为.
7.多项式的二次项系数是.
8.老师在课堂上说:“如果一个多项式是五次多项式……”老师的`话还没有说完,甲同学抢着说:“这个多项式最多只有六项.”乙同学说:“这个多项式只能有一项的次数是5.”丙同学说:“这个多项式一定是五次六项式.”丁同学说:“这个多项式最少有两项,并且最高次项的次数是5.”你认为甲、乙、丙、丁四位同学谁说得对,谁说得不对?你能说出他们说得对或不对的理由吗?
9.如果多项式3xm-(n-1)x+1是关于x的二次二项式,试求m,n的值.
10.四人做传数游戏,甲任取一个数传给乙,乙把这个数加1传给丙,丙再把所得的数平方后传给丁,丁把所得的数减1报出答案,设甲任取的一个数为a.
(1)请把游戏最后丁所报出的答案用整式的形式描述出来;
(2)若甲取的数为19,则丁报出的答案是多少?
2024年初一数学教案篇14
【教学目标】
知识与技能
1、理解三种统计图各自的特点、
2、根据不同的问题选择适当的统计图、
过程与方法
1、训练学生作图的技能、通过数据处理体会统计对决策的作用、
2、能够根据实际问题,选择适当的统计图清晰、有效地展示数据、
3、能从条形统计图、折线统计图、扇形统计图中获取信息、
情感、态度与价值观
统计图是展示数据的重要方法,它也经常出现在媒体上、通过对三种统计图的认识、制作和选择进一步培养学生对数据处理的能力及统计观念,使学生深刻体会到数学和我们的社会、生活密切相关、
【教学重难点】
重点:
1、了解不同统计图的特点、
2、根据实际问题选择合适的统计图,培养统计观念、
难点:
1、根据实际问题选择合适的统计图、
2、制作三种统计图并会从中获取有用的信息、
【教学过程】
一、创设情境,引入新课
师:在我们日常所接触的报刊、杂志及电视中,我们会经常见到一些统计图、最近,我在一本百科全书上就遇到了这样的情况:
我们知道地球上有人类生存至少已有200万年的历史、在相当长的.一段时间内,地球上的人口数量并不是很多,因为出生的人口和死亡的人口大致持平、然而随着农业耕作水平的不断提高和医疗条件的不断改善,世界人口开始急剧增加、目前,世界人口已超过70亿,平均每4天要出生100万以上的婴儿、在世界上的许多地方,人口的过快增长已造成了一系列严重的问题,例如食品短缺和城市过分拥挤等、
下面我们来看两幅统计图,了解一下世界人口在各大洲的百分比分布及世界人口增长的状况,也许能让我们很好地了解世界人口的状况、
课件出示相关图示、
师:你会从世界人口增长图中获得哪些信息呢?在哪一段时间,世界人口的增长率变化不大?在哪一段时间,世界人口就翻了一番?20__年,世界人口预测将达到多少?
生:从世界人口增长图中,我们可以看到公元1500年,人口达4.25亿;在公元1800年以前世界人口增长率的情况变化不大;但从公元1800年起,世界人口就开始迅速增长、当时医疗条件得到了改善,粮食产量增加以及工业革命的影响,世界人口才开始迅速增长、
师:这位同学回答得很好!从世界人口增长的情况还能联系到当时的历史背景,看来我们的统计图不仅是数据的展现,而且还是历史背景的再现、
生:从统计图中,我们还看到1950年~1990年这段时间人口翻了一番,而且从图上还可以预测出20__年世界人口将达到85亿、
师:我们再接着分析“世界人口的百分比分布图”、这是一个什么形式的统计图?
生:扇形统计图,条形统计图、
师:这个统计图是在扇形统计图的基础上综合改造得到的根据这个统计图你又能得到何种信息呢?扇形统计图反映的是世界人口在七大洲的分布吗?联系我们前两节课学的内容,同学们可针对这个统计图讨论交流、
(教师此时可参与到学生的讨论中,看同学们如何认识这个统计图、从统计图中得到的信息是否准确、根据学生讨论交流的情况进行讲评、)
生:扇形统计图是地球陆地面积分布统计图,条形统计图才是相应各大洲人口占世界人口的百分比、由此我们可以看出人口在地球上的分布是不均匀的,像亚洲陆地面积占地球陆地总面积的29.3%,可人口却占世界人口的63%;而北美洲陆地面积占地球陆地总面积的16.1%,人口只占世界人口的6.9%;南极洲陆地面积占地球陆地总面积的9、3%,那个地方却由于气候、地理位置等不同成为无人区、所以有些地区自然条件很差,人口很少,而有些地区土地肥沃,交通方便,人口相对集中、
师:很好!同学们已经能用数学中统计的眼光去观察、分析我们生存的这个世界、现在我们再来看某家报刊公布的反映世界人口情况的数据、
二、讲授新课
师:请同学们观察下面的统计图,你能尽可能的获取信息吗?
