初一数学教案下载
设计教案的过程对教师来说也是一种学习和成长的机会,这有助于提升教师的专业素养。下面是一些初一数学教案下载免费阅读下载,希望对大家写初一数学教案下载有用。
初一数学教案下载篇1
【学习目标】
1、理解什么是一元一次方程。
2、理解什么是方程的解及解方程,学会检验一个数值是不是方程的解的方法。
【重点难点】能验证一个数是否是一个方程的解。
1.某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2000度,全年用电15万度,如果设上半年每月平均用电x度,那么所列方程正确的是()
A.6x+6(x-2000)=150000
B.6x+6(x+2000)=150000
C.6x+6(x-2000)=15
D.6x+6(x+2000)=15
2.李红买了8个莲蓬,付50元,找回38元.设每个莲蓬的价格为x元,根据题意,列出方程为________.
3.一个正方形花圃边长增加2m,所得新正方形花圃的`周长是28m,则原正方形花圃的边长是多少?(只列方程)
《3.1.等式的性质》同步四维训练含答案
知识点一:等式的性质1
1.下列变形错误的是(D)
A.若a=b,则a+c=b+c
B.若a+2=b+2,则a=b
C.若4=x-1,则x=4+1
D.若2+x=3,则x=3+2
2.已知m+a=n+b,根据等式的性质变形为m=n,那么a,b必须符合的条件是(C)
A.a=-b
B.-a=b
C.a=b
D.a,b可以是任意有理
《3.1从算式到方程》同步练习含解析
7.解:把x=3代入方程,得:15-a=3,
解得:a=12.
故选B.
根据方程解的定义,将方程的解代入方程,就可得一个关于字母a的一元一次方程,从而可求出a的值.
本题考查了方程的解的定义,解决本题的关键在于:根据方程的解的定义将x=3代入,从而转化为关于a的一元一次方程.
8.解:A、7x-4=3x是方程;
B、4x-6不是等式,不是方程;
C、4+3=7没有未知数,不是方程;
D、2x<5不是等式,不是方程;
故选:A.
根据方程的定义:含有未知数的等式叫方程解答即可.数或整式
初一数学教案下载篇2
教学目标
1、整理前两个学段学过的整数、分数(包括小数)的知识,掌握正数和负数的概念;
2、能区分两种不同意义的量,会用符号表示正数和负数;
3、体验数学发展的一个重要原因是生活实际的需要,激发学生学习数学的兴趣。
教学难点 正确区分两种不同意义的量。
知识重点 两种相反意义的量
教学过程
(师生活动)设计理念
设置情境
引入课题上课开始时,教师应通过具体的例子,简要说明在前两个学段我们已经学过的数,并由此请学生思考:生活中仅有这些“以前学过的数”够用了吗?下面的例子仅供参考。
师:今天我们已经是七年级的学生了,我是你们的数学老师。下面我先向你们做一下自我介绍,我的名字是__,身高1.73米,体重58.5千克,今年40岁。我们的班级是七(13)班,有60个同学,其中男同学有22个,占全班总人数的37%…
问题1:老师刚才的介绍中出现了几个数?分别是什么?你能将这些数按以前学过的数的分类方法进行分类吗?
学生活动:思考,交流
师:以前学过的数,实际上主要有两大类,分别是整数和分数(包括小数)。
问题2:在生活中,仅有整数和分数够用了吗?
请同学们看书(观察本节前面的几幅图中用到了什么数,让学生感受引入负数的必要性)并思考讨论,然后进行交流。
(也可以出示气象预报中的气温图,地图中表示地形高低地形图,工资卡中存取钱的记录页面等)
学生交流后,教师归纳:以前学过的数已经不够用了,有时候需要一种前面带有“-”的新数。先回顾小学里学过的数的类型,归纳出我们已经学了整数和分数,然后,举一些实际生活中·共有相反意义的量,说明为了表示相反意义的量,我们需要引入负数,这样做强调了数学的严密性,但对于学生来说,更多地感到了数学的枯燥乏味为了既复习小学里学过的数,又能激发学生的学习兴趣,所以创设如下的问题情境,以尽量贴近学生的实际。这个问题能激发学生探究的欲望,学生自己看书学习是培养学生自主学习的重要途径,都应予以重视。
以上的情境和实例使学生体会生活中处处有数学,通过实例,使学生获取大量的感性材料,为正确建立相反意义的量奠定基础。
分析问题
探究新知问题3:前面带有“一”号的新数我们应怎样命名它呢?为什么要引人负数呢?通常在日常生活中我们用正数和负数分别表示怎样的量呢?
这些问题都必须要求学生理解。
教师可以用多媒体出示这些问题,让学生带着这些问题看书自学,然后师生交流。
这阶段主要是让学生学会正数和负数的表示。
强调:用正,负数表示实际问题中具有相反意义的量,而相反意义的量包含两个要素:一是它们的意义相反,如向东与向西,收人与支出;二是它们都是数量,而且是同类的量。这些问题是这节课的主要知识,教师要清楚地向学生说明,并且要注意语言的准确与规范,要舍得花时间让学充分发表想法。
举一反三思维拓展经过上面的讨论交流,学生对为什么要引人负数,对怎样用正数和负数表示两种相反意义的量有了初步的理解,教师可以要求学生举出实际生活中类似的例子,以加深对正数和负数概念的理解,并开拓思维。
问题4:请同学们举出用正数和负数表示的例子。
问题5:你是怎样理解“正整数”“负整数,’正分数”和“负分数”的呢?请举例说明。
能否举出例子是学生对知识掌握程度的体现,也能进一步帮助学生理解引负数的必要性
课堂练习教科书第5页练习
小结与作业
课堂小结
围绕下面两点,以师生共同交流的方式进行:
1、0由于实际问题中存在着相反意义的量,所以要引人负数,这样数的范围就扩大了;
2、正数就是以前学过的0以外的数(或在其前面加“+”),负数就是在以前学过的0以外的数前面加“-”。
本课作业教科书第7页习题1.1第1,2,4,5(第3题作为下节课的思考题。
作业可设必做题和选做题,体现要求的层次性,以满足不同学生的需要。
本课教育评注(课堂设计理念,实际教学效果及改进设想)
密切联系生活实际,创设学习情境。本课是有理数的第一节课时。引人负数是数的范围的一次重要扩充,学生头脑中关于数的结构要做重大调整(其实是一次知识的顺应过程),而负数相对于以前的数,对学生来说显得更抽象,因此,这个概念并不是一下就能建立的。为了接受这个新的数,就必须对原有的数的结构进行整理,引人币的举例就是这个目的。
负数的产生主要是因为原有的数不够用了(不能正确简洁地表示数量),书本的例子或图片中出现的的负数就是让学生去感受和体验这一点。使学生接受生活生产实际中确实存在着两种相反意义的量是本课的教学难点,所以在教学中可以多举几个这方面的例子,并且所举的例子又应该符合学生的年龄和思维特点。当学生接受了这个事实后,引入负数(为了区分这两种相反意义的量)就是顺理成章的事了。
这个教学设计突出了数学与实际生活的紧密联系,使学生体会到数学的应用价值,体现了学生自主学习、合作交流的教学理念,书本中的图片和例子都是生活生产中常见的事实,学生容易接受,所以应该让学生自己看书、学习,并且鼓励学生讨论交流,教师作适当引导就可以了。
初一数学教案下载篇3
【学习过程】
一、阅读教材
二、独立完成下列预习作业:
1、单项式和多项式统称整式.
2、表示÷的商,可以表示为.
3、长方形的面积为10,长为7cm,宽应为cm;长方形的面积为S,长为a,宽应为.
4、把体积为20的水倒入底面积为33的圆柱形容器中,水面高度为cm;把体积为V的水倒入底面积为S的圆柱形容器中,水面高度为.
