九年级数学教案模板范文
编写教案可以使课堂教学活动称为一种有计划、有目的、有条不紊、有效率的教学活动,从而提高教学效果。九年级数学教案模板范文要怎么写?接下来给大家带来九年级数学教案模板范文,方便大家学习。
九年级数学教案模板范文篇1
教学目标
1、认识扇形统计图的特点和作用;
2、能联系百分数的意义,对扇形统计图提供的信息进行简单的分析。
3、遇到不理解或不懂的地方,用下划线和?标记出来。便于交流时提出。
4、自己的建议、体会、方法可以在旁边作好批注。
教学重难点
1、认识扇形统计图的特点和作用;
2、能联系百分数的意义,对扇形统计图提供的信息进行简单的分析。
教学工具
课件
教学过程
一、快乐自学
你喜欢运动吗?调查本班同学喜欢的运动项目。根据下面的统计图:
六(1)班最喜欢的运动项目统计图
1、说一说:从这幅统计图中你能获取哪些信息?
2、我知道这是一幅()统计图,它的特点是()。
3、我最喜欢的运动项目是(),它占全班人数的百分比是()。要想清楚地知道百分比这样的信息,我们可以选用()统计图。
4、一起来认识扇形统计图吧!自学教材第107页,注意拿笔勾画哦!.
(1)计算出各运动项目占全班人数的百分比。
(2)从扇形统计图中,你又能获取哪些信息?
(3)你还能提出什么问题?
二、合作探究。
讨论交流:扇形统计图是怎样来表示各个数据的?它有什么特点?
1、我发现扇形统计图中的()代表单位“1”,表示(),各个扇形面积表示(),扇形的大小说明了()。
2、扇形统计图的特点是()。
3、生活中,你还从()见到过扇形统计图?
三、学习小结
我们已曾经学过的统计图有条形统计图,它的特点是();还有()统计图,它的特点是不但可以表示各部分数量的多少,而且还可以清楚地看出数量的增减变化情况。我们今天又学习了扇形统计图,它的特点是(),
四、智勇大闯关,我是小擂主
1、第一关:小练兵。
完成练习二十五的第1、2题。
2、第二关
完成练习二十五的第4题。
五、学后反思
1、我的收获:
2、自我评价:我对我的课堂表现(),因为(
)。
六、作业
1、完成教材P107的“做一做”.
2、练习二十五的第3题
课后习题
1、完成教材P107的“做一做”。
2、练习二十五的第3题。
九年级数学教案模板范文篇2
1、知识与技能
(1)会根据增长率问题中的数量关系和等量关系,列出一元二次方程,并能对方程解的合理性作出解释;
2、过程与方法
通过猜想、探讨构建一元二次方程模型。
3、情感、态度与价值观
(1)通过自主、探究性学习,使学生养成良好的思维习惯;
(2)通过对方程解的合理性解释,培养学习实事求是的作风。
二、教学重点难点
1、重点
找出问题中的数量关系;
2、难点
找等量关系并列出相应方程。
三、教材分析
本节课是从实际问题引入的基本概念,学习方程的基本解法之后所提出的一些实际问题,以及最后一节的实践与探索,都是为了给与学生都创造一些探索交流的机会,让学生了解数学知识的发展,学会解决一些简单问题的方法,特别是从实际情景寻找所隐含的数量关系,建立适当的数学模型。
四、教学过程与互动设计
(一)温故知新
1、请同学们回忆并回答解一元一次方程应用题的一般步骤:
第一步:弄清题意和题目中的已知数、未知数,用字母表示题目中的一个未知数;
第二步:找出能够表示应用题全部含义的相等关系;
第三步:根据这些相等关系列出需要的代数式(简称关系式),从而列出方程;
第四步:解这个方程,求出未知数的值;
第五步:在检查求得的答数是否符合应用题的实际意义后,写出答案(包括单位名称。)
2、解一元二次方程的应用题的步骤与解一元一次方程应用题的步骤一样。
我们先来解一些具体的题目,然后总结一些规律或应注意事项。
(二)创设情景,导入新课
1、一个长为10米的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8米。
若梯子的顶端下滑1米,那么
(1)猜一猜,底端也将滑动
1米吗?
(2)列出底端滑动距离所满足的方程。
【答案】①底端将滑动1米多
②提示:先利用勾股定理在实际问题中的应用,说明数学来源于实际。
2、【探究活动】1.某商店1月份的利润是2500元,3月份的利润达到3000元,这两个月的利润平均增长的百分率是多少(精确到0.1%)?
(1)学生讨论:怎样计算月利润增长百分率?
【点评】通过学生讨论得出月利润增长百分率=月增利润/月利润
例8某商品经过两次降价,每瓶零售价由56元降为31.5元,已知两次降价的百分率相同,求每次降价的百分率。
分析:若一次降价百分率为x,则一次降价后零售价为原来的(1-x)倍,即56(1-x);第二次降价的百分率仍为31.5x,则第二次降价后零售价为原来的56(1-x)的(1-x)倍。
解:设平均降价百分率为x,根据题意,得
56(1-x)2=31.5
解这个方程,得
x1=1.75,x2=0.25
因为降价的百分率不可能大于1,所以x1=1.75不符合题意,符合题意要求的是x=0.25=25%
答每次降价百分率为25%。
【跟踪练习】
某药品经两次降价,零售价降为原来的一半。已知两次降价的百分率一样,求每次降价的百分率(精确到0.1%)。
【友情提示】我们要牢牢把握列方程解决实际问题的三个重要环节:①整体地,系统地审清问题;②把握问题中的等量关系;③正确求解方程并检验解的合理性。
(三)应用迁移,巩固提高
1、某商品原价200元,连续两次降价a%后售价为148元,下列所列方程正确的是()
(
a)200(1+a%)2=148(b)200(1-a%)2=148
(c)200(1-2a%)=148(d)200(1-a2%)=148
2、为绿化家乡,某中学在20_年植树400棵,计划到20_年底,使这三年的植树总数达到1324棵,求此校植树平均增长的百分数?
(四)达标测试
1、某超市一月份的营业额为100万元,第一季度的营业额共800万元,如果平均每月增长率为x,则所列方程应为()
a、100(1+x)2=800b、100+100×2x=800c、100+100×3x=800d、100[1+(1+x)+(1+x)2]=800
2、某地开展植树造林活动,两年内植树面积由30万亩增加到42万亩,若设植树面积年平均增长率为,根据题意列方程。
,一元二次方程的解法
3、某农场的粮食产量在两年内从3000吨增加到3630吨,平均每年增产的百分率是多少?
