教育巴巴 > 教学设计 >

七年级数学教案的反思

时间: 新华 教学设计

七年级数学教案的反思篇1

数学教学计划八年级新的学期已经开始,为了搞好本学期的教学工作,根据学校计划和科研室工作计划,特制定本学期教学工作计划如下:

一、学情分析

本学期我继续担任初二的数学教学工作。这两个班整体情况是学生基础较差,优秀生少,后进生站每个班的40%左右。少数学生学习积极性高,各科作业能按时按量完成,能够严格要求自己,但大部分学生学习不够认真,上课听讲、作业完成总是应付,不能够主动学习,所以造成基础掌握不扎实。要在本学期获得进步,则必须调动学生学习的积极性,查漏补缺,打好基础;同时注重学生逻辑思维的培养。

二、教学措施

1、认真研读新课程标准,钻研教材,努力构建和谐课堂教学模式,提高教学的实效性与有效性

2、根据教学内容,精心设计数学活动,培养学生探究合作能力,通过变式训练,培养思维的灵活性。特别是函数一章,利用数形结合,努力培养学生数学建模的思想和能力。

3、仔细批改作业,作好辅导,及时查缺补漏。

4、成立一帮一互助学习小组,辅导后进生,同时促进优生,共同进步。

三、合理落实各项教学常规

1、备好课是上好课的基础,是提高课堂教学质量的关键,所以在备课时深入钻研教材,正确地掌握和处理好教材的重点、难点,备好三环六步的各个环节。

2、上课时定向要明确,在充分了解学情的基础上,引导学生弄清疑难。点难拨疑时要面向全体学生,使各类学生都学有所得。都有所发展。

3、作业布置要分层,以关注不同层次的学生。批改要认真、及时,批语要多鼓励学生,根据作业情况查缺补漏,做好个别辅导。

4、进行个别辅导,优生提升能力,扎实打牢基础知识。

四、教研工作

积极参加教科室和教研组组织的各项教研活动。结合学校的双思三环六步讨论怎样优化三环六步教学设计,不断提高课堂教学效率,进行交流体会。在上好每一节课的基础上,及时写出教学反思并及时发布。通过教研不断创新自己的教育理念,提高自己的业务水平。

七年级数学教案的反思篇2

教学目标:了解总体、个体、样本及样本容的概念以及抽样调查的意义,明确在什么情况下采用抽样调查或全面调查,进一步熟悉对数据的收集、整理、描述和分析。

教学重点:对概念的理解及对数据收集整理。

教学难点:总体概念的理解和随机抽样的合理性。

教学过程:

一、情景创设,引入新课

上节课我们对全班同学对自己所喜爱的学科进行了调查,那么如果要对某校20__名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,怎样进行调查?

二、新课

1.抽样调查的意义

在上述问题中,由于学生人数比较多,全面调查花费的时间长,消耗的人力、物力大,因此需要寻求既省时又省力又能解决问题的方法,这就是抽样调查。

抽样调查:抽取一部分对象进行调查的方法,叫抽样调查。

2.总体、个体、样本、样本容量的意义

总体:所要考察对象的全体。

个体:总体的每一个考察对象叫个体。

样本:抽取的部分个体叫做一个样本。

样本容量:样本中个体的数目。

3.抽样的注意事项

①抽样调查要具有广泛性和代表性,即样本容量要恰当.样本容量过少,那么不能很好地反映总体的情况,比如要调查20__名学生对电视节目的喜爱情况,若抽取的样本容量为几名学生就不能反映20__名学生的喜爱情况;如果抽取的学生人数过多,必然花费大量的时间、精力,达不到省时省力的目的.再如要调查60岁以上的老人的生病情况,在医院去抽取一些60岁以上的住院病人,它又不具有代表性,则应从60岁以上的老人册中任意抽取部分老人的生病情况来反映总体的60岁老人的生病情况,才能达到目的.