一般地,如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式.
◆◆分式和整式统称有理式◆◆
三、合作交流,解决问题:
分式的分母表示除数,由于除数不能为0,故分式的分母不能为0,即当B≠0时,分式才有意义.分子分母相等时分式的值为1、分子分母互为相反数时分式的值为-1.
1、当x时,分式有意义;
2、当x时,分式有意义;
3、当b时,分式有意义;
4、当x、y满足时,分式有意义;
四、课堂测控:
1、下列各式,,,,,,,,x+y,,,,,0中,
是分式的有;
是整式的有;
是有理式的有
3、下列各式中,无论x取何值,分式都有意义的是()
A.B.C.D.
4、当x时,分式的值为零
5、当x时,分式的值为1;当x时,分式的值为-1.
初一数学教案下载篇4
教学目标
1.利用10的乘方,进行科学记数,会用科学记数法表示大于10的数;(重点)
2.能将用科学记数法表示的数还原为原数.(重点)
教学过程
一、情境导入
在悉尼举行的国际天文学联合会大会上,天文学家指出整个可见宇宙空间大约有700万亿亿颗恒星,这个数字比地球上所有沙漠和海滩上的沙砾总和数量还要多.
如果想在字面上表示出这一数字,需要在“7”后面加上22个“0”.即约为“70000000000000000000000”颗.
生活中,我们还常会遇到一些比较大的数.例如:
1.据报载,20__年我国将发展固定宽带接入新用户25000000户.
2.全球每年大约有577000000000000m3的水从海洋和陆地转化为大气中的水汽.
3.拒绝“餐桌浪费”刻不容缓,据统计,全国每年浪费粮食总量约50000000000千克.
像这些较大的数据,书写和阅读都有一定的难度,那么有没有这样一种表示方法,使得这些大数易写、易读、易于计算呢?
二、合作探究
探究点一:用科学记数法表示大数
例1我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨,将167000用科学记数法表示为()
A.167×103B.16.7×104
C.1.67×105D.1.6710×106
解析:根据科学记数法的表示形式,先确定a,再确定n,解此类题的关键是a,n的确定.167000=1.67×105,故选C.
方法总结:科学记数法的表示形式为a×10n,其中1≤a<10,n为整数,表示时关键要正确确定a的值以及n的值.
例220__年3月发生了一件举国悲痛的空难事件——马航失联,该飞机上有中国公民154名.噩耗传来后,我国为了搜寻生还者及找到失联飞机,花费了大量的人力物力,已花费人民币大约934千万元.把934千万元用科学记数法表示为______元()
A.9.34×102B.0.934×103
C.9.34×109D.9.34×1010
解析:934千万=9340000000=9.34×109.故选C.
方法总结:对用带“万”“千万”“亿”等单位的数用科学记数法表示时,要化成不带单位的数,再用科学记数法表示.
探究点二:将用科学记数法表示的数转换为原数
例3已知下列用科学记数法表示的数,写出原来的数:
(1)2.01×104;(2)6.070×105;(3)-3×103.
解析:(1)将2.01的小数点向右移动4位即可;(2)将6.070的小数点向右移动5位即可;(3)将-3扩大1000倍即可.
解:(1)2.01×104=20100;
(2)6.070×105=607000;
(3)-3×103=-3000.
方法总结:将科学记数法a×10n表示的数,“还原”成通常表示的数,就是把a的小数点向右移动n位所得到的.数.
三、板书设计
科学记数法:
(1)把大于10的数表示成a×10n的形式.
(2)a的范围是1≤a<10,n是正整数.
(3)n比原数的整数位数少1.
教学反思
本节课的特点是实际性强,和我们的日常生活联系紧密,从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展观察、讨论、交流等活动.把学生被动接受知识的过程变为主动探究发现的过程,使知识的发生与发展在每一位学生各自的体验和自主学习中逐渐展现.
初一数学教案下载篇5
4.1从问题到方程:教案
【学习目标】
1.探索实际问题中的数量关系,并学会用方程描述;
2.通过对多种实际问题中数量关系的分析,初步感受方程是刻画现实世界的有效模型;
3.通过观察,归纳一元一次方程的概念.
【导学提纲】
1.左右两个图形中的天平都是平衡的,请回答以下问题:
(1)你能知道左图中的食盐有多少克吗?你是怎么知道的?
(2)右图中两个相同小球的质量相等,你能知道这两个小球的质量吗?
4.1从问题到方程:同步练习
1.(20__?哈尔滨)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()
A.2×1000(26﹣x)=800xB.1000(13﹣x)=800x
C.1000(26﹣x)=2×800xD.1000(26﹣x)=800x
【分析】题目已经设出安排x名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的.2倍从而得出等量关系,就可以列出方程.
【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得
1000(26﹣x)=2×800x,故C答案正确,
故选C
【点评】本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.
《4.1从问题到方程》测试
1.某学校组织600名学生分别到野生动物园和植物园开展社会实践活动,到野生动物园的人数比到植物园人数的2倍少30人,若设到植物园的人数为x人,依题意,可列方程为_____.
2.某项工程,甲队单独完成要30天,乙队单独完成要20天,若甲队先做若干天后,由乙队接替完成剩余的任务,两队共用25天,求甲队单独工作的天数,设甲队单独工作的天数为x,则可列方程为_____.
3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,一个螺钉需要配两个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,根据题意可列方程得_____.
4.某商店换季促销,将一件标价为240元的T恤8折售出,仍获利20%,若设这件T恤的成本是x元,根据题意,可得到的方程是_____.