4、某小组计划在一季度每月生产100台机器部件,二月份开始每月实际产量都超过前月的产量,结果一季度超产20%,求二,三月份平均每月增长率是多少?(精确到1%)
5、某钢铁厂今年一月份的某种钢产量是5000吨,此后每月比上个月产量提高的百分数相同,且三月份比二月份的产量多1200吨,求这个相同的百分数
五、课堂小结
九年级数学教案模板范文篇3
根据学校工作安排,本学期我担任初三级数学教学工作任务,为更好普及九年义务教育,同时向高中输送合格人才,现将本学期教学计划如下:
一、指导思想
在教学中努力推进九年义务教育?落实新课改?体现新理念?培养创新精神。通过数学课的教学?使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能努力培养学生的运算能力、逻辑思维能力?以及分析问题和解决问题的能力
二、学情分析:
新学期,根据初三年级分班的实际,首先是先摸清底子,稳住学生,然后根据学生学情分布情况,重新划分学习小组,对新分班过来的学生,做好各方面的工作,使他们迅速适应新环境,然后,尽快帮他们找到新的学习榜样和新学伴,帮他们树立竞争意识和发展意识以及创新意识,鼓励大家在新学期,获得更大的进步,取得更大的发展。
三、教学内容
本学期所教数学包括第二十一章《二次根式》,第二十二章《一元二次方程》,第二十三章《旋转》,第二十四章《圆》。第二十五章《概率初步》。代数三章,几何两章。而且本学期要授完下册第二十七章内容。
四、教学目标:
本学期的主要教学任务目标:
(1)根据学情,调整好教学进度,优化学习方法,激活知识积累。
(2)形成知识网络,解决实际问题。
(3)强化规范训练,提高应考能力。
(4)关注学生特长需求,做好学生心理疏导。
具体的说,教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。
知识技能目标:掌握二次根式的概念、性质及计算;会解一元二次方程;理解旋转的基本性质;掌握圆及与圆有关的概念、性质;理解概率在生活中的应用。
过程方法目标:培养学生的观察、探究、推理、归纳的能力,发展学生合情推理能力、逻辑推理能力和推理认证表达能力,提高知识综合应用能力。
态度情感目标:进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教育。
九年级数学教案模板范文篇4
第1课时解决代数问题
1.经历用一元二次方程解决实际问题的过程,总结列一元二次方程解决实际问题的一般步骤.
2.通过学生自主探究,会根据传播问题、百分率问题中的数量关系列一元二次方程并求解,熟悉解题的具体步骤.
3.通过实际问题的解答,让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.
重点
利用一元二次方程解决传播问题、百分率问题.
难点
如果理解传播问题的传播过程和百分率问题中的增长(降低)过程,找到传播问题和百分率问题中的数量关系.
一、引入新课
1.列方程解应用题的基本步骤有哪些?应注意什么?
2.科学家在细胞研究过程中发现:
(1)一个细胞一次可分裂成2个,经过3次分裂后共有多少个细胞?
(2)一个细胞一次可分裂成x个,经过3次分裂后共有多少个细胞?
(3)如是一个细胞一次可分裂成2个,分裂后原有细胞仍然存在并能再次分裂,试问经过3次分裂后共有多少个细胞?
二、教学活动
活动1:自学教材第19页探究1,思考教师所提问题.
有一人患了流感,经过两轮传染后,有121人患了流感,每轮传染中平均一个人传染了几个人?
(1)如何理解“两轮传染”?如果设每轮传染中平均一个人传染了x个人,第一轮传染后共有________人患流感.第二轮传染后共有________人患流感.
(2)本题中有哪些数量关系?
(3)如何利用已知的数量关系选取未知数并列出方程?
解答:设每轮传染中平均一个人传染了x个人,则依题意第一轮传染后有(x+1)人患了流感,第二轮有x(1+x)人被传染上了流感.于是可列方程:
1+x+x(1+x)=121
解方程得x1=10,x2=-12(不合题意舍去)
因此每轮传染中平均一个人传染了10个人.
变式练习:如果按这样的传播速度,三轮传染后有多少人患了流感?
活动2:自学教材第19页~第20页探究2,思考老师所提问题.
两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?
(1)如何理解年平均下降额与年平均下降率?它们相等吗?
(2)若设甲种药品年平均下降率为x,则一年后,甲种药品的成本下降了________元,此时成本为________元;两年后,甲种药品下降了________元,此时成本为________元.
(3)增长率(下降率)公式的归纳:设基准数为a,增长率为x,则一月(或一年)后产量为a(1±x);
二月(或二年)后产量为a(1±x)2;
n月(或n年)后产量为a(1±x)n;
如果已知n月(n年)后总产量为M,则有下面等式:M=a(1±x)n.
(4)对甲种药品而言根据等量关系列方程为:________________.
三、课堂小结与作业布置
课堂小结
1.列一元二次方程解应用题的步骤:审、设、找、列、解、答.最后要检验根是否符合实际.
2.传播问题解决的关键是传播源的确定和等量关系的建立.
3.若平均增长(降低)率为x,增长(或降低)前的基准数是a,增长(或降低)n次后的量是b,则有:a(1±x)n=b(常见n=2).
4.成本下降额较大的药品,它的下降率不一定也较大,成本下降额较小的药品,它的下降率不一定也较小.
作业布置
教材第21-22页习题21.3第2-7题.第2课时解决几何问题
1.通过探究,学会分析几何问题中蕴含的数量关系,列出一元二次方程解决几何问题.
2.通过探究,使学生认识在几何问题中可以将图形进行适当变换,使列方程更容易.
3.通过实际问题的解答,再次让学生认识到对方程的解必须要进行检验,方程的解是否舍去要以是否符合问题的实际意义为标准.
重点
通过实际图形问题,培养学生运用一元二次方程分析和解决几何问题的能力.
难点
在探究几何问题的过程中,找出数量关系,正确地建立一元二次方程.
活动1创设情境
1.长方形的周长________,面积________,长方体的体积公式________.
2.如图所示:
(1)一块长方形铁皮的长是10cm,宽是8cm,四角各截去一个边长为2cm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.
(2)一块长方形铁皮的长是10cm,宽是8cm,四角各截去一个边长为xcm的小正方形,制成一个长方体容器,这个长方体容器的底面积是________,高是________,体积是________.
活动2自学教材第20页~第21页探究3,思考老师所提问题
要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上下边衬等宽,左右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm).
(1)要设计书本封面的长与宽的比是________,则正中央矩形的长与宽的比是________.
(2)为什么说上下边衬宽与左右边衬宽之比为9∶7?试与同伴交流一下.
(3)若设上、下边衬的宽均为9xcm,左、右边衬的宽均为7xcm,则中央矩形的长为________cm,宽为________cm,面积为________cm2.
(4)根据等量关系:________,可列方程为:________.
(5)你能写出解题过程吗?(注意对结果是否合理进行检验.)
(6)思考如果设正中央矩形的长与宽分别为9xcm和7xcm,你又怎样去求上下、左右边衬的宽?
活动3变式练习
如图所示,在一个长为50米,宽为30米的矩形空地上,建造一个花园,要求花园的面积占整块面积的75%,等宽且互相垂直的两条路的面积占25%,求路的宽度.
答案:路的宽度为5米.
