七年级数学设计教案
七年级数学设计教案篇1
学习目标
1.经历观察、操作、想像、推理、交流等活动,进一步发展推理能力和有条理表达能力.
2.掌握直线平行的条件,领悟归纳和转化的数学思想
学习重难点:探索并掌握直线平行的条件是本课的重点也是难点.
一、探索直线平行的条件
平行线的判定方法1:
二、练一练1、判断题
1.两条直线被第三条直线所截,如果同位角相等,那么内错角也相等.( )
2.两条直线被第三条直线所截,如果内错角互补,那么同旁内角相等.( )
2、填空1.如图1,如果∠3=∠7,或______,那么______,理由是__________;如果∠5=∠3,或笔________,那么________, 理由是______________; 如果∠2+ ∠5= ______ 或者_______,那么a∥b,理由是__________.
(2)
(3)
2.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
三、选择题
1.如图3所示,下列条件中,不能判定AB∥CD的是( )
A.AB∥EF,CD∥EF B.∠5=∠A; C.∠ABC+∠BCD=180° D.∠2=∠3
2.右图,由图和已知条件,下列判断中正确的是( )
A.由∠1=∠6,得AB∥FG;
B.由∠1+∠2=∠6+∠7,得CE∥EI
C.由∠1+∠2+∠3+∠5=180°,得CE∥FI;
D.由∠5=∠4,得AB∥FG
四、已知直线a、b被直线c所截,且∠1+∠2=180°,试判断直线a、b的位置关系,并说明理由.
五、作业课本15页-16页练习的1、2、3、
5.2.2平行线的判定(2)
课型:新课: 备课人:韩贺敏 审核人:霍红超
学习目标
1.经历观察、操作、想像、推理、交流等活动,进一步发展空
间观念,推理能力和有条理表达能力.
毛2.分析题意说理过程,能灵活地选用直线平行的方法进行说理.
学习重点:直线平行的条件的应用.
学习难点:选取适当判定直线平行的方法进行说理是重点也是难点.
一、学习过程
平行线的判定方法有几种?分别是什么?
二.巩固练习:
1.如图2,若∠2=∠6,则______∥_______,如果∠3+∠4+∠5+∠6=180°, 那么____∥_______,如果∠9=_____,那么AD∥BC;如果∠9=_____,那么AB∥CD.
(第1题) (第2题)
2.如图,一个合格的变形管道ABCD需要AB边与CD边平行,若一个拐角∠ABC=72°,则另一个拐角∠BCD=_______时,这个管道符合要求.
二、选择题.
1.如图,下列判断不正确的是( )
A.因为∠1=∠4,所以DE∥AB
B.因为∠2=∠3,所以AB∥EC
C.因为∠5=∠A,所以AB∥DE
D.因为∠ADE+∠BED=180°,所以AD∥BE
2.如图,直线AB、CD被直线EF所截,使∠1=∠2≠90°,则( )
A.∠2=∠4 B.∠1=∠4 C.∠2=∠3 D.∠3=∠4
三、解答题.
1.你能用一张不规则的纸(比如,如图1所示的四边形的纸)折出两条平行的直线吗?与同伴说说你的折法.
2.已知,如图2,点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?试用两种方法说明理由.
七年级数学设计教案篇2
教学目的
让学生通过独立思考,积极探索,从而发现;初步体会数形结合思想的作用。
重点、难点
1.重点:通过分析图形问题中的数量关系,建立方程解决问题。
2.难点:找出“等量关系”列出方程。
教学过程
一、复习提问
1.列一元一次方程解应用题的步骤是什么?
2.长方形的周长公式、面积公式。
二、新授
问题3.用一根长60厘米的铁丝围成一个长方形。
(1)使长方形的宽是长的专,求这个长方形的长和宽。
(2)使长方形的宽比长少4厘米,求这个长方形的面积。
(3)比较(1)、(2)所得两个长方形面积的大小,还能围出面积更大的长方形吗?