初一数学教案下载篇6
一、教学目标设计
[知识与技能目标]
1、借助数轴,初步理解绝对值的概念,能求一个数的绝对值,会利用绝对值比较两个负数的大小。
2、通过应用绝对值解决实际问题,体会绝对值的意义和作用。
[过程与方法目标]
限度的发挥学生的主体参与,让学生在教师的引导启发,师生的交流与探索下,轻松愉快地学到新知识。
[情感态度与价值观]
借助数轴解决数学问题,有意识地形成“脑中有图,心中有数”的数形结合思想,让学生采取自主探索,合作交流的学习方式。
二、教材解读
借助数轴引出对绝对值的概念,并通过计算、观察、交流、发现绝对值的性质特征,利用绝对值来比较两个负数的大小。
让学生直观理解绝对值的含义,不要在绝对值符号内部出现多重符号和
字母,多鼓励学生通过观察、归纳、验证。
、教学过程设计与分析
一、情境导入
[课件展示,激趣感知]
博物馆、农场到学校与学校到博物馆农场的距离的关系。
[媒体展示课件,认知生活中的有些问题]
不考虑相反意义,只考虑具体数值。
[创设情境,实例导入]利用动画展示,让学生在有趣的图画中感受绝对值激发学生的兴趣。
实物的形象符合学生心理,学生兴趣很高,踊跃发言,95%的学生能顺利的解决问题。
师生互动
[提出问题,引发讨论]
1、引导学生得出绝对值定义及表示方法。
2、同桌之间互相举例。
[展示:启发学生交流了解绝对值]
归纳绝对值概念,教师指出表示方法。
[师生互动、探索新知]:学生根据情境感知初步认知绝对值,并通过对其概念的理解求解一个数的绝对值。
同桌之间举例,效果良好,体现了“自主——协作”学习。
阅读课文,互动探索
求解各数的绝对值后讨论
1、想一想互为相反数的两个数的绝对值有什么关系?学生举例,并进行观察、比较、归纳。
2、议一议一个数的绝对值与这个数有什么关系?小组讨论、交流教师引导学生用自己的语言描述所得结论教师质疑:一个数的绝对值是否为负数?学生通过分析理解绝对值的内在涵义。
阅读课文:从各数的绝对值归纳绝对值的代数意义。
[阅读课文:“想一想]提出问题,引起学生的思考。
[阅读课文:“议一议]
学生分析各类数的绝对值与本身的关系,并对教师的质疑进行深究。
[趣引妙答,思路点拨]通过学生举例思考,对互为相反数的两个数的绝对值进行观察对比,从而得到它们的关系。
学生从“特殊——一般”分类归纳绝对值的代数意义,并通过归纳总结出绝对值的内在涵义,体现学生的主体性。
积极调动学生的思维,使学生在协商、讨论中将问题逐渐明朗化、具体化,在共享集体思维成果的基础上达到对当前所学内容比较全面、正确的理解。
3、做一做
[激趣探知]
教师出示过关题目
学生通过自主探索最终找到两个负数比较大小的方法,绝对值大的反而小。
师生归纳两页数比较大小的两种方法。
[探索用绝对值比较两负数的方法]
体验概念的形式过程
旧知识的引用,让学生在轻松愉快的环境中获取新知,从已有知识逐渐到新知识,不但可激发学生的兴趣,并且培养学生的探索精神,同时分解了本节的难点。
从旧知识层层引入,学生兴趣十足,提高了教学效果,突破了难点,学生接受轻而易举。
巩固练习
[绝对值比较两负数大小的运用]
情境:比较下列每组数的大小。
[媒体展示,出示习题]:
运用绝对值比较负数大小。
[变成训练,巩固反馈]
继续对绝对值比较负数大小进行巩固练习。
由以上练习层层深入,学生解决问题的能力大大提高,并且印象深刻。
知识延伸
[学生探究,教师点拨]
[媒体展示]
绝对值定义,代数意义及内在涵义的的灵活应用。
[知识延伸,目标升华]
充分发挥学生的自主探索能力,使学生能够深入、细致的理解知识点。
学生能够互相评点,共同探索,既发展了自主学习能力,又强化了协作精神。
七、教学板书设计
初一数学教案下载篇7
1.教学重点、难点
重点:列代数式。
难点:弄清楚语句中各数量的意义及相互关系。
2.本节知识结构:
本小节是在前面代数式概念引出之后,具体讲述如何把实际问题中的数量关系用代数式表示出来。课文先进一步说明代数式的概念,然后通过由易到难的三组例子介绍列代数式的方法。
3.重点、难点分析:
列代数式实质是实现从基本数量关系的语言表述到代数式的一种转化。列代数式首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式。
如:用代数式表示:比的2倍大2的数。
分析本题属于“…比…多(大)…或…比…少(小)”的类型,首先要抓住这几个关键词。然后从中找出谁是大数,谁是小数,谁是差。比的2倍大2的数换个方式叙述为所求的数比的2倍大2。大和比前边的量,即所求的数为大数,那么比和大之间量,即的2倍则为小数,大后边的量2即为差。所以本小题是已知小数和差求大数。因为大数=小数+差,所以所求的数为:2+2.
4.列代数式应注意的问题:
(1)要分清语言叙述中关键词语的意义,理清它们之间的数量关系。如要注意题中的“大”,“小”,“增加”,“减少”,“倍”,“倒数”,“几分之几”等词语与代数式中的加,减,乘,除的&39;运算间的关系。
(2)弄清运算顺序和括号的使用。一般按“先读先写”的原则列代数式。
(3)数字与字母相乘时数字写在前面,乘号省略不写,字母与字母相乘时乘号省略不写。
(4)在代数式中出现除法时,用分数线表示。
5.教法建议:
列代数式是本章教学的一个难点,学生不容易掌握,这样老师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。
初一数学教案下载篇8
教材分析
1.这节的重点为:去括号。因此,本节所学的知识实际上就是对前面所学知识的一个巩固和深化,要突破这个重点,只有在掌握方法的前提下,通过一定的练习来掌握。
2.去括号是整式加减的一个重要内容,也是下一章一元一次方程的直接基础,也是今后继续学习整式的乘除、因式分解、方程,以及分式、函数等的重要基础。
学情分析
去括号法则是教材上的教学内容,学生学习时会经常出现错用法则的现象。实验表明:完全可以用乘法分配律取代去括号法则.这是由于:
(1)“去括号法则”,增加了记忆负担和出错的机会,容易出错;
(2)去括号的法则增加了解题长度,降低了学习效率;
(3)用乘法分配律去括号的学习是同化而非顺应,易于理解与掌握;
(4)用乘法分配律去括号是回归本质,返璞归真,且既可减少学习时间,又能提高运算的正确率。
教学目标
1.熟练掌握去括号时符号的变化规律;
2.能正确运用去括号进行合并同类项;
3.理解去括号的依据是乘法分配律。
教学重点和难点
重点
去括号时符号的变化规律。
难点
括号外的因数是负数时符号的变化规律。
教学过程
一、创设情景问题
青藏铁路线上,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的形式速度可以达到120千米/时。
请问:(3)在格尔木到拉萨路段,列车通过冻土地段比通过非冻土地段多用0.5小时,如果通过冻土地段需要t小时,则这段铁路的全长可以怎么样表示?冻土地段与非冻土地段相差多少千米?
解:这段铁路的全长为100t+120(t-0.5)(千米)
冻土地段与非冻土地段相差100t-120(t-0.5)(千米)。
提出问题,如何化简上面的两个式子?引出本节课的学习内容。
二、探索新知
1.回顾:
1你记得乘法分配率吗?怎么用字母来表示呢?
a(b+c)=ab+ac
2-(-2)=(-1)__(-2)=2+(-3)=(+1)__(-3)=-3
2.探究
计算(试着把括号去掉)
(1)13+(7-5)(2)13-(7-5)
类比数的运算,去掉下面式子的括号
(3)a+(b-c)(4)a-(b-c)
3.解决问题
100t+120(t-0.5)=100t-120(t-0.5)=
思考:
去掉括号前,括号内有几项、是什么符号?去括号后呢?
去括号的依据是什么?
三、知识点归纳
去括号法则:
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.
注意事项
(1)去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;
(2)括号内原有几项去掉括号后仍有几项.
四、例题精讲
例4化简下列各式:
(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).
五、巩固练习
课本P68练习第一题.
六、课堂小结
1.今天你收获了什么?
2.你觉得去括号时,应特别注意什么?
七、布置作业
课本P71习题2.2第2题
初一数学教案下载篇9
教学目标:
1、明白生活中存在着无数表示相反意义的量,能举例说明;
2、能体会引进负数的必要性和意义,建立正数和负数的数感。
重点:通过列举现实世界中的“相反意义的量”的例子来引进正数和负数,要求学生理解正数和负数的意义,为以后通过实例引进有理数的大小比较、加法和乘法法则打基础。
难点:对负数的意义的理解。
教学过程:
一、知识导向:本节课是一个从小学过渡的知识点,主要是要抓紧在数范围上扩充,对引进“负数”这一概念的必要性及意义的理解。
二、新课拆析:1、回顾小学中有关数的范围及数的分类,指出小学中的“数”是为了满足生产和生活的需要而产生发展起来的。如:0,1,2,3,…,,
2、能让学生举例出更多的有关生活中表示相反意义的量,能发现事物之间存在的对立面。
如:汽车向东行驶3千米和向西行驶2千米
温度是零上10°C和零下5°C;收入500元和支出237元;水位升高1.2米和下降0.7米;3、上面所列举的表示相反意义量,我们也许就会发现:如果只用原来所学过的数很难区分具有相反意义的量。
一般地,对于具有相反意义的量,我们可把其中一种意义的量规定为正的,用过去学过的数表示;把与它意义相反的量规定为负的,用过去学过的`数(零除外)前面放上一个“—”号来表示。
如:在表示温度时,通常规定零上为“正”,零下为“负”即零上10°C表示为10°C,零下5°C表示为-5°C概括:我们把这一种新数,叫做负数,如:-3,-45,…过去学过的那些数(零除外)叫做正数,如:1,2.2…零既不是正数,也不是负数例:下面各数中,哪些数是正数,哪些数是负数,1,2.3,-5.5,68,-,0,-11,+123,…
三、阶梯训练:P18练习:1,2,3,4。
四、知识小结:
从本节课所学的内容中,应能从数的角度来区分小学与初中的异同点,通过运用发现相反意义量,能理解引进“负数”的必要性及其意义。
五、作业巩固:
1、每个同学分别举出5个生活中表示相反意义量的的例子;并用正、负数来表示;2、分别举出几个正数与负数(最少6个)。3、P20习题2.1:1题。
初一数学教案下载篇10
教学目标和要求:
1.理解单项式及单项式系数、次数的概念.