活动4课堂小结与作业布置
课堂小结
1.利用已学的特殊图形的面积(或体积)公式建立一元二次方程的数学模型,并运用它解决实际问题的关键是弄清题目中的数量关系.
2.根据面积与面积(或体积)之间的等量关系建立一元二次方程,并能正确解方程,最后对所得结果是否合理要进行检验.
作业布置
教材第22页习题21.3第8,10题.
九年级数学教案模板范文篇5
【知识与技能】
1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.
2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题.
【过程与方法】
经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.
【情感态度】
通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.
【教学重点】
1.会画y=ax2(a>0)的图象.
2.理解,掌握图象的性质.
【教学难点】
二次函数图象及性质探究过程和方法的体会教学过程.
一、情境导入,初步认识
问题1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢?
问题2如何用描点法画一个函数图象呢?
【教学说明】①略;②列表、描点、连线.
二、思考探究,获取新知
探究1 画二次函数y=ax2(a>0)的图象.
画二次函数y=ax2的图象.
【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.
②从列表和描点中,体会图象关于y轴对称的特征.
③强调画抛物线的三个误区.
误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势.
如图(1)就是y=x2的图象的错误画法.
误区二:并非对称点,存在漏点现象,导致抛物线变形.
如图(2)就是漏掉点(0,0)的y=x2的图象的错误画法.
误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.
九年级数学教案模板范文篇6
1、正确认识什么是中心对称、对称中心,理解关于中心对称图形的性质特点。
2、能根据中心对称的性质,作出一个图形关于某点成中心对称的对称图形。
重点
中心对称的概念及性质。
难点
中心对称性质的推导及理解。
复习引入
问题:作出下图的两个图形绕点O旋转180°后的图案,并回答下列的问题:
1、以O为旋转中心,旋转180°后两个图形是否重合?
2、各对应点绕O旋转180°后,这三点是否在一条直线上?
老师点评:可以发现,如图所示的两个图案绕O旋转180°后都是重合的,即甲图与乙图重合,△OAB与△COD重合。
像这样,把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心。
这两个图形中的对应点叫做关于中心的对称点。
探索新知
(老师)在黑板上画一个三角形ABC,分两种情况作两个图形:
(1)作△ABC一顶点为对称中心的对称图形;
(2)作关于一定点O为对称中心的对称图形。
第一步,画出△ABC。
第二步,以△ABC的C点(或O点)为中心,旋转180°画出△A′B′C和△A′B′C′,如图(1)和图(2)所示。
从图(1)中可以得出△ABC与△A′B′C是全等三角形;
分别连接对称点AA′,BB′,CC′,点O在这些线段上且O平分这些线段。
下面,我们就以图(2)为例来证明这两个结论。
证明:(1)在△ABC和△A′B′C′中,OA=OA′,OB=OB′,∠AOB=∠A′OB′,∴△AOB≌△A′OB′,∴AB=A′B′,同理可证:AC=A′C′,BC=B′C′,∴△ABC≌△A′B′C′;
(2)点A′是点A绕点O旋转180°后得到的,即线段OA绕点O旋转180°得到线段OA′,所以点O在线段AA′上,且OA=OA′,即点O是线段AA′的中点。
同样地,点O也在线段BB′和CC′上,且OB=OB′,OC=OC′,即点O是BB′和CC′的中点。
因此,我们就得到
1、关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分。
2、关于中心对称的两个图形是全等图形。
例题精讲
例1如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称。
分析:中心对称就是旋转180°,关于点O成中心对称就是绕O旋转180°,因此,我们连AO,BO,CO并延长,取与它们相等的线段即可得到。
解:(1)连接AO并延长AO到D,使OD=OA,于是得到点A的对称点D,如图所示。
(2)同样画出点B和点C的对称点E和F。
(3)顺次连接DE,EF,FD,则△DEF即为所求的三角形。
例2(学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形A′B′C′D′,使四边形A′B′C′D′和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法)。
课堂小结(学生总结,老师点评)
本节课应掌握:
中心对称的两条基本性质:
1、关于中心对称的两个图形,对应点所连线都经过对称中心,而且被对称中心所平分;
2、关于中心对称的两个图形是全等图形及其它们的应用。
作业布置
教材第66页练习
九年级数学教案模板范文篇7
教学目标
了解一元二次方程的概念;一般式ax2+bx+c=0(a≠0)及其派生的概念;应用一元二次方程概念解决一些简单题目.
1.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义.
2.一元二次方程的一般形式及其有关概念.
3.解决一些概念性的题目.
4.通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情.
重难点关键
1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题.
2.难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念.
教学过程
一、复习引入
学生活动:列方程.
问题(1)《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈,问户高、广各几何?”
大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少?
如果假设门的高为x尺,那么,这个门的宽为_______尺,根据题意,得________.
整理、化简,得:__________.
问题(2)如图,如果 ,那么点C叫做线段AB的黄金分割点.
如果假设AB=1,AC=x,那么BC=________,根据题意,得:________.
整理得:_________.
问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?
如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.
整理,得:________.
老师点评并分析如何建立一元二次方程的数学模型,并整理.
二、探索新知
学生活动:请口答下面问题.
(1)上面三个方程整理后含有几个未知数?
(2)按照整式中的多项式的规定,它们次数是几次?
(3)有等号吗?或与以前多项式一样只有式子?
老师点评:(1)都只含一个未知数x;(2)它们的次数都是2次的;(3)都有等号,是方程.
因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的次数是2(二次)的方程,叫做一元二次方程.
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.
解:去括号,得:
40-16x-10x+4x2=18
移项,得:4x2-26x+22=0
其中二次项系数为4,一次项系数为-26,常数项为22.
例2.(学生活动:请二至三位同学上台演练) 将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.
分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a≠0)的形式.
解:去括号,得:
x2+2x+1+x2-4=1
移项,合并得:2x2+2x-4=0
其中:二次项2x2,二次项系数2;一次项2x,一次项系数2;常数项-4.
三、巩固练习
教材P32 练习1、2
四、应用拓展
例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.
分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17≠0即可.
证明:m2-8m+17=(m-4)2+1
∵(m-4)2≥0
∴(m-4)2+1>0,即(m-4)2+1≠0
∴不论m取何值,该方程都是一元二次方程.
五、归纳小结(学生总结,老师点评)
本节课要掌握:
(1)一元二次方程的概念;(2)一元二次方程的一般形式ax2+bx+c=0(a≠0)和二次项、二次项系数,一次项、一次项系数,常数项的概念及其它们的运用.