生1:从统计图中,我们可知50年后,世界人口将达到90亿、
生2:我们还可以看到从__年到20__年世界人口的变化情况、
生3:从__年到__年,世界人口由30亿增加到40亿;从__年到__年,世界人口由40亿增加到50亿;__年到__年由50亿增加到60亿、由此预测__年到__年世界人口从?
6、4、1统计图的选择:课后作业
(20__·武汉)为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍、如果没有喜欢的书籍,则作“其他”类统计、图①与图②是整理数据后绘制的两幅不完整的统计图、以下结论不正确的是()
A、由这两个统计图可知喜欢“科普常识”的学生有90人
B、若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有360人
C、由这两个统计图不能确定喜欢“小说”的人数
D、在扇形统计图中,“漫画”所在扇形的圆心角为72°
《6、4统计图的选择》同步练习
基础巩固
1、(题型一)用条形统计图表示的数据可以转换成()
A、扇形统计图
B、折线统计图
C、扇形统计图和折线统计图
D、既不能表示成扇形统计图也不能表示成折线统计图
2、(题型三)甲、乙两人参加某体育项目训练,为了便于研究,把最后5次的训练成绩分别用实线和虚线连接起来,如图6—4—1,下面的结论错误的是()
A、乙的第2次成绩与第5次成绩相同
B、第3次测试,甲的成绩与乙的成绩相同
C、第4次测试,甲的成绩比乙的成绩多2分
D、在5次测试中,甲的成绩都比乙的成绩高
2024年初一数学教案篇15
初一数学《数据的收集》教学设计
广州市华颖中学刘春荣
课型:分析研讨课
教 学 设 计
教学后记
课 题
数据的收集(2)
教
学
目
标
知识与技能
让学生经历调查与收集数据的过程,从中体会到数据在解决现实世界的问题中是有用的,学会收集数据,掌握收集数据的方法,利用数据解决问题。
过程和方法
组织学生开展调查,收集自己感兴趣的数据,课堂上集体讨论,在合作探究活动中获取知识,感受知识。
情感、态度与价值观
感兴趣于探究活动,愿意和他人交流,学会表达,学会质疑,逐步养成用数据说话的习惯。
重点、难点
重点:认识数据的重要性,掌握数据收集的方法。
难点:如何收集数据,利用数据来解决问题。
教
学
策
略
教法选择
教师以主持人的身份,开展课堂活动,引导学生独立思考、合作探索、参与交流,发表意见。
学法引导
通过详细阅读课文,联系生活实际,亲身实践、自主探索,了解收集数据的过程、方法和用途并收集数据。
课堂组织形式
课堂活动课:教师引导,学生分组讨论,代表发言学生参与辩论,课堂展开调查,师生共同小结。
教
学
过
程
一、课堂导入
寓言小故事:通过寓言小故事引入教学,使学生的注意力进入到课堂的活动中,调动同学们的学习积极性,认识到数据的收集在生活中是有用的。
二、分组讨论
分小组讨论:把学生分成六个讨论小组,每位同学把自己经历调查所收集到的数据,和小组同学一起讨论,在小组中阐述自己的想法,介绍收集数据的过程和方法,选出有代表性的数据,进行修改认证。
三、集体分享
选派代表发言:每一个讨论小组派一至三位代表把本组有代表性的数据收集公布,阐述调查的问题,数据收集的对象、方法和过程,和同学们一起探讨数据的作用,分享调查的成果。学生或老师提出质疑,共同评价,达成共识。
四、课堂调查
课堂开展调查研究:在分享学生数据收集的基础上,师生合作交流,通过课堂调查,用唱票的方法,了解学生对老师的评价,用数据说话。
五、反思提高
活动过程 小结:对整个数据收集的过程做一个小结,学生发表自己的见解,总结数据收集的方法,了解到实验次数增多对结果产生的影响,明白数据在解决现实生活问题是有用的这个道理。
六、课后作业
1、把收集的数据加以整理,写出一份报告。
2、课本第188页习题5.1第1、2题,可以到其它班级收集数据。
3、阅读课本第189~192页
备注:
初一数学《数据的收集》教学设计
广州市华颖中学刘春荣
课型:分析研讨课
教 学 设 计
教学后记
课 题
数据的收集(2)
教
学
目
标
知识与技能
让学生经历调查与收集数据的过程,从中体会到数据在解决现实世界的问题中是有用的,学会收集数据,掌握收集数据的方法,利用数据解决问题。
过程和方法
组织学生开展调查,收集自己感兴趣的数据,课堂上集体讨论,在合作探究活动中获取知识,感受知识。
情感、态度与价值观
感兴趣于探究活动,愿意和他人交流,学会表达,学会质疑,逐步养成用数据说话的习惯。
重点、难点
重点:认识数据的重要性,掌握数据收集的方法。
难点:如何收集数据,利用数据来解决问题。
教
学
策
略
教法选择
教师以主持人的身份,开展课堂活动,引导学生独立思考、合作探索、参与交流,发表意见。
学法引导