②抽取的样本要有随机性.为了使样本能较好地反映总体的情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体都有相等的机会被抽到,所谓随机就是机会相等.例如在20__名学生的注册学号中,随意抽取100个学号,调查这些学号对应的100名学生.当然还可以在上学或放学时,在学校门口随机进行调查;或则每隔10个人调查一个,直到调查满确定的样本容量.

总体说来抽样调查最大的优点就是在抽样过程中避免了人为的干扰和偏差,因此随机抽样是最科学、应用最广泛的抽样方法,一般情况下,样本容量越大,估计精确度就越高.

下面是某同学抽取样本数量为100的调查节目统计表:

表中的数据信息也可以用条形统计图或扇形统计图来描述。

七年级数学教案的反思篇3

教学目标 1,掌握绝对值的概念,有理数大小比较法则.

2,学会绝对值的计算,会比较两个或多个有理数的大小.

3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.

教学难点 两个负数大小的比较

知识重点 绝对值的概念

教学过程(师生活动) 设计理念

设置情境

引入课题 星期天黄老师从学校出发,开车去游玩,她先向东行20千米,到朱家尖,下午她又向西行30千米,回到家中(学校、朱家尖、家在同一直线上),如果规定向东为正,①用有理数表示黄老师两次所行的路程;②如果汽车每公里耗油0.15升,计算这天汽车共耗油多少升?

学生思考后,教师作如下说明:

实际生活中有些问题只关注量的具体值,而与相反意义无关,即正负性无关,如汽车的耗油量我们只关心汽车行驶的距离和汽油的价格,而与行驶的方向无关;

观察并思考:画一条数轴,原点表示学校,在数轴上画出表示朱家尖和黄老师家的点,观察图形,说出朱家尖黄老师家与学校的距离.

学生回答后,教师说明如下:

数轴上表示数的点到原点的距离只与这个点离开原点的长度有关,而与它所表示的数的正负性无关;

一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记做|a|

例如,上面的问题中|20|=20,|-10|=10显然,|0|=0 这个例子中,第一问是相反意义的量,用正负数表示,后一问的解答则与符号没有关系,说明实际生活中有些问题,人们只需知道它们的具体数值,而并不关注它们所表示的意义.为引入绝对值概念做准备.并使学生体验数学知识与生活实际的联系.

因为绝对值概念的几何意义是数形转化的典型模型,学生初次接触较难接受,所以配置此观察与思考,为建立绝对值概念作准备.

合作交流

探究规律 例1求下列各数的绝对值,并归纳求有理数a的绝对有什么规律?

-3,5,0,+58,0.6

要求小组讨论,合作学习.

教师引导学生利用绝对值的意义先求出答案,然后观察原数与它的绝对值这两个数据的特征,并结合相反数的意义,最后总结得出求绝对值法则(见教科书第15页).

巩固练习:教科书第15页练习.

其中第1题按法则直接写出答案,是求绝对值的基本训练;第2题是对相反数和绝对值概念进行辨别,对学生的分析、判断能力有较高要求,要注意思考的周密性,要让学生体会出不同说法之间的区别. 求一个数的绝时值的法则,可看做是绝对值概念的一个应用,所以安排此例.

学生能做的尽量让学生完成,教师在教学过程中只是组织者.本着这个理念,设计这个讨论.

结合实际发现新知 引导学生看教科书第16页的图,并回答相关问题:

把14个气温从低到高排列;

把这14个数用数轴上的点表示出来;

观察并思考:观察这些点在数轴上的位置,并思考它们与温度的高低之间的关系,由此你觉得两个有理数可以比较大小吗?

应怎样比较两个数的大小呢?

学生交流后,教师总结:

14个数从左到右的顺序就是温度从低到高的顺序:

在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序,即左边的数小于右边的数.