2.会准确迅速地确定一个单项式的系数和次数.
3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识.
4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力.
教学重点和难点:
重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数.难点:单项式概念的建立.
教学过程:
一、复习引入:
1、列代数式
(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的任务.让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育.)
2、请学生说出所列代数式的意义.
3、请学生观察所列代数式包含哪些运算,有何共同运算特征.
由小组讨论后,经小组推荐人员回答,教师适当点拨.
(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性.)
二、讲授新课:
1.单项式:
通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并归纳得出单项式的概念:由数与字母的乘积组成的代数式称为单项式.然后教师补充,单独一个数或一个字母也是单项式,
如a,5.
2.练习:判断下列各代数式哪些是单项式?
(1);(2)abc;(3)b2;(4)-5ab2;(5)y;(6)-xy2;(7)-5.
(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)
3.单项式系数和次数:
直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的.以
四个单项式a2h,2πr,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念.
单项式的系数:单项式中的数字因数叫做这个单项式的系数.
单项式的&39;次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.
4.例题:
例1:判断下列各代数式是否是单项式.如不是,请说明理由;如是,请指出它的系数和次数.①x+1;②;③πr2;④-a2b
答:①不是,因为原代数式中出现了加法运算;
②不是,因为原代数式是1与x的商;
③是,它的系数是π,次数是2;
④是,它的系数是-,次数是3.
例2:下面各题的判断是否正确?
①-7xy2的系数是7;②-x2y3与x3没有系数;③-ab3c2的次数是0+3+2;
④-a3的系数是-1;⑤-32x2y3的次数是7;⑥πr2h的系数是.
答:①错,应是?7;②错;?x2y3系数为?1,x3系数为1;③错,次数应该是1+3+2;④正确;⑤错,次数为2+3=5;⑥正确
强调应注意以下几点:
①圆周率π是常数;
②当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等;
③单项式次数只与字母指数有关.
5.游戏:
规则:一个小组学生说出一个单项式,然后指定另一个小组的学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准.
(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识.)
三、课堂小结:
①单项式及单项式的系数、次数.
②根据教学过程反馈的信息对出现的问题有针对性地进行小结.
③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的.
教学后记:
本节课是研究整式的起始课,它是进一步学习多项式的基础,因此对单项式有关概念的理解和掌握情况,将直接影响到后续学习.为突出重点,突破难点,教学中要加强直观性,即为学生提供足够的感知材料,丰富学生的感性认识,帮助学生认识概念,同时也要注重分析,亦即在剖析单项式结构时,借助反例练习,抓住概念易混淆处和判断易出错处,强化认识,帮助学生理解单项式系数、次数,为进一步学习新知做好铺垫.
针对七年级学生学习热情高,但观察、分析、认识问题能力较弱的特点,教学时将以启发为主,同时辅之以讨论、练习、合作交流等学习活动,达到掌握知识的目的,并逐步培养起学生观察、分析、抽象、概括的能力,为进一步学习同类项打下坚实的基础.
初一数学教案下载篇11
本节课是人教版七年级上册第三章第一节的内容,主要的教学目标是使学生了解什么是方程,什么是一元一次方程;体会字母表示数的好处,体会从算式到方程是数学的一大进步;会将实际问题抽象为数学问题,通过找相等关系列方程解决问题。方程的概念在小学阶段已经出现过,如何让学生在已有的知识基础上更高一个层次认识方程、运用方程呢?我的教学策略是:第一步,创造一个问题情境引发学生的认知失衡。第二步,通过一个生活实例让学生进行思考、分析、总结归纳出新知识。第三步,介绍新知识的文化背景,对学生进行数学文化的渗透,同时为学习有关概念进行铺垫。第四步,通过讲练结合的方式突破本节课的难点——找相等关系列方程。现对本节课的教学过程进行反思:
一、成功之处
1、对学生进行了数学文化的渗透。方程的概念在小学已经出现过,初一再次学习方程应该让学生们更高一个层次认识方程,因此通过介绍字母表示未知数的文化背景,在文化层面上让学生进一步理解数学、喜爱数学,展示数学的文化魅力。
2、分层次设置练习题,逐步突破难点。初一学生在解应用题时,主要存在三个方面的困难:(1)抓不住相等关系;(2)找出相等关系后不会列方程;(3)习惯用算术解法,对用代数方法分析应用题不适应。其中,第一个方面是主要的,解决了它,另两个方面就都好解决了。为此我在“练一练”的环节里设置了A与B两组练习,A组练习的题目已经帮学生设定了未知数,重点训练学生找相等关系、列方程;B组练习的题目要求学生独立设未知数列方程,要求学生能突破用算术解法解应用题的思维定势,学会通过阅读题目、理解题意、进而找出等量关系、列出方程解决问题的方法。
3、恰当使用了多媒体教学设备。在课件制作上考虑到初一学生的年龄特点,使用了许多卡通动画效果,有效地吸引学生的注意力。多媒体设备的使用不仅大大地提高了课堂容量,而且还可以展示学生的作品(课堂练习的解答),及时纠正学生书面表达的错误,规范解题格式,改掉小学生重结果轻过程,解题格式不规范,解题步骤混乱等不良现象。
4、营造了宽松、和谐的课堂氛围。本节课的教学从始至终,教师都是面带笑容地与学生进行互动,让学生充分发表自己的看法,及时给学生鼓励与肯定,消除学生由小学升入初中因环境变化而引起的心里障碍,激活学生的思维,保持学生参与课堂学习的积极性。
二、不足之处
1、教学容量偏大,以致没有充分的时间引导学生对如何找相等关系进行总结归纳。本节课在引出一元一次方程的概念以后,设计了一组判断题对一元一次方程的概念进行辨析。课后我想到这节课的难点是如何找相等关系列方程,应该淡化概念,如果删去这道练习题就可以让学生有更充分的时间去总结归纳找相等关系的方法,从而突破本节课的难点。
2、对学生情况不够熟悉。因为本节课是初一学生入学后一个月进行的,所以我对许多学生还叫不出名字,虽然课堂上可以用手指着某某同学回答问题,但是课后仔细想来,做好中小学数学教学的衔接工作不仅仅是教学内容设计上的衔接,而应该是多方位的衔接,其中就包括教师应尽快了解、熟悉学生,这样可以帮助消除学生刚升入初中的许多不适应。
三、对中小学数学教学衔接的思考
(1)加强新旧知识的联系
初中的许多数学知识都是小学知识的延续与提高,因此要搞好中小学数学教学真正意义上的衔接,每一位教师都应该熟悉并掌握《数学课程标准》的教材体系,而且我们还要认识到处理好中小学数学教学的衔接问题并非只是小学与初一老师的事情,其实整个中学阶段有很多的知识点都是在小学的知识基础上进行拓展和延伸的,如初二学习的“轴对称”及“等腰三角形”的知识在小学都出现过。
(2)渗透数学文化的教育,保持学生学习数学的兴趣
从小学到初中,教学内容更抽象,更加符号化,有一些学生在努力学习数学的同时,逐渐地厌烦、冷漠数学,这主要是应试教育环境下的数学教学,对数学知识的积累、数学技巧的训练等工具性价值的过分关注,使数学学习越来越枯燥无味,所以我们教师应该让学生一进入中学的课堂,就展现给学生一个多姿多彩的数学世界,在课堂教学中时时体现数学作为一种人类文化的魅力,保持住学生对数学的学习兴趣。
初一数学教案下载篇12
●教学内容
七年级上册课本11----12页1.2.4绝对值
●教学目标
1.知识与能力目标:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数。
2.过程与方法目标:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法。通过应用绝对值解决实际问题,体会绝对值的意义。
3.情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲。
●教学重点与难点
教学重点:绝对值的几何意义和代数意义,以及求一个数的绝对值。
教学难点:绝对值定义的得出、意义的理解,以及求绝对值等于某一个正数的有理数。
●教学准备
多媒体课件
●教学过程
一、创设问题情境
1、两只小狗从同一点O出发,在一条笔直的街上跑,一只向右跑10米到达A点,另一只向左跑10米到达B点。若规定向右为正,则A处记作__________,B处记作__________。
以O为原点,取适当的单位长度画数轴,并标出A、B的位置。
(用生动有趣的引例吸引学生,即复习了数轴和相反数,又为下文作准备)。
2、这两只小狗在跑的过程中,有没有共同的地方?在数轴上的A、B两点又有什么特征?(从形和数两个角度去感受绝对值)。
3、在数轴上找到-5和5的点,它们到原点的距离分别是多少?表示-和的点呢?