六、布置作业
九年级数学教案模板范文篇8
教学目标
1、在把实际问题转化为一元二次方程的模型的过程中,形成对一元二次方程的感性认识。
2、理解一元二次方程的定义,能识别一元二次方程。
3、知道一元二次方程的一般形式,能熟练地把一元二次方程整理成一般形式,能写出一般形式的二次项系数、一次项系数和常数项。
重点难点
重点:能建立一元二次方程模型,把一元二次方程整理成一般形式。
难点:把实际问题转化为一元二次方程的模型。
教学过程
(一)创设情境
前面我们曾把实际问题转化成一元一次方程和二元一次方程组的模型,大家已经感受到了方程是刻画现实世界数量关系的工具。本节课我们将继续进行建立方程模型的探究。
1、展示课本P.2问题一
引导学生设人行道宽度为xm,表示草坪边长为35-2xm,找等量关系,列出方程。
(35-2x)2=900①
2、展示课本P.2问题二
引导思考:小明与小亮第一次相遇以后要再次相遇,他们走的路程有何关系?怎样用他们再次相遇的时间表示他们各自行驶的路程?
通过思考上述问题,引导学生设经过ts小明与小亮相遇,用s表示他们各自行驶的路程,利用路程方面的等量关系列出方程2t+×0.01t2=3t②
3、能把①,②化成右边为0,而左边是只含有一个未知数的二次多项式的形式吗?让学生展开讨论,并引导学生把①,②化成下列形式:
4x2-140x+32③
0.01t2-2t=0④
(二)探究新知
1、观察上述方程③和④,启发学生归纳得出:
如果一个方程通过移项可以使右边为0,而左边是只含有一个未知数的二次多项式,那么这样的方程叫作一元二次方程,它的一般形式是:
ax2+bx+c=0,(a,b,c是已知数且a≠0),
其中a,b,c分别叫作二次项系数、一次项系数、常数项。
2、让学生指出方程③,④中的二次项系数、一次项系数和常数项。
(三)讲解例题
例1:把方程(x+3)(3x-4)=(x+2)2化成一般形式,并指出它的二次项系数、一次项系数和常数项。
[解]去括号,得3x2+5x-12=x2+4x+4,
化简,得2x2+x-16=0。
二次项系数是2,一次项系数是1,常数项是-16。
点评:一元二次方程的一般形式ax2+bx+c=0(a≠0)具有两个特征:一是方程的右边为0,二是左边二次项系数不能为0。此外要使学生认识到:二次项系数、一次项系数和常数项都是包括符号的。
例2:下列方程,哪些是一元一次方程?哪些是一元二次方程?
(1)2x+3=5x-2;(2)x2=25;
(3)(x-1)(x-2)=x2+6;(4)(x+2)(3x-1)=(x-1)2。
[解]方程(1),(3)是一元一次方程;方程(2),(4)是一元二次方程。
点评:通过一元一次方程与一元二次方程的比较,使学生深刻理解一元二次方程的意义。
(四)应用新知
课本P.4,练习第3题,
(五)课堂小结
1、一元二次方程的显著特征是:只有一个未知数,并且未知数的次数是2。
2、一元二次方程的一般形式为:ax2+bx+c=0(a≠0),一元二次方程的二次项系数、一次项系数、常数项都是根据一般形式确定的。
3、在把实际问题转化为一元二次方程模型的过程中,体会学习一元二次方程的必要性和重要性。
(六)思考与拓展
当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0是一元二次方程?这时方程的二次项系数、一次项系数分别是什么?当常数a,b,c满足什么条件时,方程(a-1)x2-bx+c=0是一元一次方程?
当a≠1时是一元二次方程,这时方程的二次项系数是a-1,一次项系数是-b;当a=1,b≠0时是一元一次方程。
布置作业
课本习题1.1中A组第1,2,3题。
教学后记:
九年级数学教案模板范文篇9
教学目标
1、了解比例各部分的名称,探索并掌握比例的基本性质,会根据比例的基本性质正确判断两个比能否组成比例,能根据乘法等式写出正确的比例。
2、通过观察、猜测、举例验证、归纳等数学活动,经历探究比例基本性质的过程,渗透有序思考,感受变与不变的思想,体验比例基本性质的应用价值。
3、引导学生自主参与知识探究过程,培养学生初步的观察、分析、比较、判断、概括的能力,发展学生的思维。
教学重难点
教学重点:探索并掌握比例的基本性质。
教学难点:根据乘法等式写出正确的比例。
教学工具
ppt课件
教学过程
一、复习导入
1、我们已经认识了比例,谁能说一下什么叫比例?
2、应用比例的意义判断下面的比能否组成比例。
2.4:1.6和60:40
3、今天老师将和大家再学习一种更快捷的方法来判断两个比能否组成比例)板书:比例的基本性质
二、探究新知
1、教学比例各部分的名称.同学们能正确地判断两个比能不能组成比例了,那么,比例各部分的名称是什么?请同学们翻开教材第43页看看什么叫比例的项、外项和内项。(学生看书时,教师板书:2.4:1.6=60:40)让学生指出板书中的比例的外项和内项。学生回答的同时,板书:组成比例的四个数,叫做比例的项。两端的两项叫做比例的外项,中间的两项叫做比例的内项。例如:2.4:1.6=60:40外项内项学生认一认,说一说比例中的外项和内项。
2、教学比例的基本性质。
出示例1、(1)教师:比例有什么性质呢?现在我们就来研究。(板书:比例的基本性质)学生分别计算出这个比例中两个内项的积和两个外项的积。教师板书:两个外项的积是2.4×40=96两个内项的积是1.6×60=96(2)教师:你发现了什么,两个外项的积等于两个内项的积是不是所有的比例都存在这样的特点呢?学生分组计算前面判断过的比例。(3)通过计算,我们发现所有的比例都有这个样的特点,谁能用一句话把这个特点说出来?(可多让一些学生说,说得不完整也没关系,让后说的同学在先说的同学的基础上说得更完整.)(4)最后师生共同归纳并板书:在比例里,两个外项的积等于两个内项的积。教师说明这叫做比例的基本性质。(5)如果把比例写成分数形式,比例的基本性质又是怎样的呢?指名学生改写2.4:1.6=60:40(=)这个比例的外项是哪两个数呢?内项呢?当比例写成分数的形式,等号两端的分子和分母分别交叉相乘的积怎么样?(边问边画出交叉线)(6)能用字母表示这个性质吗?a:b=c:d(b,d≠0)或a/b=c/d;ad=bc
以前我们是通过计算它们的比值来判断两个比是不是成比例的。学过比例的基本性质后,也可以应用比例的基本性质来判断两个比能不能组成比例。
三、拓展应用
1.课本43页做一做,应用比例的基本性质,判断下面哪组中的两个比可以组成比例。
(1)6:3和8:5(2)0.2:2.5和4:50
2.根据比例的基本性质在括号里填上合适的数。
8:2=24:()():15=4:5
3.猜数:老师有一个比例,内项可能是哪两个数,你是怎么样思考的?比例中的外项和内项都有共同的特点吗?
24:()=():2
4.运用比例的基本性质判断下面两个比能不能组成比例。
1/3:1/6和1/2:1/41.2:3/4和4/5:5
四、拓展
已知3×40=8×15,根据比例的基本性质改写成比例,你能写出几对比例。提示:先把3和40当作外项,再把它们当作内项。
五、总结
1、通过这节课,我们学到了什么知识?