在上面14个数中,选两个数比较,再选两个数试试,通过比较,归纳得出有理数大小比较法则。

想象练习:想象头脑中有一条数轴,其上有两个点,分别表示数一100和一90,体会这两个点到原点的距离(即它们的绝对值)以及这两个数的大小之间的关系.

要求学生在头脑中有清晰的图形. 让学生体会到数学的规定都来源于生活,每一种规定都有它的合理性。

数在大小比较法则第2点学生较难掌握,要从绝对值的意义和数轴上的数左小右大这方面结合起来来了解,所以配置想象练习 ,加强数与形的想象。

课堂练习 例2,比较下列各数的大小(教科书第17页例)

比较大小的过程要紧扣法则进行,注意书写格式

练习:第18页练习

小结与作业

课堂小结 怎样求一个数的绝对值,怎样比较有理数的大小?

本课作业 1, 必做题:教产书第19页习题1,2,第4,5,6,10

2, 选做题:教师自行安排

本课教育评注(课堂设计理念,实际教学效果及改进设想)

1,情景的创设出于如下考虑:①体现数学知识与生活实际的紧密联系,让学生在这些熟悉的日常生活情境中获得数学体验,不仅加深对绝对值的理解,更感受到学习绝对值概念的必要性和激发学习的兴趣.②教材中数的绝对值概念是根据几何意义来定义的(其本质是将数转化为形来解释,是难点),然后通过练习归纳出求有理数的绝对值的规律,如果直接给出绝对值的概念,灌输知识的味道很浓,且太抽象,学生不易接受.

2, 一个数绝对值的法则,实际上是绝对值概念的直接应用,也体现着分类的数学思想,所以直接通过例1归纳得出,显得非常紧凑,是教学重点;从知识的发展和学生的能力培养角度来看,教师应更重视学生的自主学习和探究的过程,关注学生的思维,做好教学的组织和引导,留给学生足够的空间。

3, 有理数大小的比较法则是大小规定的直接归纳,其中第(2)条学生较难理解,教学中要结合绝对值的意义和规定:“在数轴上表示有理数,它们从左到右的顺序就是从小到大的顺序”,帮助学生建立“数轴上越左边的点到原点的距离越大,所以表示的数越小”这个数形结合的模型.为此设置了想象练习.

4,本节课的内容包括绝对值的概念和数的绝对值的求法、有理数大小比较的法则,教学内容很多,学生接受起来可能会有困难,建议把有理数的大小比较移到下节课教学。

七年级数学教案的反思篇4

一、学习与导学目标:

知识与技能:会求出一个数的绝对值,能利用数轴及绝对值的知识,比较两个有理数的大小;

过程与方法:经历绝对值概念的形成,初步体会数形结合的思想方法,丰富解决问题的策略;

情感态度:通过创设情境,初步感悟学习绝对值的必要性,促进责任心的形成。

二、学程与导程活动:

A、创设情境(幻灯片或挂图)

1、两辆汽车,其一向东行驶10km,另一向西行驶8km。为了区别,可规定向东行驶为正,则分别记作+10km和-8km。但在计算出租车收费,汽车行驶所耗的汽油,起主要作用的是汽车行驶的路程,而不是行驶的方向。此时,行驶路程则分别记作10km和8km。

再如测量误差问题、排球重量谁更接近标准问题……

2、在讨论数轴上的点与原点的距离时,只需要观察它与原点相隔多少个单位长度,与位于原点何方无关。

B、学习概念:

1、我们把在数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作︱a︱(幻灯片)。因此,上述+10,-8的绝对值分别是10,8。

如在数轴上表示数-6的点和表示数6的点与原点的距离都是6,所以,-6和6的绝对值都是6,记作︱-6︱=6,︱6︱=6。(互为相反数的两个数的绝对值相同)

2、尝试回答(1)︱+2︱= ,︱1/5︱= ,︱+8.2︱= ;

(2)︱-3︱= ,︱-0.2︱= ,︱-8.2︱= ;

(3)︱0︱= 。(幻灯片)