小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算小狗所跑的路程中,与小狗跑的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值。
二、建立数学模型
1、绝对值的概念
(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)
绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。比如:-5到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5。
注意:①与原点的关系 ②是个距离的概念
2..练习1:请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数绝对值。[温度上升了5度,用 +5表示的话,那么下降了5度,就用-5 表示,如果我们不去考虑它的意义(即:上升还是下降),只考虑数量(即:温度)的变化,我们可以说:温度的变化都是5度。银行存款,如果存入100元用+100表示,那么取出100元就用-100表示,如果我们不去考虑它的意义(即:存入还是取出),只考虑数量的多少,我们可以说:金额都是100元。]
(通过应用绝对值解决实际问题,体会绝对值的意义与作用,感受数学在生活中的价值。)
三、应用深化知识
1、例题求解
例1、求下列各数的绝对值
-1.6 , , 0, -10, +10
2、根据上述题目,让学生归纳总结绝对值的特点。(教师进行补充小结)
特点:1、一个正数的绝对值是它本身
2、一个负数的绝对值是它的相反数
3、零的绝对值是零
4、互为相反数的两个数的绝对值相等
3.出示题目
(1) -3的符号是_______,绝对值是______;
(2) +3的符号是_______,绝对值是______;
(3) -6.5的符号是_______,绝对值是______;
(4) +6.5的符号是_______,绝对值是______;
学生口答。
师:上面我们看到任何一个有理数都是由符号,和绝对值两个部分构成。现在老师有一个问题想问问大家,在上一节课中我们规定只有符号不同的两个数称互为相反数。那么大家在今天学习了绝对值以后,你能给相反数一个新的解释吗?
5、练习3:回答下列问题
①一个数的绝对值是它本身,这个数是什么数?
②一个数的绝对值是它的相反数,这个数是什么数?
③一个数的绝对值一定是正数吗?
④一个数的绝对值不可能是负数,对吗?
⑤绝对值是同一个正数的数有两个,它们互为相反数,这句话对吗?
(由学生口答完成,进一步巩固绝对值的概念)
6、例2.求绝对值等于4的数
(让学生考虑这样的数有几个,是怎样得出这个结果的呢?对后一个问题由学生去讨论,启发学生从数与形两个方面考虑,培养学生的发散思维能力。)
分析:
①从数字上分析
∵|+4|=4, |-4|=4 ∴绝对值等于4的数是+4和-4画一个数轴(如下图)
②从几何意义上分析,画一个数轴(如下图)
因为数轴上到原点的距离等于4个单位长度的点有两个,即表示+4的点P和表示-4的点M
所以绝对值等于4的数是+4和-4.
6、练习:做书上12页课内练习1、2两题。
四、归纳小结
1、本节课我们学习了什么知识?
2、你觉得本节课有什么收获?
3、由学生自行总结在自主探究,合作学习中的体会。
五、课后作业
1、让学生去寻找一些生活中只考虑绝对值的实际例子。
2、课本15页的作业题。
初一数学教案下载篇13
学习目标:
1、学会用计算器进行有理数的除法运算.
2、掌握有理数的混合运算顺序.
3、通过探究、练习,养成良好的学习习惯
学习重点:有理数的混合运算
学习难点:运算顺序的确定与性质符号的处理
教学方法:观察、类比、对比、归纳
教学过程
一、学前准备
1、计算
1)(—0.0318)÷(—1.4)2)2+(—8)÷2
二、探究新知
1、由上面的问题1,计算方便吗?想过别的方法吗?
2、由上面的问题2,你的计算方法是先算法,再算法。
3、结合问题1,阅读课本P36—P37页内容(带计算器的同学跟着操作、练习)
4、结合问题2,你先猜想,有理数的混合运算顺序应该是?
5、阅读P36,并动手做做
三、新知应用
1、计算
1)、18—6÷(—2)×2)11+(—22)—3×(—11)
3)(—0.1)÷×(—100)
2、师生小结
四、回顾与反思
请你回顾本节课所学习的主要内容
3页
五、自我检测
1、选择题
1)若两个有理数的和与它们的积都是正数,则这两个数()
A.都是正数B.是符号相同的非零数C.都是负数D.都是非负数
2)下列说法正确的是()
A.负数没有倒数B.正数的倒数比自身小
C.任何有理数都有倒数D.-1的倒数是-1
3)关于0,下列说法不正确的是()
A.0有相反数B.0有绝对值
C.0有倒数D.0是绝对值和相反数都相等的数
4)下列运算结果不一定为负数的是()
A.异号两数相乘B.异号两数相除
C.异号两数相加D.奇数个负因数的乘积
5)下列运算有错误的是()
A.÷(-3)=3×(-3)B.
C.8-(-2)=8+2D.2-7=(+2)+(-7)
6)下列运算正确的是()
A.;B.0-2=-2;C.;D.(-2)÷(-4)=2
2、计算
1)6—(—12)÷(—3)2)3×(—4)+(—28)÷7
3)(—48)÷8—(—25)×(—6)4)
六、作业
1、P39第7题(4、5、7、8)、第8题
2、选做题:P39第10、11、12、1314、15题
初一数学教案下载篇14
一、教学目标
1、知识与技能
(1)理解圆与圆的位置的种类;
(2)利用平面直角坐标系中两点间的距离公式求两圆的连心线长;
(3)会用连心线长判断两圆的位置关系.
2、过程与方法
设两圆的连心线长为,则判别圆与圆的位置关系的依据有以下几点:
(1)当时,圆与圆相离;
(2)当时,圆与圆外切;
(3)当时,圆与圆相交;
(4)当时,圆与圆内切;
(5)当时,圆与圆内含;
3、情态与价值观
让学生通过观察图形,理解并掌握圆与圆的位置关系,培养学生数形结合的思想.
二、教学重点、难点:
重点与难点:用坐标法判断圆与圆的位置关系.
问题设计意图师生活动
1.初中学过的平面几何中,圆与圆的位置关系有几类?结合学生已有知识以验,启发学生思考,激发学生学习兴趣.教师引导学生回忆、举例,并对学生活动进行评价;学生回顾知识点时,可互相交流.
2.判断两圆的位置关系,你有什么好的方法吗?
引导学生明确两圆的位置关系,并发现判断和解决两圆的位置教师引导学生阅读教科书中的相关内容,注意个别辅导,解答学生疑难,并引导学生自己总结解题的方法.