2、通过这节课我们知道了组成比例的四个数叫做比例的项,其中两端的两个项叫做比例的外项,中间的两个项叫做比例的内项。在比例里两个外项的积等于两个内项的积,这叫做比例的基本性质。利用比例的基本性质我们可以判断两个比能不能组成比例,当然还可以解比例,这是下节课要学习的内容。
六、作业布置
课本43页练习八第5、7题。
板书
比例的基本性质
例1、2.4:1.6=60:40
两个外项的积是2.4×40=96
两个内项的积是1.6×60=96
2.4:1.6=60:40
九年级数学教案模板范文篇10
【知识与技能】
1.会用描点法画二次函数y=ax2+bx+c的图象.
2.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x的增减性.
3.能通过配方求出二次函数y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.
【过程与方法】
1.经历探索二次函数y=ax2+bx+c(a≠0)的图象的作法和性质的过程,体会建立二次函数y=ax2+bx+c(a≠0)对称轴和顶点坐标公式的必要性.
2.在学习y=ax2+bx+c(a≠0)的性质的过程中,渗透转化(化归)的思想.
【情感态度】
进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识.
【教学重点】
①用配方法求y=ax2+bx+c的顶点坐标;②会用描点法画y=ax2+bx+c的图象并能说出图象的性质.
【教学难点】
能利用二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c(a≠0)的图象.
一、情境导入,初步认识
请同学们完成下列问题.
1.把二次函数y=-2x2+6x-1化成y=a(x-h)2+k的形式.
2.写出二次函数y=-2x2+6x-1的开口方向,对称轴及顶点坐标.
3.画y=-2x2+6x-1的图象.
4.抛物线y=-2x2如何平移得到y=-2x2+6x-1的图象.
5.二次函数y=-2x2+6x-1的y随x的增减性如何?
【教学说明】上述问题教师应放手引导学生逐一完成,从而领会y=ax2+bx+c与y=a(x-h)2+k的转化过程.
二、思考探究,获取新知
探究1如何画y=ax2+bx+c图象,你可以归纳为哪几步?
学生回答、教师点评:
一般分为三步:
1.先用配方法求出y=ax2+bx+c的对称轴和顶点坐标.
2.列表,描点,连线画出对称轴右边的部分图象.
3.利用对称点,画出对称轴左边的部分图象.
探究2 二次函数y=ax2+bx+c图象的性质有哪些?你能试着归纳吗?
九年级数学教案模板范文篇11
一、情境导入
如图是两个自动扶梯,甲、乙两人分别从1、2号自动扶梯上楼,谁 先到达楼顶?如果AB和A′B′相 等而∠α和∠ β大小不同,那么它们的高度AC 和A′C′相等吗?AB、 AC、BC与∠α,A′B′、A′C′、B′C′与∠β之间有什么关系呢? --- ---导出新课
二、新课教学
1、合作探究
见课本
2、三角函数 的定义在Rt△ABC中,如果锐角A确定,那么∠A的对边与斜边的比、邻边与斜边的比也随之确定.
∠A 的对边与邻边的比叫 做∠A的正弦(sine),记作s inA,即s in A=
∠A的邻边与斜边的比叫做∠A的余弦(cosine),记作cosA,即cosA=
∠A的对边与∠A的邻边的比叫做∠A的正切(tangent) ,记作tanA,即
锐角A的正弦、余弦和正切统称∠A的三角函数.
注意 :sinA,cosA, tanA都是一个完整的符号,单独的 “sin”没有意义 ,其中A前面的“∠”一般省略不写。
师:根据上面的三角函数定义,你知道正弦与余弦三角函数值的取值范围吗 ?
师:(点拨)直角三角形中,斜边大于直角边.
生:独立思考,尝试回答 ,交流结果.
明确:0<sina<1,0 p="" <cosa<1.
巩固练 习:课内练习T1、作业题T1、2
3、如图,在Rt△ABC中,∠C=90°,AB=5,BC=3, 求∠A, ∠B的正弦,余弦和正切.
分析:由勾股定理求出AC的长度,再根据直角三角形中锐角三角函数值与三边之间的关系求出各函数值。
师:观察以上 计算结果,你 发现了什么?
明确:sinA=cosB,cosA=sinB,tanA•ta nB=1
4 、课堂练习:课本课内练习T2、3,作业题T3、4、5、6
三、课 堂小结:谈谈今天 的收获
1、内容总结
(1)在RtΔA BC中,设∠C= 900,∠α为RtΔABC的一个锐角,则
∠α的正弦 , ∠α的余弦 ,
∠α的正切
(2)一般地,在Rt△ ABC中, 当∠C=90°时,sinA=cosB,cosA=sinB,tanA•tanB=1
2、 方法归纳
在涉及直角三角形边角关系时, 常借助三角函数定义来解
九年级数学教案模板范文篇12
1.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.
2.通过复习轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.
3.旋转的基本性质.
重点
旋转及对应点的有关概念及其应用.
难点
旋转的基本性质.
一、复习引入
(学生活动)请同学们完成下面各题.
1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.
2.如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′.
3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?
(口述)老师点评并总结:
(1)平移的有关概念及性质.
(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它具有的一些性质.
(3)什么叫轴对称图形?
二、探索新知
我们前面已经复习有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.
1.请同学们看讲台上的大时钟,有什么在不停地转动?旋转围绕什么点呢?从现在到下课时针转了多少度?分针转了多少度?秒针转了多少度?
(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时钟的中心.从现在到下课时针转了________度,分针转了________度,秒针转了________度.
2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)
3.第1,2两题有什么共同特点呢?
共同特点是如果我们把时钟、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.
像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.
如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.
下面我们来运用这些概念来解决一些问题.
例1如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:
(1)旋转中心是什么?旋转角是什么?
(2)经过旋转,点A,B分别移动到什么位置?
解:(1)旋转中心是O,∠AOE,∠BOF等都是旋转角.
(2)经过旋转,点A和点B分别移动到点E和点F的位置.
自主探究:
请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.
(分组讨论)根据图回答下面问题(一组推荐一人上台说明)
1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?
2.∠AOA′,∠BOB′,∠COC′有什么关系?
3.△ABC与△A′B′C′的形状和大小有什么关系?
老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心的距离相等.
2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角.
3.△ABC和△A′B′C′形状相同和大小相等,即全等.
综合以上的实验操作得出:
(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前、后的图形全等.
例2如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B的对应点的位置,以及旋转后的三角形.
分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.
解:(1)连接CD;
(2)以CB为一边作∠BCE,使得∠BCE=∠ACD;
(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点;
(4)连接DB′,则△DB′C就是△ABC绕C点旋转后的图形.
三、课堂小结
(学生总结,老师点评)
本节课应掌握:
1.对应点到旋转中心的距离相等;
2.对应点与旋转中心所连线段的夹角等于旋转角;
3.旋转前、后的图形全等及其它们的应用.
四、作业布置
教材第62~63页习题4,5,6.
