教育巴巴 > 教学设计 >

2023九年级数学教案

时间: 新华 教学设计

2023九年级数学教案篇1

垂直于弦的直径

理解垂径定理并灵活运用垂径定理及圆的概念解决一些实际问题.

通过复合图形的折叠方法得出猜想垂径定理,并辅以逻辑证明加予理解.

重点

垂径定理及其运用.

难点

探索并证明垂径定理及利用垂径定理解决一些实际问题.

一、复习引入

①在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点所形成的图形叫做圆.固定的端点O叫做圆心,线段OA叫做半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.

②连接圆上任意两点的线段叫做弦,如图线段AC,AB;

③经过圆心的弦叫做直径,如图线段AB;

④圆上任意两点间的部分叫做圆弧,简称弧,以A,C为端点的弧记作“︵AC”,读作“圆弧AC”或“弧AC”.大于半圆的弧(如图所示︵ABC)叫做优弧,小于半圆的弧(如图所示︵AC或︵BC)叫做劣弧.

⑤圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.

⑥圆是轴对称图形,其对称轴是任意一条过圆心的直线.

二、探索新知

(学生活动)请同学按要求完成下题:

如图,AB是⊙O的一条弦,作直径CD,使CD⊥AB,垂足为M.

(1)如图是轴对称图形吗?如果是,其对称轴是什么?

(2)你能发现图中有哪些等量关系?说一说你理由.

(老师点评)(1)是轴对称图形,其对称轴是CD.

(2)AM=BM,︵AC=︵BC,︵AD=︵BD,即直径CD平分弦AB,并且平分︵AB及︵ADB.

这样,我们就得到下面的定理:

垂直于弦的直径平分弦,并且平分弦所对的两条弧.

下面我们用逻辑思维给它证明一下:

已知:直径CD、弦AB,且CD⊥AB垂足为M.

求证:AM=BM,︵AC=︵BC,︵AD=︵BD.

分析:要证AM=BM,只要证AM,BM构成的两个三角形全等.因此,只要连接OA,OB或AC,BC即可.

证明:如图,连接OA,OB,则OA=OB,

在Rt△OAM和Rt△OBM中,

∴Rt△OAM≌Rt△OBM,

∴AM=BM,

∴点A和点B关于CD对称,

∵⊙O关于直径CD对称,

∴当圆沿着直线CD对折时,点A与点B重合,︵AC与︵BC重合,︵AD与︵BD重合.

∴︵AC=︵BC,︵AD=︵BD.

进一步,我们还可以得到结论:

平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.

(本题的证明作为课后练习)

例1 有一石拱桥的桥拱是圆弧形,如图所示,正常水位下水面宽AB=60 m,水面到拱顶距离CD=18 m,当洪水泛滥时,水面宽MN=32 m时是否需要采取紧急措施?请说明理由.

分析:要求当洪水到来时,水面宽MN=32 m是否需要采取紧急措施,只要求出DE的长,因此只要求半径R,然后运用几何代数解求R.

解:不需要采取紧急措施,

设OA=R,在Rt△AOC中,AC=30,CD=18,

R2=302+(R-18)2,

R2=900+R2-36R+324,

解得R=34(m),

连接OM,设DE=x,在Rt△MOE中,ME=16,

342=162+(34-x)2,

162+342-68x+x2=342,x2-68x+256=0,

解得x1=4,x2=64(不合题意,舍去),

∴DE=4,

∴不需采取紧急措施.

三、课堂小结(学生归纳,老师点评)

垂径定理及其推论以及它们的应用.

四、作业布置

1.垂径定理推论的证明.

2.教材第89,90页 习题第8,9,10题.

2023九年级数学教案篇2

教学目标:

1.知识与技能:

(1)能证明等腰梯形的性质和判定定理

(2)会利用这些定理计算和证明一些数学问题

2.过程与方法:

通过证明等腰梯形的性质和判定定理,体会数学中转化思想方法的应用。

3.情感态度与价值观:

通过定理的证明,体会证明方法的多样化,从而提高学生解决几何问题的能力。

重点、难点:

重点:等腰梯形的性质和判定

难点:如何应用等腰梯形的性质和判定解决具体问题。

教学过程

(一)知识梳理:

知识点1:等腰梯形的性质1

(1)文字语言:等腰梯形同一底上的两底角相等。

(2)数学语言:

在梯形ABCD中

∵AD‖BC,AB=CD

∴∠B=∠C

∠A=∠D(等腰梯形同一底上的两个底角相等)

(3)本定理的作用:在梯形中常用的添加辅助线——平移腰,可以把梯形化归为一个平行四边形和一个等腰三角形;从而利用平行四边形及等腰三角形的有关性质解决有关问题。

知识点2:等腰梯形的性质2

(1)文字语言:等腰梯形的两条对角线相等

(2)数学语言:

在梯形ABCD中

∵AD‖BC,AB=DC

∴AC=BD(等腰梯形对角线相等)

(3)本定理的作用:利用等腰梯形的性质证明线段相等,以及平移其中一条对角线化梯形为一个平行四边形和一个等腰三角形从而解决有关线段的相等和垂直。

知识点3:等腰梯形的判定

(1)文字语言:在同一底上的两个角相等的梯形是等腰梯形。

(2)数学语言:在梯形ABCD中∵∠B=∠C

∴梯形ABCD是等腰梯形(同底上的两个角相等的梯形是等腰梯形)

(3)本定理的作用:在梯形中常用添加辅助线——补全三角形把原来的梯形化为两个三角形

(4)说明:

①判定一个梯形是等腰梯形通常有两种方法:定义法和定理法。

②判定一个梯形是等腰梯形一般步骤:先判定四边形是梯形,然后再判定“两腰相等”或“同一底上的两个角相等”来判定它是等腰梯形。

【典型例题】

例1.我们在研究等腰梯形时,常常通过作辅助线将等腰梯形转化为三角形,然后用三角形的知识来解决等腰梯形的问题。

(1)在下面4个等腰梯形中,分别作出常用的4种辅助线(作图工具不限)

(2)在(1)的条件下,若AC⊥BD,DE⊥BC于点E,试确定线段DE与AD,BC之间的数量关系。并证明你的结论。

解:(1)略。

(2)DE=(AD+BC)

过D作DF‖AC交BC延长线于点F

∵AD‖BC,∴四边形ACFD是平行四边形

∴AD=CF,AC=DF

∵AC=BD

∴BD=DF

又∵AC⊥BD,∴BD⊥DF即△BDF为等腰直角三角形

∵DE⊥BF,则DE=BF,

∴DE=(BC+CF)=(BC+AD)

例2.如图,铁路路基横断面为等腰梯形ABCD,已知路基AB长6m,斜坡BC与下底CD的夹角为60°,路基高AE为,求下底CD的宽。

解:过点B作BF⊥CD于F

∵四边形ABCD是等腰梯形

∴BC=AD

∵BF=AE,BF⊥CD,AE⊥CD

∵Rt△BCF≌Rt△ADE

在Rt△BCF中,∠C=60°

∴∠CBF=30°

∴CF=BC即BC=2CF

∴BC2=CF2+BF2

即∴CF=2

∵AB‖CD,BF⊥CD,AE⊥CD

∴四边形ABFE是矩形

∴EF=AB=6m

∴CD=DE+EF+CF=AB+2CF=6+2×2=10(m)

例3.已知如图,梯形ABCD中,AB‖DC,AD=DC=CB,AD、BC的延长线相交于G,CE⊥AG于E,CF⊥AB于F

(1)请写出图中4组相等的线段。(已知的相等线段除外)

(2)选择(1)中你所写的一组相等线段,说说它们相等的理由。

解:(1)DG=CG,DE=BF,CF=CE,AF=AE,AG=BG

(2)证明AG=BG,因为在梯形ABCD中,

AB‖DC,AD=BC,所以梯形ABCD为等腰梯形

∴∠GAB=∠GBA

∴AG=BG

课堂小结:

本节课的学习要注意转化的思想方法,有关等腰梯形的问题往往通过作辅助线将其转化为更特殊的四边形和三角形,常见办法是平移腰,延长腰,作高分割,平移对角线等方法。

2023九年级数学教案篇3

1.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.

2.通过复习轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.

3.旋转的基本性质.

重点

旋转及对应点的有关概念及其应用.

难点

旋转的基本性质.

一、复习引入

(学生活动)请同学们完成下面各题.

1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.

2.如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′.

3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?

(口述)老师点评并总结:

(1)平移的有关概念及性质.

(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它具有的一些性质.

(3)什么叫轴对称图形?

二、探索新知

我们前面已经复习有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.

1.请同学们看讲台上的大时钟,有什么在不停地转动?旋转围绕什么点呢?从现在到下课时针转了多少度?分针转了多少度?秒针转了多少度?

(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时钟的中心.从现在到下课时针转了________度,分针转了________度,秒针转了________度.

2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)

3.第1,2两题有什么共同特点呢?

共同特点是如果我们把时钟、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.

像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.

如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.

下面我们来运用这些概念来解决一些问题.

例1如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:

(1)旋转中心是什么?旋转角是什么?

(2)经过旋转,点A,B分别移动到什么位置?

解:(1)旋转中心是O,∠AOE,∠BOF等都是旋转角.

(2)经过旋转,点A和点B分别移动到点E和点F的位置.

自主探究:

请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.

(分组讨论)根据图回答下面问题(一组推荐一人上台说明)

1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?

2.∠AOA′,∠BOB′,∠COC′有什么关系?