不是每道应用题都是直接设元,要认真分析题意,找出能表示整个题意的等量关系,再根据这个等量关系,确定如何设未知数。
(3)当长方形的长为18厘米,宽为12厘米时
长方形的面积=18×12=216(平方厘米)
当长方形的长为17厘米,宽为13厘米时
长方形的面积=221(平方厘米)
∴(1)中的长方形面积比(2)中的长方形面积小。
问:(1)、(2)中的长方形的长、宽是怎样变化的?你发现了什么?如果把(2)中的宽比长少“4厘米”改为3厘米、2厘米、1厘米、0.5厘米长方形的面积有什么变化?猜想宽比长少多少时,长方形的面积呢?并加以验证。
实际上,如果两个正数的和不变,当这两个数相等时,它们的积,通过以后的学习,我们就会知道其中的道理。
三、巩固练习
教科书第14页练习1、2。
第l题等量关系是:圆柱的体积=长方体的体积。
第2题等量关系是:玻璃杯中的水的体积十瓶内剩下的水的体积=原来整瓶水的体积。
四、小结
运用方程解决问题的关键是抓住等量关系,有些等量关系是隐藏的,不明显,要联系实际,积极探索,找出等量关系。
五、作业
教科书第16页,习题6.3.1第1、2、3。
七年级数学设计教案篇3
学习目标:
1、通过学生自学提问、探索讨论的方法,使学生初步了解计算器面板上的按健名称和功能。
2、了解计算器的形状、款式、功能不同的基础上,学会计算器的基本操作方法、并能进行简单的四则计算。
3、培养学生运用计算器解决生活中的实际问题,培养学生的运用意识和解决问题的能力。
4、在自主探究的学习过程中培养学生的问题意识和创新意识。在解决实际问题中,渗透节约、环保等诸方面意识。
学习重点、难点:
介绍常用键的功能和使用方法。
设计理念:
《数学课程标准》指出:数学教学必须建立在学生的认知发展水平和已有的知识经验基础之上。学生是数学学习的主人,教师是学生学习的组织者、引导者与合作者。计算器是如今生活中经常用到的计算工具,对学生来说并不陌生,所以教学中我让学生根据自带的计算器,结合教学目标自学课本,让学生在看一看、摸一摸、想一想、议一议的过程中认识计算器,学会基本操作方法,并在应用中感受到计算器带来的方便,体会到运用计算器解决实际问题时所带来的成功的快乐。
教具、学具准备:
1、每个学生自备一个计算器。
2、教师的计算器,实物投影仪,课件,多媒体
教学过程:
一、创设情境
师:同学们,你们经常去超市吗?我昨天也去了超市,并选购了好多东西,可是,要到付款的时候,我有点犹豫,我就带了1000元钱,也不知道够不够,这时如果是你,你会怎么办?(算一算)
师:怎么才能又准确又快地算也来呢,你想到了什么计算工具?(计算器)
师:在日常生活中,你还在哪见过计算器?它们有什么作用?
师:小结:可见,在日常生活中计算器已经被广泛的使用了,那么,这节课我们就来了解一下计算器。
二、学习用计算器计算
1、了解计算器的结构
(1)师:你了解计算器吗?假如你是一位计算器推销员,你打算怎样介绍你手中的这款计算器的构造?(板书:面板、显示器、键盘)
键盘里有哪些键?(板书:数字键、运算符号键、功能键)
这个点是什么意思?(点出开机、关机、删除)
(2)请一生介绍自己的计算器(实物投影)
②小组内学生相互介绍自己的计算器。
③展示文曲星、商务通
(3)师:文曲星、商务通的主要功能不是计算,但它们也有计算功能,可以作为计算器来使用。
2、过渡指出:各种不同的计算器的功能和操作方法也不完全相同,因此在使用前一定要先看使用说明书。但对于一些简单的操作,方法还是相同的,象开机按?关机按?
3、学习计算器的操作
(1)师:大家认识了计算器,你会操作它吗?试试!准备好了吗?(请你把计算结果记录在草稿本上)
(2)小黑板出示:
75+47=24×7.6=6.28-0.95=
(3)同桌之间说说你是怎样用计算器计算这三题的。
(4)指名学生上演示(实物投影)
(5)问:6.28-0.95的操作有不一样的吗?
用新方法操作,学生齐操作。
(6)师:通过计算这三题,我们可以发现,用计算器计算时只从左往右依次按键就可以了。
(7)小黑板出示:0.092÷1.15×25
问:计算这题,从左往右依次按键,可以吗?