思考:你能从中发现什么规律?引导学生得出:(幻灯片)

性质:一个正数的绝对值是它本身;

一个负数的绝对值是它的相反数;

零的绝对值是零。

如果用字母a表示有理数,上述性质可表述为:

当a是正数时,︱a︱=a;

当a是负数时,︱a︱=-a;

当a=0时,︱a︱=0。

解答课本P19/7及P15练习,由P19/7体会绝对值在实际中的应用,由练习1体会上面的三个等式,由练习2中提到的绝对值大小、数轴,引出问题:

在引入负数以后,如何比较两个数的大小,尤其是两个负数的大小?

3、让我们仍然回到实际中去看看有怎样的启发,引导阅读P16(幻灯片)。

显然,结合问题的实际意义不难得到:-4<-3<-2<-1<0<1<2……。

因此,在数轴上你有何发现?生讨论后发现:从左往右表示的数越来越大。

再找几个量试试是否如此?这些数的绝对值的大小如何?(可利用P19/6,8为素材)

通过以上探究活动得到:正数大于0,0大于负数,正数大于负数;

两个负数,绝对值大的反而小。

4、师生活动比较下列各对数的大小:P17例,P18练习。

5、师生小结归纳(幻灯片)

三、笔记与板书提纲:

1、 幻灯片

2、 师生板演练习P15/1

四、练习与拓展选题:

P19/4,5,9,10

七年级数学教案的反思篇5

教学目标:

【知识与技能】

了解平方根与算术平方根的概念,理解负数没有平方根及非负数开平方的意义。

【过程与方法】

理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示,能用科学计算器求平方根及其近似值。

【情感、态度与价值观】

体会平方与开平方这一对互逆运算的辩证关系,感受平方根在现实世界中的客观存在,增强数学知识的应用意识。

【教学重点】理解开平方与平方是一对互逆的运算,会用平方根的概念求某些数的平方根,并能用根号加以表示。

【教学难点】会用平方根的概念求某些数的平方根,并能用根号加以表示。

【教具准备】小黑板科学计算器

【教学过程】

一、导入

1、通过七年级的学习,相信同学们都对数学这门课程有了更深入的认识,这个学期,我们将一起来学习八年级的数学知识,这个学期的知识将会更加有趣。

2、板书:实数1.1平方根

二、新授

(一)探求新知

1、探讨:有面积为8平方厘米的正方形吗?如果有,那它的边长是多少?(少数学习超前的学生可能能答上来)这个边长是个怎样的数?你以前见过吗?

2、引入“无理数”的概念:像(2.82842712……)这样无限不循环的小数就叫做无理数。

3、你还能举出哪些无理数?(,)、、1/3是无理数吗?

4、有理数和无理数统称为实数。

(二)知识归纳:

1、板书:1.1平方根

2、李老师家装修厨房,铺地砖10.8平方米,用去正方形的地砖120块,你能算出所用地砖的边长是多少吗?(0.3米)

3、怎么算?每块地砖的面积是:10.8120=0.09平方米。

由于0.32=0.09,因此面积为0.09平方米的正方形,它的边长为0.3米。

4、练习:

由于()=400,因此面积为400平方厘米的正方形,它的边长为()厘米。

5、在实际问题中,我们常常遇到要找一个数,使它的平方等于给定的数,如已知一个数a,要求r,使r2=a,那么我们就把r叫做a的一个平方根。(也可叫做二次方根)

例如22=4,因此2是4的一个平方根;62=36,因此6是36的一个平方根。

6、说一说:9,16,25,49的一个平方根是多少?

(三)探求新知:

1、4的平方根除了2以外,还有别的数吗?