初一数学教案下载篇15
教案
第一章有理数
(1)本周小张一共用掉了多少钱?存进了多少钱?
根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?
夯实基础
(1)序号为几的零件最接近标准?
④-(-)0.025.
第2课时加法运算律
教学目标:
1.能运用加法运算律简化加法运算.
2.理解加法运算律在加法运算中的作用,适当进行推理训练.
教学重点:如何运用加法运算律简化运算.
教学难点:灵活运用加法运算律.
教与学互动设计:
(一)情境创设,导入新课
思考:在小学里,我们学过的加法运算有哪些运算律?它们的内容是什么?能否举一两个例子来?那这些加法运算律还适用于有理数范围吗?今天,我们一起来探究这个问题.
(二)合作交流,解读探究
计算:20+(-30)与(-30)+20两次得到的和相同吗?
得出结论:20+(-30)=(-30)+20
换几组数去试:得到加法交换律:a+b=(学生填).
其实,学生在小学中就已经接触到运算律,此时,可以让学生回忆在小学中除了学习了加法的交换律,还学习了加法的哪种运算律?(结合律)
计算:(1)[8+(-5)]+(-4);
(2)8+[(-5)+(-4)].
得出结论:加法结合律:(a+b)+c=.
【例1】计算:
16+(-25)+24+(-35)
【例2】课本P20例3
说明:把互为相反数的一对数结合起来相加,可以使运算简化,这种方法是使用加法交换律和加法结合律.
总结:在进行多个有理数相加时,在下列情况下一般可以用加法交换律和加法结合律简化运算:①有些加数相加后可以得到整数时,可以先行相加;②有相反数可以互相消去,和为0,可以先行相加;③有许多正数和负数相加时,可以先把符号相同的&39;数相加,即正数和正数相加,负数和负数相加,再把一个正数和一个负数相加.
(三)应用迁移,巩固提高
【例3】利用有理数的加法运算律计算,使运算简便.
(1)(+9)+(-7)+(+10)+(-3)+(-9)
(2)(+0.36)+(-7.4)+(+0.03)+(-0.6)+(+0.64)
(3)(+1)+(-2)+(+3)+(-4)+…+(+20__)+(-20__)
【例4】某出租司机某天下午营运全是在东西走向的人民大道上进行的,如果规定向东为正,向西为负,他这天下午行车里程如下:(单位:千米)+15,+14,-3,-11,+10,-12,+4,-15,+16,-18.
(1)他将最后一名乘客送到目的地,该司机与下午出发点的距离是多少千米?
(2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?
(四)总结反思,拓展升华
本节课我们探索了有理数的加法交换律和结合律.灵活运用加法的运算律会使运算简便.一般情况下,我们将互为相反数的数相结合,同分母的分数相结合,能凑整数的数相结合,正数负数分别相加,从而使计算简便.
(五)课堂跟踪反馈
夯实基础
1.运用加法的运算律计算(+6)+(-18)+(+4)+(-6.8)+18+(-3.2)最适当的是()
A.[(+6)+(+4)+18]+[(-18)+(-6.8)+(-3.2)]
B.[(+6)+(-6.8)+(+4)]+[(-18)+18+(-3.2)]
C.[(+6)+(-18)]+[(+4)+(-6.8)]+[18+(-3.2)]
D.[(+6)+(+4)]+[(-3.2)+(-6.8)]+[(-18)+18)]
2.计算:(-2)+4+(-6)+8+…+(-98)+100.
提升能力
3.小李到银行共办理了四笔业务,第一笔存入了120元,第二笔支取了85元,第三笔支取了70元,第四笔存入了130元.如果将这四笔业务合并为一笔,请你替他策划一下这一笔业务该怎样做?
4.某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,+5.
(1)问收工时距A地多远?
(2)若每千米路程耗油0.2升,问从A地出发到收工共耗油多少升?
第3课时有理数的减法
教学目标:
1.经历探索有理数减法法则的过程,理解有理数减法法则.
2.会熟练进行有理数减法运算.
教学重点:有理数减法法则和运算.
教学难点:有理数减法法则的推导.
教与学互动设计
(一)创设情景,导入新课
观察温度计:
你能从温度计看出4℃比-3℃高出多少度吗?
学生普遍能直观地看出4℃比-3℃高7℃,进一步地假定某地一天的气温是-3~4℃,那么温差(减最低气温,单位℃)如何用算式表示?
按照刚才观察到的结果,可知4-(-3)=7①,而4+(+3)=7②,∴由①②可知:4-(-3)=4+(+3)③,上述结论的获得应放手让学生回答.
(二)动手实践,发现新知
观察、探究、讨论:从③式能看出减-3相当于加哪个数吗?
结论:减去-3等于加上-3的相反数+3.
(三)类比探究,总结提高
如果将4换成-1,还有类似于上述的结论吗?
先让学生直观观察,然后教师再利用“减法是与加法相反的运算”引导学生换一个角度去验算.
计算(-1)-(-3)就是要求一个数x,使x与-3相加得-1,因为2与-3相加得-1,所以x应是2,即(-1)-(-3)=2①,
又因为(-1)+(+3)=2②,
由①②有(-1)-(-3)=-1+(+3)③,
即上述结论依然成立.
试一试:如果把4换成0、-5,用上面的方法考虑0-(-3),(-5)-(-3),这些数减-3的结果与它加上+3的结果相同吗?
让学生利用“减法是加法的相反运算”得出结果,再与加法算式的结果进行比较,从而得出这些数减-3的结果与它们加+3的结果相同的结论.
再试:把减数-3换成正数,结果又如何呢?
计算9-8与9+(-8);15-7与15+(-7)
从中又能有新发现吗?
让学生通过计算总结如下结论:减去一个正数等于加上这个正数的相反数.
归纳:由上述实验可发现,有理数的减法可以转化为加法来进行.
减法法则:减去一个数,等于加上这个数的相反数.
用字母表示:a-b=a+(-b).
(在上述实验中,逐步渗透了一种重要的数学思想方法——转化)
(四)例题分析,运用法则
【例】计算:
(1)(-3)-(-5);(2)0-7;
(3)7.2-(-4.8);(4)-3-5.
(五)总结巩固,初步应用
总结这节课我们学习了哪些数学知识和数学思想?你能说一说吗?
教师引导学生回忆本节课所学内容,学生回忆交流,教师和学生一起补充完善,使学生更加明晰所学的知识.
初一数学教案下载篇16
教学目标
1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;
2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;
3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;
4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;
5.本节课通过行程问题说明法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。
教学建议
(一)重点、难点分析
本节教学的重点是依据法则熟练进行运算。难点是法则的理解。
(1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。
(2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。
(3)如果是同号相加,取相同的符号,并把绝对值相加。如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。一个数与0相加,仍得这个数。
(二)知识结构
(三)教法建议
1.对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。
2.法则是规定的,而教材开始部分的行程问题是为了说明加法法则的合理性。
3.应强调加法交换律“a+b=b+a”中字母a、b的任意性。
4.计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。不要盲目动手,应该先仔细观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。
5.可以给出一些类似“两数之和必大于任何一个加数”的判断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。
6.在探讨导出法则的行程问题时,可以尝试发挥多媒体教学的作用。用动画演示人或物体在同一直线上两次运动的过程,让学生更好的理解有理数运算法则。
教学设计示例
(第一课时)
教学目的
1.使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行运算.
2.通过运算,培养学生的运算能力.
教学重点与难点
重点:熟练应用法则进行加法运算.
难点:法则的理解.
教学过程
(一)复习提问
1.有理数是怎么分类的?
2.有理数的绝对值是怎么定义的?一个有理数的绝对值的几何意义是什么?
3.有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明?