为什么?(因为这题的计算顺序是从左往右依次计算)
(8)看谁算的最快,学生独立计算,指名演示
问:有没有不一样的?
三、结束:辨证看待计算器的使用。
七年级数学设计教案篇4
[教学目标]
3. 借助用直尺和三角板画平行线的过程,,得出直线平行的条件.
4. 会用直线平行的条件来判定直线平行.
5. 激发学生学习数学的兴趣.
[教学重点与难点]
重点: 理解直线平行的条件.
难点: 直线平行的条件的应用
[教学设计]提问
复习题:
1.如图,已知四条直线AB、AC、DE、FG
(1)∠1与∠2是直线_____和直线____被直线________所截而成的________角.
(2) ∠3与∠2是直线_____和直线____被直线________所截而成的________角.
(3) ∠5与∠6是直线_____和直线____被直线________所截而成的________角.
(4) ∠4与∠7是直线_____和直线____被直线________所截而成的________角.
(5) ∠8与∠2是直线_____和直线____被直线________所截而成的________角.
2.下面说法中正确的是 ( ).
(1) 在同一平面内,两条直线的位置关系有相交、平行、垂直三种
(2) 在同一平面内, 不垂直的两条直线必平行
(3) 在同一平面内, 不平行的两条直线必垂直
(4) 在同一平面内,不相交的两条直线一定不垂直
3.如果 a∥ b ,b ∥c ,那么_______,理由是_____________________.
导言:
上节课我们学习了平行线的意义, 在同一平面内,两条直线的位置关系,以及平行公理,
在此基础上,我们再来研究直线平行的条件.
新课:
直线平行的条件
演示用直尺和三角板画平行线的过程,
如果∠4+∠2=180°, a∥ b吗?
三种方法可以简单地说成:
例题 已知:如图,直线AB ,CD,EF被MN所截, ∠1=∠2, ∠3+∠1=180°,试说明CD ∥EF.
解:因为∠1=∠2,
所以 AB ∥CD.
又因为 ∠3+∠1=180°,
所以 AB ∥ EF.
从而 CD ∥EF (为什么?).
课堂练习:
1.下列判断正确的是 ( ).
A. 因为∠1和∠2是同旁内角,所以∠1+∠2=180°
B. 因为∠1和∠2是内错角,所以∠1=∠2
C. 因为∠1和∠2是同位角,所以∠1=∠2
D. 因为∠1和∠2是补角,所以∠1+∠2=180°
2.如图:(1) 已知∠1=65°, ∠2=65°,那么DE与 BC平行吗?为什么?
(2)如果∠1=65°, ∠3=115°,那么AB与DF平行吗?
为什么?
(3) )如果∠4=60°, ∠2=65°,那么DE与BC平行吗?
为什么?
3.
4.如图所示:
(1)如果已知∠1=∠3,则可判定AB∥______,其理由是__________________;
(2)如果已知∠4+∠5=180°,则可判定___________∥______,其理由是__________________;
(3)如果已知∠1+∠2=180°,则可判定___________∥______,其理由是__________________;
(4)如果已知∠5+∠2=180°那么根据对顶角相等有∠2=__,
因此可知∠4+∠5= ____,所以可确定 ___________∥______,其理由是__________________;
(5)如果已知∠1=∠6,则可判定_____∥______,其理由是__________________.
第4题图 第5题图
5.如图,(1)如果∠1=________,那么DE∥ AC;
(2) 如果∠1=________,那么EF∥ BC;
(3)如果∠FED+ ∠________=180°,那么AC∥ED;
(4) 如果∠2+ ∠________=180°,那么AB∥DF.
6.
7.
课后作业:习题5.2 第1,2,4题.
补充练习:
已知:如图,AB ∥CD,EF分别交 AB、CD
于 E、F,EG平分∠ AEF ,
FH平分∠ EFD EG与 FH平行吗?为什么?