2、学生探究:因为(-2)2=4,因此-2也是4的一个平方根。

3、除了2和-2以外,4的平方根还有别的数吗?(4的平方根有且只有两个:2与-2。)

4、结论:如果r是正数a的一个平方根,那么a的平方根有且只有两个:r与-r。

5、我们把a的正平方根叫做a的算术平方根,记作,读作:“根号a”;把a的负平方根记作-。

6、0的平方根有且只有一个:0。0的平方根记作,即=0。

7、负数没有平方根。

8、求一个非负数的平方根,叫做开平方。

(四)巩固练习:

1、分别求下列各数的平方根:36,25/9,1.21。

(6和-6,5/3和-5/3,1.1和-1.1)(也可用号表示)

2、分别求下列各数的算术平方根:100,16/25,0.49。(10,4/5,0.7)

三、小结与提高:

1、面积是196平方厘米的正方形,它的边长是多少厘米?

2、求算术平方根:81,25/144,0.16

七年级数学教案的反思篇6

教学目标

1.会解简易方程,并能用简易方程解简单的应用题;

2.通过代数法解简易方程进一步培养学生的运算能力,发展学生的应用意识;

3.通过解决问题的实践,激发学生的学习兴趣,培养学生的钻研精神。

教学建议

一、教学重点、难点

重点:简易方程的解法;

难点:根据实际问题中的数量关系正确地列出方程并求解。

二、重点、难点分析

解简易方程的基本方法是:将方程两边同时加上(或减去)同一个适当的数;将方程两边同时乘以(或除以)同一个适当的数。最终求出问题的解。

判断方程求解过程中两边加上(或减去)以及乘以(或除以)的同一个数是否“适当”,关键是看运算的第一步能否使方程的一边只含有带有未知数的那个数,第二步能否使方程的一边只剩下未知数,即求出结果。

列简易方程解应用题是以列代数式为基础的,关键是在弄清楚题目语句中各种数量的意义及相互关系的基础上,选取适当的未知数,然后把与数量有关的语句用代数式表示出来,最后利用题中的相等关系列出方程并求解。

三、知识结构

导入方程的概念解简易方程利用简易方程解应用题。

四、教法建议

(1)在本节的导入部分,须使学生理解的是算术运算只对已知数进行加、减、乘、除,而代数运算的优越性体现在未知数获得与已知数平等的地位,即同样可以和已知数进行加、减、乘、除运算。对于方程、方程的解、解方程的概念让学生了解即可。

(2)解简易方程,要在学生积极参与的基础上,理解何种形式的方程在求解过程中方程两边选择加上(或减去)同一个数,以及何种形式的方程在求解过程中两边选择乘以(或除以)同一个数。另一个重要的问题就是“适当的数”的选择了。通常,整式方程并不需要检验,但为了学生从一开始就养成自我检查的好习惯,可以让学生在草稿纸上检验,同时也是对前面学过的求代数式的值的复习。

(3)教材给出了三道应用题,其中例4是一道有关公式应用的方程问题。列简易方程解应用题,关键在引导学生加深对代数式的理解基础上,认真读懂题意,弄清楚题目中的关键语句所包含的各种数量的意义及相互关系。恰当地设未知数,用代数式表示数学语句,依据相等关系正确的列出方程并求解。

(4)教学过程中,应充分发挥多媒体技术的辅助教学作用,可以参考运用相关课件提高学生的学习兴趣,加深对列简易方程解简单的应用题的整个分析、解决问题过程的理解。此外,通过应用投影仪、幻灯片可以提高课堂效率,有利于对知识点的掌握。

五、列简易方程解应用题

列简易方程解应用题的一般步骤

(1)弄清题意和题目中的已知数、未知数,用字母(如x)表示题目中的一个未知数.

(2)找出能够表示应用题全部含义的一个相等关系.

(3)根据这个相等关系列出需要的代数式,从而列出方程.

(4)解这个方程,求出未知数的值.

(5)写出答案(包括单位名称).

概括地说,列简易方程解应用题,一般有“设、列、解、验、答”五个步骤,审题可在草稿纸上进行.其中关键是“列”,即列出符合题意的方程.难点是找等量关系.要想抓住关键、突破难点,一定要开动脑筋,勤于思考、努力提高自己分析问题和解决问题的能力.