九年级数学教案模板范文篇13
20__-20__学年即将到来,大家在两个月的暑期调整后,又精神抖擞地投入到紧张、繁忙而有序地教育教学工作中,怎样做好这些艰巨而富有重大意义的工作,在今后的教学工作中能有效地、有序地进行下去,围绕校关于20__年下半年工作计划要求制定初三在本学期的教学计划。
一、抓常规课堂管理入手,严格规范课前准备,立足提高课堂效率,重视课后反思,定位规律探究。做到:
1.备好课:争取每节课前,与同组同仁们讨论、研究确定教学的重点、难点、教学目标、教法、学法,甚至例题的选用,作业的布置等等,做到五备,让每一节课上出实效,让每位学生愉悦的获得新知。
2.上好课:在备好课的基础上,上好每一个45分钟,提高45分钟的效率,让每一位同学都听的懂,对部分基础较差者要循序渐进,以选用的例题的难易程度不同,使每个学生能“吃”饱、“吃”好。
3.注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验。
4.批好每一次作业:作业反映了一节课的效果如何,学生对知识的掌握程度如何,认真批改作业,使教师能迅速掌握情况,对症下药。
5.按时检验学习成果,做到单元测验的有效、及时,测验卷子的批改不过夜。考后对典型错误利用学生想马上知道答案的心理立即点评。
6.及时指导、纠错:争取面批、面授,今天的任务不推托到明日,争取一切时间,紧紧抓住初三阶段的每分每秒。
二、基本功,提高自身“内力”
积极参加学校组织的各项与教育教学有关的活动。9月份的上课评课,10月份的六认真检查,11月期中考试,12月的区检查。每周至少做一套初三综合试卷。看一篇专业文章,多听课,博采众长,不断提高自身“内力”。
三、分层辅导,因材施教
对本年级的学生实施分层辅导,利用优胜劣汰的方法,激励学生的学习激情,保证升学率及优良率,提高及格率。对部分差生实行课后辅导,以提高成绩。
四、严格按照教学进度,有序的进行教学工作。
用心去做,从细节去做,尽自己追大的努力,发挥自己最大的能力去做好初三毕业班的教学工作。
九年级数学教案模板范文篇14
1、教材分析
(1)知识结构
(2)重点、难点分析
重点:三角形内切圆的概念及内心的性质。因为它是三角形的重要概念之一。
难点:①难点是“接”与“切”的含义,学生容易混淆;②画三角形内切圆,学生不易画好。
2、教学建议
本节内容需要一个课时。
(1)在教学中,组织学生自己画图、类比、分析、深刻理解三角形内切圆的概念及内心的性质;
(2)在教学中,类比“三角形外接圆的画图、概念、性质”,开展活动式教学。
教学目标:
1、使学生了解尺规作的方法,理解三角形和多边形的内切圆、圆的外切三角形和圆的外切多边形、三角形内心的概念;
2、应用类比的数学思想方法研究内切圆,逐步培养学生的研究问题能力;
3、激发学生动手、动脑主动参与课堂教学活动。
教学重点:
三角形内切圆的作法和三角形的内心与性质。
教学难点:
三角形内切圆的作法和三角形的内心与性质。
教学活动设计
(一)提出问题
1、提出问题:如图,你能否在△ABC中画出一个圆?画出一个的圆?想一想,怎样画?
2、分析、研究问题:
让学生动脑筋、想办法,使学生认识作三角形内切圆的实际意义。
3、解决问题:
例1作圆,使它和已知三角形的各边都相切。
引导学生结合图,写出已知、求作,然后师生共同分析,寻找作法。
提出以下几个问题进行讨论:
①作圆的关键是什么?
②假设⊙I是所求作的圆,⊙I和三角形三边都相切,圆心I应满足什么条件?
③这样的点I应在什么位置?
④圆心I确定后半径如何找。
A层学生自己用直尺圆规准确作图,并叙述作法;B层学生在老师指导下完成。
完成这个题目后,启发学生得出如下结论:和三角形的各边都相切的圆可以作一个且只可以作出一个。
(二)类比联想,学习新知识。
1、概念:和三角形各边都相切的圆叫做,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。
2、类比:
名称
确定方法
图形
性质
外心(三角形外接圆的圆心)
三角形三边中垂线的交点
(1)OA=OB=OC;
(2)外心不一定在三角形的内部。
内心(三角形内切圆的圆心)
三角形三条角平分线的交点
(1)到三边的距离相等;
(2)OA、OB、OC分别平分∠BAC、∠ABC、∠ACB;
(3)内心在三角形内部。
3、概念推广:和多边形各边都相切的圆叫做多边形的内切圆,这个多边形叫做圆的外切多边形。
4、概念理解:
引导学生理解及圆的外切三角形的概念,并与三角形的外接圆与圆的内接三角形概念相比较,以加深对这四个概念的理解。使学生弄清“内”与“外”、“接”与“切”的含义。“接”与“切”是说明三角形的顶点和边与圆的关系:三角形的顶点都在圆上,叫做“接”;三角形的边都与圆相切叫做“切”。
(三)应用与反思
例2如图,在△ABC中,∠ABC=50°,∠ACB=75°,点O是三角形的内心。
求∠BOC的度数
分析:要求∠BOC的度数,只要求出∠OBC和∠0CB的度数之和就可,即求∠l十∠3的度数。因为O是△ABC的内心,所以OB和OC分别为∠ABC和∠BCA的平分线,于是有∠1十∠3=(∠ABC十∠ACB),再由三角形的内角和定理易求出∠BOC的度数。
解:(引导学生分析,写出解题过程)
例3如图,△ABC中,E是内心,∠A的平分线和△ABC的外接圆相交于点D
求证:DE=DB
分析:从条件想,E是内心,则E在∠A的平分线上,同时也在∠ABC的平分线上,考虑连结BE,得出∠3=∠4.
从结论想,要证DE=DB,只要证明BDE为等腰三角形,同样考虑到连结BE.于是得到下述法。
证明:连结BE.
E是△ABC的内心
又∵∠1=∠2
∠1=∠2
∴∠1+∠3=∠4+∠5
∴∠BED=∠EBD
∴DE=DB
练习分析作出已知的锐角三角形、直角三角形、钝角,并说明三角形的内心是否都在三角形内。
(四)小结
1.教师先向学生提出问题:这节课学习了哪些概念?怎样作已知?学习时互该注意哪些问题?
2.学生回答的基础上,归纳总结:
(1)学习了三角形内切圆、三角形的内心、圆的外切三角形、多边形的内切圆、圆的外切多边形的概念。
(2)利用作三角形的内角平分线,任意两条角平分线的交点就是内切圆的圆心,交点到任意一边的距离是圆的半径。
(3)在学习有关概念时,应注意区别“内”与“外”,“接”与“切”;还应注意“连结内心和三角形顶点”这一辅助线的添加和应用。
(五)作业
教材P115习题中,A组1(3),10,11,12题;A层学生多做B组3题。
探究活动
问题:如图1,有一张四边形ABCD纸片,且AB=AD=6cm,CB=CD=8cm,∠B=90°.