通过详细阅读课文,联系生活实际,亲身实践、自主探索,了解收集数据的过程、方法和用途并收集数据。
课堂组织形式
课堂活动课:教师引导,学生分组讨论,代表发言学生参与辩论,课堂展开调查,师生共同小结。
教
学
过
程
一、课堂导入
寓言小故事:通过寓言小故事引入教学,使学生的注意力进入到课堂的活动中,调动同学们的学习积极性,认识到数据的收集在生活中是有用的。
二、分组讨论
分小组讨论:把学生分成六个讨论小组,每位同学把自己经历调查所收集到的数据,和小组同学一起讨论,在小组中阐述自己的想法,介绍收集数据的过程和方法,选出有代表性的数据,进行修改认证。
三、集体分享
选派代表发言:每一个讨论小组派一至三位代表把本组有代表性的数据收集公布,阐述调查的问题,数据收集的对象、方法和过程,和同学们一起探讨数据的作用,分享调查的成果。学生或老师提出质疑,共同评价,达成共识。
四、课堂调查
课堂开展调查研究:在分享学生数据收集的基础上,师生合作交流,通过课堂调查,用唱票的方法,了解学生对老师的评价,用数据说话。
五、反思提高
活动过程 小结:对整个数据收集的过程做一个小结,学生发表自己的见解,总结数据收集的方法,了解到实验次数增多对结果产生的影响,明白数据在解决现实生活问题是有用的这个道理。
六、课后作业
1、把收集的数据加以整理,写出一份报告。
2、课本第188页习题5.1第1、2题,可以到其它班级收集数据。
3、阅读课本第189~192页
备注:
2024年初一数学教案篇16
教学目标
1.利用10的乘方,进行科学记数,会用科学记数法表示大于10的数;(重点)
2.能将用科学记数法表示的数还原为原数.(重点)
教学过程
一、情境导入
在悉尼举行的国际天文学联合会大会上,天文学家指出整个可见宇宙空间大约有700万亿亿颗恒星,这个数字比地球上所有沙漠和海滩上的沙砾总和数量还要多.
如果想在字面上表示出这一数字,需要在“7”后面加上22个“0”.即约为“70000000000000000000000”颗.
生活中,我们还常会遇到一些比较大的数.例如:
1.据报载,20__年我国将发展固定宽带接入新用户25000000户.
2.全球每年大约有577000000000000m3的水从海洋和陆地转化为大气中的水汽.
3.拒绝“餐桌浪费”刻不容缓,据统计,全国每年浪费粮食总量约50000000000千克.
像这些较大的数据,书写和阅读都有一定的难度,那么有没有这样一种表示方法,使得这些大数易写、易读、易于计算呢?
二、合作探究
探究点一:用科学记数法表示大数
例1我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨,将167000用科学记数法表示为()
A.167×103B.16.7×104
C.1.67×105D.1.6710×106
解析:根据科学记数法的表示形式,先确定a,再确定n,解此类题的关键是a,n的确定.167000=1.67×105,故选C.
方法总结:科学记数法的表示形式为a×10n,其中1≤a<10,n为整数,表示时关键要正确确定a的值以及n的值.
例220__年3月发生了一件举国悲痛的空难事件——马航失联,该飞机上有中国公民154名.噩耗传来后,我国为了搜寻生还者及找到失联飞机,花费了大量的人力物力,已花费人民币大约934千万元.把934千万元用科学记数法表示为______元()
A.9.34×102B.0.934×103
C.9.34×109D.9.34×1010
解析:934千万=9340000000=9.34×109.故选C.
方法总结:对用带“万”“千万”“亿”等单位的数用科学记数法表示时,要化成不带单位的数,再用科学记数法表示.
探究点二:将用科学记数法表示的数转换为原数
例3已知下列用科学记数法表示的数,写出原来的数:
(1)2.01×104;(2)6.070×105;(3)-3×103.
解析:(1)将2.01的小数点向右移动4位即可;(2)将6.070的小数点向右移动5位即可;(3)将-3扩大1000倍即可.
解:(1)2.01×104=20100;
(2)6.070×105=607000;
(3)-3×103=-3000.
方法总结:将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的.数.
三、板书设计
科学记数法:
(1)把大于10的数表示成a×10n的形式.
(2)a的范围是1≤a<10,n是正整数.
(3)n比原数的整数位数少1.
教学反思
本节课的特点是实际性强,和我们的日常生活联系紧密,从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展观察、讨论、交流等活动.把学生被动接受知识的过程变为主动探究发现的过程,使知识的发生与发展在每一位学生各自的体验和自主学习中逐渐展现.