3.△ABC与△A′B′C′的形状和大小有什么关系?

老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心的距离相等.

2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角.

3.△ABC和△A′B′C′形状相同和大小相等,即全等.

综合以上的实验操作得出:

(1)对应点到旋转中心的距离相等;

(2)对应点与旋转中心所连线段的夹角等于旋转角;

(3)旋转前、后的图形全等.

例2如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B的对应点的位置,以及旋转后的三角形.

分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.

解:(1)连接CD;

(2)以CB为一边作∠BCE,使得∠BCE=∠ACD;

(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点;

(4)连接DB′,则△DB′C就是△ABC绕C点旋转后的图形.

三、课堂小结

(学生总结,老师点评)

本节课应掌握:

1.对应点到旋转中心的距离相等;

2.对应点与旋转中心所连线段的夹角等于旋转角;

3.旋转前、后的图形全等及其它们的应用.

四、作业布置

教材第62~63页习题4,5,6.

2023九年级数学教案篇4

教学目标:

1.探索直角三角形中锐角三角函数值与三边之间的关系。

2.掌握三角函数定义式 : sinA= , cosA= ,tanA= 。

重点和难点

重点: 三角函数定义的理解 。

难点:直角三角形中锐角三角函数值与三边之间的关系及求三角函数值。

【教学过程】

一、情境导入

如图是两个自动扶梯,甲、乙两人分别从1、2号自动扶梯上楼,谁 先到达楼顶?如果AB和A′B′相 等而∠α和∠ β大小不同,那么它们的高度AC 和A′C′相等吗?AB、 AC、BC与∠α,A′B′、A′C′、B′C′与∠β之间有什么关系呢? --- ---导出新课

二、新课教学

1、合作探究

见课本

2、三角函数 的定义在Rt△ABC中,如果锐角A确定,那么∠A的对边与斜边的比、邻边与斜边的比也随之确定.

∠A 的对边与邻边的比叫 做∠A的正弦(sine),记作s inA,即s in A=

∠A的邻边与斜边的比叫做∠A的余弦(cosine),记作cosA,即cosA=

∠A的对边与∠A的邻边的比叫做∠A的正切(tangent) ,记作tanA,即

锐角A的正弦、余弦和正切统称∠A的三角函数.

注意 :sinA,cosA, tanA都是一个完整的符号,单独的 “sin”没有意义 ,其中A前面的“∠”一般省略不写。

师:根据上面的三角函数定义,你知道正弦与余弦三角函数值的取值范围吗 ?

师:(点拨)直角三角形中,斜边大于直角边.

生:独立思考,尝试回答 ,交流结果.

明确:0<sina<1,0 p="" <cosa<1.

巩固练 习:课内练习T1、作业题T1、2

3、如图,在Rt△ABC中,∠C=90°,AB=5,BC=3, 求∠A, ∠B的正弦,余弦和正切.

分析:由勾股定理求出AC的长度,再根据直角三角形中锐角三角函数值与三边之间的关系求出各函数值。

师:观察以上 计算结果,你 发现了什么?

明确:sinA=cosB,cosA=sinB,tanA•ta nB=1

4 、课堂练习:课本课内练习T2、3,作业题T3、4、5、6

三、课 堂小结:谈谈今天 的收获

1、内容总结

(1)在RtΔA BC中,设∠C= 900,∠α为RtΔABC的一个锐角,则

∠α的正弦 , ∠α的余弦 ,

∠α的正切

(2)一般地,在Rt△ ABC中, 当∠C=90°时,sinA=cosB,cosA=sinB,tanA•tanB=1

2、 方法归纳

在涉及直角三角形边角关系时, 常借助三角函数定义来解

2023九年级数学教案篇5

配方法的基本形式

理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.

通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.

重点

讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.

难点

将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.

一、复习引入

(学生活动)请同学们解下列方程:

(1)3x2-1=5(2)4(x-1)2-9=0(3)4x2+16x+16=9(4)4x2+16x=-7

老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得

x=±p或mx+n=±p(p≥0).

如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?

二、探索新知

列出下面问题的方程并回答:

(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?

(2)能否直接用上面前三个方程的解法呢?

问题:要使一块矩形场地的长比宽多6m,并且面积为16m2,求场地的长和宽各是多少?

(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.

(2)不能.

既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:

x2+6x-16=0移项→x2+6x=16

两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9

左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5

解一次方程→x1=2,x2=-8

可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2m,长为8m.

像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.

可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.

例1用配方法解下列关于x的方程:

(1)x2-8x+1=0(2)x2-2x-12=0

分析:(1)显然方程的左边不是一个完全平方式,因此,要按前面的方法化为完全平方式;(2)同上.

解:略.

三、巩固练习

教材第9页练习1,2.(1)(2).

四、课堂小结

本节课应掌握:

左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.