(1)要把该四边形裁剪成一个面积的圆形纸片,你能否用折叠的方法找出圆心,若能请你度量出圆的半径(精确到0.1cm);
(2)计算出的圆形纸片的半径(要求精确值).
提示:(1)由条件可得AC为四边形似的对称轴,存在内切圆,能用折叠的方法找出圆心:
如图2,①以AC为轴对折;②对折∠ABC,折线交AC于O;③使折线过O,且EB与EA边重合。则点O为所求圆的圆心,OE为半径。
(2)如图3,设内切圆的半径为r,则通过面积可得:6r+8r=48,∴r=.
九年级数学教案模板范文篇15
活动目标
1、尝试实验,获得有关容量守恒的经验。
2、乐意动手动脑探究水的变化,了解它的主要特性。
活动准备
1、趣味练习:容量比较)
2、标有刻度的瓶子,水,记录纸,笔。
活动过程
一、观察提问
1.出示趣味练习:容量比较
教师:小朋友看一看这六瓶水是一样多的吗?你是怎么知道的?
小结:现在我们想办法做一下实验,比较一下水的多少吧。
二、实验操作
1、教师:用什么办法验证呢?怎么操作?
要求:实验用的两瓶水不能混在一起,实验时动作慢一点,避免将水洒出影响实验结果。
2、记录实验结果
(1)高矮不同的两只瓶子
方法是通过比较水位的高低,我们可以看出瓶子的水是一样的。
原来瓶子的高矮是不影响水的多少的。
(2)粗细不同的两只瓶子小
选择两个相同的空瓶,把装在大小不同的瓶内的饮料倒入其中,比较出饮料一样多。
方法,任选一个瓶子,将一瓶饮料倒入,用笔画或粘纸条的方法做标记,
把饮料倒出后再将另一瓶饮料倒入该瓶,看饮料位置与原来留下的标记是否一致,
比较出饮料一样多原来瓶子的粗细是不影响水的多少的。
(3)一只含内容物的的瓶子内容物为石子
方法是取出瓶中石子,比较水位的高低。
内容物为海绵小结:方法是将海绵中的水挤回瓶中,比较水位的高低。
原来瓶子里面是否有物体是不影响水的多少的。
3、总结:瓶子的高矮、粗细、内含物是不影响水的多少的,这种现象就叫做容量守恒。
三、活动延伸
想一想,如果把两块一样重的橡皮泥塞进不同形状的瓶子里,橡皮泥会变重吗?
回去试试看吧!
九年级数学教案模板范文篇16
教材分析:
一元二次方程根与系数的关系的知识内容主要是以前一单元中的求根公式为基础的。教材通过一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根与系数的关系,以及以数x1、x2为根的一元二次方程的求方程模型。然后通过4个例题介绍了利用根与系数的关系简化一些计算的知识。
学情分析:
1.学生已学习用求根公式法解一元二次方程。
2.本课的教学对象是九年级学生,学生对事物的认识多是直观、形象的,他们所注意的多是事物外部的、直接的、具体形象的特征。
3.在教学初始,出示一些学生所熟悉和感兴趣的东西,结合一元二次方程求根公式使他们在现代化的教学模式和传统的教学模式相结合的基础上掌握一元二次方程根与系数的关系。
教学目标:
1、知识目标:要求学生在理解的基础上掌握一元二次方程根与系数的关系式,能运用根与系数的关系由已知一元二次方程的一个根求出另一个根与未知数,会求一元二次方程两个根的倒数和与平方数,两根之差。
2、能力目标:通过韦达定理的教学过程,使学生经历观察、实验、猜想、证明等数学活动过程,发展推理能力,能有条理地、清晰地阐述自己的观点,进一步培养学生的创新意识和创新精神。
3、情感目标:通过情境教学过程,激发学生的求知欲望,培养学生积极学习数学的态度。体验数学活动中充满着探索与创造,体验数学活动中的成功感,建立自信心。
教学重难点:
1、重点:一元二次方程根与系数的关系。
2、难点:让学生从具体方程的根发现一元二次方程根与系数之间的关系,并用语言表述,以及由一个已知方程求作新方程,使新方程的根与已知的方程的根有某种关系,比较抽象,学生真正掌握有一定的难度,是教学的难点。
板书设计:
一元二次方程根与系数的关系如果ax+bx+c=0(a≠0)的两根是x1,x2,那么x1+x2=,x1x2=。
问题6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用吗?①二次项系数a是否为零,决定着方程是否为二次方程;②当a≠0时,b=0,a、c异号,方程两根互为相反数;③当a≠0时,△=b-4ac可判定根的情况;④当a≠0,b-4ac≥0时,x1+x2=,x1x2=。⑤当a≠0,c=0时,方程必有一根为0。
学生学习活动评价设计:
本节课充分让学生分析、观察、提高了学生的归纳能力及推理论证的能力。
教学反思:
1.一元二次方程根与系数的关系的推导是在求根公式的基础上进行。它深化了两根的和与积同系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,必须熟记,为进一步使用打下基础。
2.以一元二次方程根与系数的关系的探索与推导,向学生展示认识事物的一般规律,提倡积极思维,勇于探索的精神,借此锻炼学生分析、观察、归纳的能力及推理论证的能力。
3.一元二次方程的根与系数的关系,在中考中多以填空,选择,解答题的形式出现,考查的频率较高,也常与几何、二次函数等问题结合考查,是考试的热点,它是方程理论的重要组成部分。
4.使学生体会解题方法的多样性,开阔解题思路,优化解题方法,增强择优能力。力求让学生在自主探索和合作交流的过程中进行学习,获得数学活动经验,教师应注意引导。
九年级数学教案模板范文篇17
第一课时
素质教育目标
(一)知识教学点
1.使学生初步了解统计知识是应用广泛的数学内容.
2.了解平均数的意义,会计算一组数据的平均数.
3.当一组数据的数值较大时,会用简算公式计算一组数据的平均数.
(二)能力训练点
培养学生的观察能力、计算能力.
(三)德育渗透点
1.培养学生认真、耐心、细致的学习态度和学习习惯.
2.渗透数学来源于实践,反地来又作用于实践的观点.
(四)美育渗透点
通过本课的学习,渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显,寓纷繁于严谨的辩证统一的数学美.
重点·难点·疑点及解决办法
1.教学重点:平均数的概念及其计算.
2.教学难点:平均数的简化计算.
3.教学疑点:平均数简化公式的应用,a如何选择.
4.解决办法:分清两个公式,公式②的运用要选择一个适当的a.
教学步骤
(一)明确目标
在日常生活中,我们常与数据打交道,例如,电视台每天晚上都要预报第二天当地的最低气温与气温,商店每天都要结算一下当天的营业额,每个班次的飞机都要统计一下乘客的人数等.这些都涉及数据的计算问题.请同学们思考下面问题.(教师出示幻灯片)
为了从甲乙两名学生中选拔一人参加射击比赛,对他们的射击水平进行了测验.两人在相同条件下各射靶10次,命中的环数如下:
甲78686591074
乙9578768677
1.怎样比较两个人的成绩?2.应选哪一个人参加射击比赛?