-3与-2;|3|与|-3|;|-3|与0;
-2与|+1|;-|+4|与|-3|.
(二)引入新课
在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学运算.
(三)进行新课 (板书课题)
例1 如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?
两次行走后距原点0为8米,应该用加法.
为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:
1.同号两数相加
(1)某人向东走5米,再向东走3米,两次一共走了多少米?
这是求两次行走的路程的和.
5+3=8
用数轴表示如图
从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米.
可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和.
(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?
显然,两次一共向西走了8米
(-5)+(-3)=-8
用数轴表示如图
从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了-8米.
可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和.
总之,同号两数相加,取相同的符号,并把绝对值相加.
例如,(-4)+(-5),……同号两数相加
(-4)+(-5)=-( ),…取相同的符号
4+5=9……把绝对值相加
∴ (-4)+(-5)=-9.
口答练习:
(1)举例说明算式7+9的实际意义?
(2)(-20)+(-13)=?
(3)
2.异号两数相加
(1)某人向东走5米,再向西走5米,两次一共向东走了多少米?
由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米.
5+(-5)=0
可知,互为相反数的两个数相加,和为零.
(2)某人向东走5米,再向西走3米,两次一共向东走了多少米?
由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米.
就是 5+(-3)=2.
(3)某人向东走3米,再向西走5米,两次一共向东走了多少米?
由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米.因此,两次一共向东走了-2米.
就是 3+(-5)=-2.
请同学们想一想,异号两数相加的法则是怎么规定的?强调和的符号是如何确定的?和的绝对值如何确定?
最后归纳
绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.
例如(-8)+5……绝对值不相等的异号两数相加
8>5
(-8)+5=-( )……取绝对值较大的加数符号
8-5=3 ……用较大的绝对值减去较小的绝对值
∴(-8)+5=-3.
口答练习
用算式表示:温度由-4℃上升7℃,达到什么温度.
(-4)+7=3(℃)
3.一个数和零相加
(1)某人向东走5米,再向东走0米,两次一共向东走了多少米?
显然,5+0=5.结果向东走了5米.
(2)某人向西走5米,再向东走0米,两次一共向东走了多少米?
容易得出:(-5)+0=-5.结果向东走了-5米,即向西走了5米.
请同学们把(1)、(2)画出图来
由(1),(2)得出:一个数同0相加,仍得这个数.
总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种情况.
有理数加法运算的三种情况:
特例:两个互为相反数相加;
(3)一个数和零相加.
每种运算的法则强调:(1)确定和的符号;(2)确定和的绝对值的方法.
(四)例题分析
例1 计算(-3)+(-9).
分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).
解:(-3)+(-9)=-12.
例2
分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值..(强调“两个较大”“一个较小”)
解:
解题时,先确定和的符号,后计算和的绝对值.
(五)巩固练习
1.计算(口答)
(1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);
(5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;
2.计算
(1)5+(-22); (2)(-1.3)+(-8)
(3)(-0.9)+1.5; (4)2.7+(-3.5)
探究活动
题目 (1)在1,2,3,4四个数的前面添加正号或负号,使它们的和为0;
(2)在1,2,3,…,11,12十二个数的前面添加正号或负号,使它们的和为零;
(3)在1,2,3,4,…,99,100一百个数的前面添加正号或负号,使它们的和为0;
(4) 在解决这个问题的过程中,你能总结出一些什么数学规律?
参考答案 我们不妨不妨以第二问为例探讨,比如,在12,11,10,5这四个数的前面添加负号,则这12个数的和是:-12-11-10+9+8+7+6-5+4+3+2+1=2.
现在我们将各数的符号加以调整,考虑到将一个正数变号,其和就要减少这个正数的两倍,因此可得到两个(明显的)解答:
(1)得+1变为-1,有-12-11-10+9+8+7+6-5+4+3+2-1=0; ①
(2)将(+6-5)变为-(6-5),有-12-11-10+9+8+7-6+5+4+3+2+1=0.②
又如,在11,10,8,7,5这五个数的前面添加负号,得
12-11-10-9-8-7+6-5+4+3+2+1=-4,
我们就有多种调整的方法,如将-8与+6变号,有
12-11-10+9+8-7-6-5+4+3+2+1=0. ③
经过几次试验,我们发现了规律:欲使十二个数的和为零,其中正数的和的绝对值与负数的和的绝对值必须相等.但
1+2+3+4+5+6+7+8+9+10+11+12=78
因此我们应该使各正数的和的绝对值与各负数的和的绝对值均为
为了简便起见,我们把①式所表示的一个解答记为(12,11,10,5,1),那么②,③两式所表示的解答就分别记为(12,11,10,6)与(11,10,7,6,5).
同时我们还发现:如果(12,11,10,5,1)是一个解答,那么(9,8,7,6,4,3,2)也必定是一个解答.同样,对应于②,③两式,还分别有另两个解答:(9,8,7,5,4,3,2,1)与(12,9,8,4,3,2,1).这个规律我们不妨叫做对偶律.
此外我们还可发现,由于的三个数12,11,10其和33<39,因此必须再增加一个数6,才有解答(12,11,10,6),也就是说:添加负号的数至少要有四个;反过来,根据对偶律得:添加负号的数最多不超过八个.
掌握了上述几条规律,我们就能够在很短的时间内得到许多解答.最后让我们告诉你,第(2)问的解答个数并非无数多,其总数是124个.
初一数学教案下载篇17
教学目标:
在熟悉的生活情景中,能用正数和负数表示生活中具有相反意义的量、知道负数的写法和读法,会用负数表示一些日常生活中的量。
使学生经历数学化,符号化的过程,体会负数产生的必要性。
感受正、负数和生活的密切联系,享受创造性学习的乐趣.
教学重点:
体会负数的意义,学会用正、负数表示日常生活中具有相反意义的量。
教学难点:
体会负数的意义,通过描述性定义认识正数、负数和“0”。
教学过程:
一、感受相反方向的数量,经历负数产生的过程。
1、回忆小学学过那些数:自然数,分数出示信息:看数的产生过程,现实中负数学习的必要。
2、引入负数的概念
3、总结正负数
(1)这些数很特别,都带上了符号,它们是一种“新数”。-9、-4.5等都叫负数;+7、+988等都叫正数。你会读吗?请你读给大家听。注意“-”叫负号,“+”叫正号。
(2)读给你的同伴听。
(3)把你新认识的负数再写两个,读一读。
下面让我们走进正数和负数的世界,进一步了解它们。(板书课题)
二、借助实际生活情境的直观,丰富对正负数的认识。
1、负数有什么用?用正数或负数表示下列数量。(1向东走200米,用+200米表示;那么向西走200米元用表示。
2.说说实际问题中负数的确定
(1.)表示海拔高度
(2.)解释温度中正负数的含义
(3)做练习三
3、怎样理解具有相反意义的量
三、理解0
1、0既不是正数也不是负数。0是正负数的分界。
2、0只表示没有吗?
1)空罐中的金币数量;
2)温度中的0℃;
3)海平面的高度;
4)标准水位;
5)身高比较的基准;
6.)正数和负数的界点;
3、总结
0既不是正数,也不是负数;0是正数负数的分界。
0是整数,0是偶数,0是最小的自然数。
四、探究活动(出示课件):
1.探究活动一:东、西为两个相反方向,如果-4米表示一个物体向西运动4米,那么+2米表示什么?物体原地不动记为什么?