七年级数学教案的反思篇7

教学目的

通过天平实验,让学生在观察、思考的基础上归纳出方程的两种变形,并能利用它们将简单的方程变形以求出未知数的值。

重点、难点

1.重点:方程的两种变形。

2.难点:由具体实例抽象出方程的两种变形。

教学过程

一、引入

上一节课我们学习了列方程解简单的应用题,列出的方程有的我们不会解,我们知道解方程就是把方程变形成x=a形式,本节课,我们将学习如何将方程变形。

二、新授

让我们先做个实验,拿出预先准备好的天平和若干砝码。

测量一些物体的质量时,我们将它放在天干的左盘内,在右盘内放上砝码,当天平处于平衡状态时,显然两边的质量相等。

如果我们在两盘内同时加入相同质量的砝码,这时天平仍然平衡,天平两边盘内同时拿去相同质量的砝码,天平仍然平衡。

如果把天平看成一个方程,课本第4页上的图,你能从天平上砝码的变化联想到方程的变形吗?

让同学们观察图(1)的左边的天平;天平的左盘内有一个大砝码和2个小砝码,右盘上有5个小砝码,天平平衡,表示左右两盘的质量相等。如果我们用x表示大砝码的质量,1表示小砝码的质量,那么可用方程x+2=5表示天平两盘内物体的质量关系。

问:图(1)右边的天平内的砝码是怎样由左边天平变化而来的?它所表示的方程如何由方程x+2=5变形得到的?

学生回答后,教师归纳:方程两边都减去同一个数,方程的解不变。

问:若把方程两边都加上同一个数,方程的解有没有变?如果把方程两边都加上(或减去)同一个整式呢?

让同学们看图(2)。左天平两盘内的砝码的质量关系可用方程表示为3x=2x+2,右边的天平内的砝码是怎样由左边天平变化而来的?

把天平两边都拿去2个大砝码,相当于把方程3x=2x+2两边都减去2x,得到的方程的解变化了吗?如果把方程两边都加上2x呢?

由图(1)、(2)可归结为;

方程两边都加上或都减去同一个数或同一个整式,方程的解不变。

让学生观察(3),由学生自己得出方程的第二个变形。

即方程两边都乘以或除以同一个不为零的数,方程的解不变:

通过对方程进行适当的变形.可以求得方程的解。

例1.解下列方程

(1)x-5=7 (2)4x=3x-4

(1)解两边都加上5,x,x=7+5 即 x=12

(2)两边都减去3x,x=3x-4-3x 即 x=-4

请同学们分别将x=7+5与原方程x-5=7;x=3x-4-3,与原方程4x=3x-4比较,你发现了这些方程的变形。有什么共同特点?

这就是说把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。

注意:“移项’’是指将方程的某一项从等号的左边移到右边或从右边移到左边,移项时要先变号后移项。

例2.解下列方程

(1)-5x=2 (2) x=

这里的变形通常称为“将未知数的系数化为1”。

以上两个例题都是对方程进行适当的变形,得到x=a的形式。

练习:

课本第6页练习1、2、3。

练习中的第3题,即第2页中的方程①先让学生讨论、交流。

鼓励学生采用不同的方法,要他们说出每一步变形的根据,由他们自己得出采用哪种方法简便,体会方程的不同解法中所经历的转化思想,让学生自己体验成功的感觉。

三、巩固练习

教科书第7页,练习

四、小结

本节课我们通过天平实验,得出方程的两种变形:

1.把方程两边都加上或减去同一个数或整式方程的解不变。

2.把方程两边都乘以或除以(不等零)的同一个数,方程的解不变。第①种变形又叫移项,移项别忘了要先变号,注意移项与在方程的一边交换两项的位置有本质的区别。

五、作业

教科书第7—8页习题6.2.1第1、2、3。

57835