教师要引导学生观察,给学生充分的时间去思考,并可以分成小组讨论解决办法.
对于这个问题,部分学生可能感到无从下手,部分学生可能想到去比较两组数据的平均,让学生动手具体算一下两组数据的平均数结果它们相等在学生无法解决此问题的情况下,教师说明,这正是本章要解决的问题之一(写出课题).这样做的目的是教师有意创设问题情境、制造悬念,这不仅能激发学生学习的积极性和自觉性,引起学生对所学课程的注意,还能诱发学生探求新知识的浓厚兴趣.
(二)整体感知
解决类似上述的问题要用到统计学的知识,统计学是一门研究如何收集、整理、分析数据并据之做出推断的科学,它以概率论为基础,着重研究如何根据样本的性质去推测总体的性质.在当今的信息时代,统计学的应用非常广泛,以至于它已渗透到整个社会生活的各个方面.本章我们将学习统计学的一些初步知识.
(三)教学过程
这节课我们首先来学平均数.
1.(出示幻灯片)请同学看下面问题:
某班第一小组一次数学测验的成绩如下:
869110072938990857595
这个小组的平均成绩是多少?
教师引导学生动笔计算,并找一名学生到黑板板演,讲完引例后,引导学生归纳出求平均数方法,这样做使学生对平均数的计算公式能有深刻的认识.
2.平均数的概念及计算公式
一般地,如果有n个数.
那么①
叫做这n个数的平均数,读作“x拨”.
这是在初中数学课本中第一次出现带有省略号的用字母表示的n个数相加的一般写法.学生对此可能会感到比较抽象,不太习惯,要向学生强调,采用这种写法是简化表示,是为了使问题的讨论具有一般性.教师应通过对公式的剖析,使学生正确理解公式,并掌握公式中各元素的意义.
3.平均数计算公式①的应用
例1一个地区某年1月上旬各天的最低气温依次是(单位:℃):
-6,-5,-7,-6,-4,-5,-7,-8,-7
求它们的平均气温.
让学生动手计算,以巩固平均数计算公式(一名学生板演)
教师应强调:①解题格式.②在统计学里处理的数据包括负数.③在本章中,如无特殊说明,平均数计算结果保留的位数与原数据相同.
例2从一批机器零件毛坯中取出20件,称得它们的质量如下(单位:千克):
210208200205202218206214215207195207218192202216185227187215
计算它们的平均质量.(用投影仪打出)
引导学生两人一组完成计算,然后一起对答案.由于数据较大,计算较繁,可能会出现不同的答案.正好为下面提出简化计算公式作好铺垫.
教师提出问题:像例2这样,数据较大,计算较繁,因而容易出错,有没有较为简便的算法呢?引导学生观察数据有什么特点?都接近于哪一个数?启发学生讨论,寻找简便算法.
学生回答:数据都在200左右波动,可将各数据同时减去200,转而计算一组数值较小的新数据的平均数,至此让学生再一次两人一组用简便方法计算例2,并与前面计算的结果相比较是否一样.
讲完例2后,教师指出几点:常数a的取法不是惟一的;读作“x——撇——拨”;;简化计算的结果与前面毛算的结果相同.
通过学生的动手计算,若产生困难或错误,教师及时点拨,引导学生寻找解决问题的方法,这不仅可以激发学生学习的兴趣,更培养了学生的发散思维能力,同时也使学生对公式②的推导更容易接受.
3.推导公式②
一般地,当一组数据的各个数值较大时,可将各数据同时减去一个适当的常数a,得到
,
那么,
因此,
即②
为了加深学生对公式②的认识,再让学生指出例2的、、各是什么?(学生回答)
课堂练习:
教材P148中~P149中1,2,3
(四)总结、扩展
知识小结:1.统计学是一门与数据打交道的学问,应用十分广泛.本章将要学习的是统计学的初步知识.
2.求n个数据的平均数的公式①.
3.平均数的简化计算公式②.这个公式很重要,要学会运用.
方法小结:通过本节课我们学到了示一组数据平均数的方法.当数据比较小时,可用公式①直接计算.当数据比较大,而且都在某一个数左右波动时,可选用公式②进行计算.
八、布置作业
教材P153中1、2、3、4.
九、板书设计
九年级数学教案模板范文篇18
二次根式的乘除法
教学目标
1、使学生掌握二次根式的乘法运算法则,会用它进行简单的二次根式的乘法运算。
2、使学生掌握积的算术平方根的性质、会根据这一性质熟练地化简二次根式.
3、培养学生合情推理能力。
教学过程
一、复习提问
1、什么叫做二次根式?下列式子哪些是二次根式,哪些不是二次根式?
2、二次根式有哪些性质?计算下列各题:
()2
二、提出问题,导入新知
1、试一试
计算: (1) _=( )=( )
=( )=( )
(2) _=( )=( )
=( )=( )
提问:观察以上计算结果,你能发现什么?
2、思考
_与是否相等?
提问:(1)你将用什么方法计算?
(2)通过计算,你发现了什么?是否与前面试一试的结果一样?
3、概括
让学生观察以上计算结果、归纳得出结论:_=(a≥0,b≥0)
注意,a,b必须都是非负数,上式才能成立。
三、举例应用
例1、计算。
__
说明:二次根式运算的结果,应该尽量化简、如(2)结果不要写成,而应化简成4。
等式_=(a≥0,b≥0),也可以写成=_(a≥0,b≥0)
利用它可以进行二次根式的化简,例如:=_==a2
例2、化简
说明:(1)如果一个二次根式的被开方数中有的因式(或因数)能开得尽方,可以利用积的算术平方根的性质,将这些因式(或因数)开出来,从而将二次根式化简;(2)在化简时,一般先将被开方数进行因式分解或因数分解,然后就将能开得尽方的因式(偶次方因式)或因数用它们的算术平方根代替,移到根号外,也就是开出方来。
四、课堂练习
1、计算下列各式,将所得结果化简:
_ _
2、P12页练习1(1)、(2)、2
五、想一想
1、__与是否相等?a、b、c有什么限制?请举一个例子加以说明。
2、等于__ 吗?
3、化简:
六、小结
这节课我们学习了以下知识:
1、二次根式的乘法运算法则,即_= (a≥0,b≥0)
2、积的算术平方根,等于积中各因式的算术平方根的积,即=_ (a≥0,b≥0)……)
要特别注意,以上(1)、(2)中,a、b必须都是非负数,如果a、b中出现了负数,等式就不成立、想一想,=_成立吗?为什么?
3、应用(1)、(2)进行计算和化简,在计算和化简中,复习了性质=a(a≥ 0),加深了对非负数a的算术平方根的性质的认识
七、作业
习题22.2第2、(1),(2)题,第3、(1)、(2)题、第4题