若将28计为0,则可将27计为-1,试猜想若将27计为0,28应计为。
2、探究活动二:某大楼地面上共有20层,地面下共有5层,若用正数、负数表示这栋楼房每层的楼层号,则地面上的最高层表示为,地面下的最低层表示为,某人乘电梯从地下最低层升至地上6层,电梯一共运行了层。
3、探究活动三:用正数和负数表示的相反意义的量,其中正确的是()
A、2003年全球财富500强中对主要零售业的统计,大荣公司年收入为25320100万美元下列,利润为-195200万美元,该公司亏损额为195200万美元。
B、如果+9.6表示比海平面高9.6米,那么-19.2米表示比海平面低-19.2米。
C、收入30元与下降2米是具有相反意义的量。
D、一天早晨的气温是-4℃,中午比早晨上升4℃,所以中午的气温是+4℃。
E、收入与支出是具有相反意义的量
F、如果收入增加18元记作+18元,那么-50元表示支出减少50元
4、探究活动四:如果用一个字母表示一个数,那a可能是什么样的数?一定是正数吗?
答:不一定,a可能是正数,可能是负数,也可能是0
五、探索与思考:
1、例1:一个月内,小明体重增加-2kg,小华体重减少-1kg,小强体重无变化,写出他们这个月的体重增长值;
2、例2-1小的整数如下列这样排列
第一列第二列第三列第四列
-2-3-4-5
-9-8-7-6
-10-11-12-13
-17-16-15-14
............
在上述的这些数中,观察它们的规律,回答数-100将在哪一列.
3、例3
2001年下列国家的商品进出口总额比上一年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家2001年商品进出口总额的增长率.
思考:负”与“正”相对,增长-2就是减少2;增长-1,是什么意思?什么情况下增长是0?
六、应用与提高
1.、有一批食品罐头,标准质量为每听500g,现抽取10听样品进行检测,结果如下表。(单位:g)
质量497501503498496495500499501505
质量误差分别为:
如果在罐头的标签上注有:“质量:500g”,则在所抽取的罐头中是否有不合格的?
七、课堂练习
1、下列说法中正确的个数是()
1)、带正号的数是正数,带负号的数是负数
2)、任意一个正数,前面加上“-”号,就是一个负数
30、0是最小的正数、
4)、大于0的数是正数
5)、字母a既是正数,也是负数
A.0B.1C.2.D.3
2.判断
(1)0是整数()
(2)自然数一定是整数()
(3)0一定是正整数()
(4)整数一定是自然数()
3.说明下面这些话的意义:
①温度上升+3℃
②温度下降+3℃
③收入+4.25元
④支出—4.2元
4、“小明这次数学考试成绩下降-20分”这句话的意思是什么?
5.1)向东走+5m,-6m,0m表示的实际意义是什么呢?
(2)某水泥厂计划每月生产水泥1000t,一月份实际生产了950t,二月份实际生产了1000t,三月份实际生产了1100t,用正数和负数表示每月超额完成计划的吨数各是多少?
八、课堂小结:
1.正数:以前学过的数中,除0外的数叫做正数;如:+5,+0.23,8818
2.负数:在正数前面加上“-”号的数叫做负数;如:-5,-0.54
3、0既不是正数,也不是负数。
4、一个数前面的“+”、“-”号叫做它的符号
5、在同一个问题中,分别用正数与负数表示具有相反的意义的量.
附板书:
正数和负数
正数>0>负数
+既不是正数-
正号也不是负数负号
课后反思:
本节课是让学生在现实情境中了解正负数的意义,会用正、负数描述日常生活中相反意义的量。
1、练习贴近生活实际,促进学生对所学知识的有效应用联系生活实际的练习,如“分析质量问题,温度问题。“调查体重”使学生体会到数学源于生活,又应用于生活,让学生感受到数学的作用,又对数学产生亲切感。
2、这节课可以用信息技术来创设情境,激发学生的学习兴趣。用一个相对完整的事把温度、收入支出和海拔三个关键词串在一起。这样,学生对所学的知识会更有兴趣。
3、这节课还可以借助信息技术来理解相对意义的量。例如:,出示珠穆朗玛峰和吐鲁番盆地的照片,与海平面比,一高一低。这些都是相对意义的量。有了这些形象的照片,就更有利于学生相对意义的量的理解。
4、融入多种学习方式,促进有效教学的开展
引导学生自主探索学习,给学生充足时间去尝试,交流方法,让学生从不同角度去分析和解决问题,做到学生间的思想沟通,集思广益,寻找答案,解决问题,体现了学生解决数学问题思维的多样化,个性化。另外,在课堂教学中努力做到:师生互动,生生互动,全班交流,共同学习。
5、在本节课的教学中,还存在着诸多不足,比如如何更好地安排时间,将知识落到实处?”“交流时,如何选择个别交流与集体交流?老师的评价怎么才能更到位。”我想这些都是今后我要努力的方向。
初一数学教案下载篇18
教学目标:
1通过学生身边可以尝试、探索的场景,经历有理数加法法则得出的过程,理解有理数加法法则的合理性。2能进行简单的有理数加法运算。3发展观察、归纳、猜测验证等能力。
重点难点:
重点:有理数加法法则的得出,和的符号的确定;难点:异号两数相加
教学过程
一激情引趣,导入新课
1我们早知道正有理数和零可以做加法运算,所有的有理数是否都可以进行加法运算呢?这就是我们这节课要研究的问题,先来分析一下,所有的有理数相加的时候有哪些情况呢?请你想一想
2从前有一个文盲记录家里的收入和支出的时候是这样的,用一颗红豆代表收入一文钱,用一颗黑豆代表支出一文钱,有一个月他发现记账的盒子里有10颗红豆6颗黑豆,他发现红豆比黑豆多了4颗,于是他不仅知道了这个月结余了4文钱还知道了自己这个月的收入和支出情况。我们可以用一个图形来表示他这种记账方式。“○”,“●”分别表红豆和黑豆。
,这个图形其实就是一个有理数的加法算式:(+10)+(-6)=+4下面我们借助数轴来理解有理数的加法运算。
二合作交流,探究新知
以原点为起点,规定向东的方向为正方向,向西的方向为负方向,一个单位代表1千米
1同号两数相加
小亮从O点出发,先向西移动2个千米休息一会儿,再向西移动3个千米,两次走路的总效果等于从点O出发向_____走了_______千米,用式子表示为_______________.
从上,你发现了吗,同号两数相加结果的符号怎么确定?结果的绝对值怎么确定?请把你的发现填在下面的框里。
同号两数相加,取__________的符号,并把它们的_____________相加。
2异号两数相加
(1)小明先从点O出发,先向东走4千米,发现口袋里的钥匙丢了,急急忙忙掉头向西走了1千米,找到了掉在路边的钥匙,小明这两次走路的效果总等于从点O出发向___走了____千米,用式子表示为_________________________.
(2)小李先从点O出发,先向东走了1米,突然想起今天家里有事,赶紧掉头向西往家里走,走了3千米到达家中,小李两次走路的总效果等于等于吃哦从点O出发,向___走了
_____千米。用式子表达为_______________________.
从上面例子,你发现了异号两数怎么做吗?把你的结论填在下框中。
异号两数相加,绝对值不相等时,取__________________的符号,并用_________的绝对值
减去_______________的绝对值。
3一个数和零相加,以及互为相反数相加
(1)某个人第一批货获得利润3万元,第二批货物保本,这两批货物总的利润是多少万元?
(2)某人第一批货物的利润是5万元,第二批货物亏损5万元,这两批货物总的利润是多少?
从上问题,你发现了什么?把你的结论写在下框中,
互为相反数的两个相加得_______,一个数和零相加,任得____________________.
三应用迁移,拓展提高
例1计算(1)(-8)+(-12)(2)(-3.75)+(-0.25)
(3)(-5)+9(4)(–10)+7
例2计算(1)(-3)+(2)(-)+(-)
例3填空
(1)-7+____=0(2)(+)+______=-(3)____+(-)=(4)__+=
四课堂练习,巩固提高
P21
五反思小结巩固提高
有理数的加法法则有哪些?请你把它们写在下面:
1
2
3
4
六作业p24-25A组1-4B1