五、作业布置

2023九年级数学教案篇6

一、素质教育目标

(一)知识教学点

使学生会根据一个锐角的正弦值和余弦值,查出这个锐角的大小.(二)能力训练点

逐步培养学生观察、比较、分析、概括等逻辑思维能力.

(三)德育渗透点

培养学生良好的学习习惯.

二、教学重点、难点和疑点

1.重点:由锐角的正弦值或余弦值,查出这个锐角的大小.

2.难点:由锐角的正弦值或余弦值,查出这个锐角的大小.

3.疑点:由于余弦是减函数,查表时“值增角减,值减角增”学生常常出错.

三、教学步骤

(一)明确目标

1.锐角的正弦值与余弦值随角度变化的规律是什么?

这一规律也是本课查表的依据,因此课前还得引导学生回忆.

答:当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小);当角度在0°~90°间变化时,余弦值随角度的增大(或减小)而减小(或增大).

2.若cos21°30′=0.9304,且表中同一行的修正值是则cos21°31′=______,

cos21°28′=______.

3.不查表,比较大小:

(1)sin20°______sin20°15′;

(2)cos51°______cos50°10′;

(3)sin21°______cos68°.

学生在回答2题时极易出错,教师一定要引导学生叙述思考过程,然后得出答案.

3题的设计主要是考察学生对函数值随角度的变化规律的理解,同时培养学生估算.

(二)整体感知

已知一个锐角,我们可用“正弦和余弦表”查出这个角的正弦值或余弦值.反过来,已知一个锐角的正弦值或余弦值,可用“正弦和余弦表”查出这个角的大小.因为学生有查“平方表”、“立方表”等经验,对这一点必深信无疑.而且通过逆向思维,可能很快会掌握已知函数值求角的方法.

(三)重点、难点的学习与目标完成过程.

例8已知sinA=0.2974,求锐角A.

学生通过上节课已知锐角查其正弦值和余弦值的经验,完全能独立查得锐角A,但教师应请同学讲解查的过程:从正弦表中找出0.2974,由这个数所在行向左查得17°,由同一数所在列向上查得18′,即0.2974=sin17°18′,以培养学生语言表达能力.

解:查表得sin17°18′=0.2974,所以

锐角A=17°18′.

例9已知cosA=0.7857,求锐角A.

分析:学生在表中找不到0.7857,这时部分学生可能束手无策,但有上节课查表的经验,少数思维较活跃的学生可能会想出办法.这时教师让学生讨论,在探讨中寻求办法.这对解决本题会有好处,使学生印象更深,理解更透彻.

若条件许可,应在讨论后请一名学生讲解查表过程:在余弦表中查不到0.7857.但能找到同它最接近的数0.7859,由这个数所在行向右查得38°,由同一个数向下查得12′,即0.7859=cos38°12′.但cosA=0.7857,比0.7859小0.0002,这说明∠A比38°12′要大,由0.7859所在行向右查得修正值0.0002对应的角度是1′,所以∠A=38°12′+1′=38°13′.

解:查表得cos38°12′=0.7859,所以:

0.7859=cos38°12′.

值减0.0002角度增1′

0.7857=cos38°13′,

即锐角A=38°13′.

例10已知cosB=0.4511,求锐角B.

例10与例9相比较,只是出现余差(本例中的0.0002)与修正值不一致.教师只要讲清如何使用修正值(用最接近的值),以使误差最小即可,其余部分学生在例9的基础上,可以独立完成.

解:0.4509=cos63°12′

值增0.0003角度减1′

0.4512=cos63°11′

∴锐角B=63°11′

为了对例题加以巩固,教师在此应设计练习题,教材P.15中2、3.

2.已知下列正弦值或余弦值,求锐角A或B:

(1)sinA=0.7083,sinB=0.9371,

sinA=0.3526,sinB=0.5688;

(2)cosA=0.8290,cosB=0.7611,

cosA=0.2996,cosB=0.9931.

此题是配合例题而设置的,要求学生能快速准确得到答案.

(1)45°6′,69°34′,20°39′,34°40′;

(2)34°0′,40°26′,72°34′,6°44′.

3.查表求sin57°与cos33°,所得的值有什么关系?

此题是让学生通过查表进一步印证关系式sinA=cos(90°-A),cosA=0.8387,∴sin57°=cos33°,或sin57°=cos(90°-57°),cos33°=sin(90°-33°).

(四)、总结、扩展

本节课我们重点学习了已知一个锐角的正弦值或余弦值,可用“正弦和余弦表”查出这个锐角的大小,这也是本课难点,同学们要会依据正弦值和余弦值随角度变化规律(角度变化范围0°~90°)查“正弦和余弦表”.

四、布置作业

教材复习题十四A组3、4,要求学生只查正、余弦。

五、板书设计

61466