七年级数学设计教案篇5
一:教材分析
1、教材的内容:本节课是人教版七年级下册第五章第一节的第一课时
2、教材的地位和作用:平面内两条直线的位置关系是“空间与图形”所要研究的基本问题,这些内容学生在前两个学段已经有所接触,本章在学生已有知识和经验的基础上,继续研究平面内两条直线的位置关系,首先研究相交的两条直线,这是后面学习垂直相交的必要基础也为后面学面直角坐标系奠定基石,因此本节课具有承前启后的重要作用
3、教学的重点、难点:
重点:邻补角、对顶角的概念,对顶角的性质和应用。
难点:理解对顶角性质的探索
(确定重难点的依据:本节的学习目的是研究两条相交直线产生的四个角的关系,因此将邻补角、对顶角的概念、性质以及应用作为本节的重点。同学们刚刚开始接触几何,对推理说理不习惯也不熟悉,所以将理解对顶角相等的性质作为难点。)
4、教学目标:
A:知识与技能目标
(1).理解对顶角和邻补角的概念,能在图形中辨认.
(2).掌握对顶角相等的性质和它的推证过程
(3).会用对顶角的性质进行有关的简单推理和计算.
B:过程与方法目标
(1).通过观察、操作、探究、猜想、思考、交流、归纳、推理等培养学生的推理能力和有条理的表达能力,培养操作能力、动手能力。
(2).体会具体到抽象再到具体的思想方法.
C:情感、态度与价值目标
(1).感受图形中和谐美、对称美.
(2).感受合作交流带来的成功感,树立自信心.
(3).感受数学应用的广泛性,使学生更加热爱数学
二、学情分析:
在此之前,学生已经学习了图形的初步认识、对相交线和平行线有了直观的感性认识,且对互补和互余有了清楚的了解,在此基础上来学习邻补角和对顶角,符合学生的认知规律,让学生对新知识的应用充满好奇与期待.
三、教法和学法:
教法:
叶圣陶先生倡导:解放学生的手,解放学生的脑,解放学生的时间.根据这一思想及我校初一学生活泼好动的特点,我采取启发式教学、探究式教学及多媒体辅助教学相结合的方法.
学法:以学生分组实践、自主探究、合作交流为主要形式的探究式学习方法.
四、教学过程:
1课前准备:课件,剪刀,纸片,相交线模型
2教学过程:设置以下六个环节
环节一:情景屋(创设情景,激发学习动机)
请学生欣赏观察图片,图片中有大桥上的钢梁和钢索,窗户的窗格都给我们以相交线平行线的形象,让学生感受到相交线平行线在我们生活中有着广泛的应用,由此产生研究它们了解它们的兴趣和欲望,适时的给出本章课题:相交线和平行线
环节二:问题苑(合作交流,解释发现)
通过一些问题的设置,激发学生探究的欲望,具体操作:
(1):动手尝试:剪纸片,感知剪刀所形成的角在剪纸过程中的变化
(2):给出问题,由剪刀这个实物抽象出几何模型——两条直线相交。
(让学生充分的感知到数学来源于生活,符合初中学生的认识规律和兴趣爱好)
(3):分析研究此模型:
设置以下一系列问题:A、两直线相交构成的4个角两两相配共能组成几对?(6对)
B、对各对角进行分析,首先从位置上去分析————结论:可把这六对角分成两大类,一类为哪些角?——特点?——它们有一条公共边,它们的另一边互为反向延长线——引出概念——邻补角。
另一类是哪些角?———特点?——它们的两边互为反向延长线——引出概念——对顶角
C、再从大小上进行分析——量一量——结论:邻补角互补、对顶角相等。
D、你能阐述它们互补和相等的理由吗?
(一堂好课,是由一系列的真问题组成的,本环节在老师的引导下,由学生自由的发挥,通过观察分析,交流讨论一步一步的解决本节课的重点和难点,学生通过自己探索获得的知识才是自己的知识,让学生在此过程中学会学习,达到教是为了不教的目的)
环节三:快乐房(大胆创设,感悟变换)
(设置见投影,让学生判断形成的两个角是否为邻补角,这一变换让学生充满兴趣,此时一定让学生用邻补角的特点去检验,达到知识的正向迁移,并理解邻补角和补角的关系)
环节四:实例库(拓展应用,升华提高)
例子1:是一组不同形式的角,判断是否为对顶角,此题的目的是巩固对顶角的概念,培养学生的识图能力
例子2:例子2是用对顶角和邻补角的性质进行简单的计算,在这里设置了一组变式题,而且变式题目不是教师直接给出,而是启发学生自己编,让学生过了一把编导的瘾,学生一定非常的开心,这样可以活跃课堂气氛,提高学生的思维能力
(一方面巩固了对顶角的性质;另一方面说明几何里的计算题,需要用到图形的几何性质,因此,要有根有据地计算.例题放手让学生自己解决,比教师单纯地讲解效果会更好.尽管学生书写格式不如课本上的规范,但通过集体讲评纠正后,学生印象会更深刻).
最后安排一个脑筋急转弯:见投影
(让学生始终对课堂充满热情,通过此练习,体会到数学来自于生活又用于生活,提高学习数学的兴趣和热情)
环节五:点金帚(学后反思感悟收获)
通过本堂课的探究
我经历了......
我体会到......
我感受到......
(学生畅所欲言,在“以生为本”的民主氛围中培养学生归纳、概括能力和语言表达能力;同时引导学生反思探究过程,帮助学生肯定自我,欣赏他人,同时把本节课的内容形成知识体系.)
角的名称
特征
性质
相同点
不同点
对顶角
①两条直线相交而成的角
②有一个公共顶点
③没有公共边
对顶角相等
都是两直线相交而成的角,都有一个公共顶点,它们都是成对出现。
对顶角没有公共边而邻补角有一条公共边;两条直线相交时,一个角的对顶角有一个,而一个角的邻补角有两个
邻补角
①两条直线相交面成的角
②有一个公共顶点
③有一条公共边
邻补角互补
环节六:沉思阁(课后延伸张扬个性)
此为课后作业:
(适当增加利用对顶角相等解决一些说理的题目,既让学生感受到对顶角相等这个性质在解题中的独特魅力,又为后续学习打下良好的基础.)
五、教学设计说明:
设计理念:面向全体学生,实现:
——人人学有价值的数学
——人人都能获得必需的数学
——不同的人在数学上得到不同的发展
过程设计:学生亲身经历从现实生活的图形中提出数学问题,并抽象其蕴涵的数学本质(相交直线),最后回归生活去运用所学知识的全过程。
设计目的:让学生带着兴趣、带着问题走进课堂,带着新的问题、带着高涨的热情离开课堂,进行不断的探究。
七年级数学设计教案篇6
教学目标:
1.了解正数与负数是实际生活的需要.
2.会判断一个数是正数还是负数.
3.会用正负数表示互为相反意义的量.
教学重点:会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义.
教学难点:负数的引入.
教与学互动设计:
(一)创设情境,导入新课
课件展示珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况.
(二)合作交流,解读探究
举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等.
想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?
为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).
活动每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示.
讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数.
总结正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界点.
(三)应用迁移,巩固提高
【例1】举出几对具有相反意义的量,并分别用正、负数表示.
【提示】具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.
【例2】在某次乒乓球检测中,一只乒乓球超过标准质量0.02g,记作+0.02g,那么-0.03g表示什么?
【例3】某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()
A.3B.-3C.-2.5D.-7.45
【点拨】读懂题意是解决本题的关键.7:45与10:00相差135分钟.
(四)总结反思,拓展升华
为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数,也不是负数.
1.下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):
星期日一二三四五六
(元)+16+5.0-1.2-2.1-0.9+10-2.6
(1)本周小张一共用掉了多少钱?存进了多少钱?
(2)储蓄罐中的钱与原来相比是多了还是少了?
(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.
2.数学游戏:4个同学站或蹲成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.
(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;
(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复(1)中的游戏.
(五)课堂跟踪反馈
夯实基础
1.填空题:
(1)如果节约用水30吨记为+30吨,那么浪费20吨记为吨.
(2)如果4年后记作+4年,那么8年前记作年.
(3)如果运出货物7吨记作-7吨,那么+100吨表示.
(4)一年内,小亮体重增加了3kg,记作+3kg;小阳体重减少了2kg,则小阳增加了.
2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0.5米.
(1)用正数或负数记录下午1时和下午5时的水位;
(2)下午5时的水位比中午12时水位高多少?
提升能力
3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.
(六)课时小结
1.与以前相比,0的意义又多了哪些内容?
2.怎样用正数和负数表示具有相反意义的量?(用正数表示其中具有一种意义的量,另一种量用负数表示)