九年级教案数学反思
九年级教案数学反思篇1
今学期是九年级的第二个学期,总复习教学时间紧,任务重,要求高,如何提高数学总复习的质量和效益,是每位毕业班数学教师必须面对的问题。下面我谈谈本学期的教学计划和中考总复习具体做法。
一、预备阶段(第1周——第4周):完成未学完的新课。
由于各种原因,我校九年级下册的新课没有上完,《圆》的知识没有讲授,从而严重影响中考备考,所以尽可能地尽早结束新课。
二、第一阶段(第4周——第12周):全面复习基础知识,加强基本技能训练。
这个阶段的复习目的是让学生全面掌握初中数学基础知识,提高基本技能,做到全面、扎实、系统,形成知识网络。
1、重视课本,系统复习。现在中考命题仍然以基础题为主,有些基础题是课本上的原题或改造,后面的大题虽是“高于教材”,但原型一般还是教材中的例题或习题,是教材中题目的引伸、变形或组合,所以第一阶段复习应以课本为主。
2、按知识板块组织复习。把知识进行归类,将全初中数学知识分为十一讲:第一讲数与式;第二讲方程与不等式;第三讲函数;第四讲统计与概率;第五讲基本图形;第六讲图形与变换;第七讲角、相交线和平行线;第八讲三角形;第九讲四边形;第十讲三角函数学;第十一讲圆。复习中由教师提出每个讲节的复习提要,指导学生按“提要”复习,同时要注意引导学生根据个人具体情况把遗忘了知识重温一遍,边复习边作知识归类,加深记忆,注意引导学生弄清概念的内涵和外延,掌握法则、公式、定理的推导或证明,例题的选择要有针对性、典型性、层次性,并注意分析例题解答的思路和方法。
3、重视对基础知识的理解和基本方法的指导。基础知识即初中数学课程中所涉及的概念、公式、公理、定理等。要求学生掌握各知识点之间的内在联系,理清知识结构,形成整体的认识,并能综合运用。例如一元二次方程的根与二次函数图形与x轴交点之间的关系,是中考常常涉及的内容,在复习时,应从整体上理解这部分内容,从结构上把握教材,达到熟练地将这两部分知识相互转化。又如一元二次方程与几何知识的联系的题目有非常明显的特点,应掌握其基本解法。
中考数学命题除了着重考查基础知识外,还十分重视对数学方法的考查,如配方法,判别式法等操作性较强的数学方法。在复习时应对每一种方法的内涵,它所适应的题型,包括解题步骤都应熟练掌握。
4、重视对数学思想的理解及运用。如函数的思想,方程思想,数形结合的思想等
三。第二阶段(第13周——第18周):综合运用知识,加强能力培养
中考复习的第二阶段应以构建初中数学知识结构和网络为主,从整体上把握数学内容,提高能力。培养综合运用数学知识解题的能力,是学习数学的重要目的之一。这个阶段的复习目的是使学生能把各个讲节中的知识联系起来,并能综合运用,做到举一反三、触类旁通。这个阶段的例题和练习题要有一定的难度,但又不是越难越好,要让学生可接受,这样才能既激发学生解难求进的学习欲望,又使学生从解决较难问题中看到自己的力量,增强前进的信心,产生更强的求知欲。第二阶段就是第一阶段复习的延伸和提高,应侧重培养学生的数学能力。这一阶段尤其要精心设计每一节复习课,注意数学思想的形成和数学方法的掌握。初中总复习的内容多,复习必须突出重点,抓住关键,解决疑难,这就需要充分发挥教师的主导作用。而复习内容是学生已经学习过的,各个学生对教材内容掌握的程度又各有差异,这就需要教师千方百计地激发学生复习的主动性、积极性,引导学生有针对性的复习,根据个人的具体情况,查漏补缺,做知识归类、解题方法归类,在形成知识结构的基础上加深记忆。除了复习形式要多样,题型要新颖,能引起学生复习的兴趣外,还要精心设计复习课的教学方法,提高复习效益。
九年级教案数学反思篇2
配方法的基本形式
理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.
通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.
重点
讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.
难点
将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.
一、复习引入
(学生活动)请同学们解下列方程:
(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4)4x2+16x=-7
老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得
x=±或mx+n=±(p≥0).
如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?
二、探索新知
列出下面问题的方程并回答:
(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?
(2)能否直接用上面前三个方程的解法呢?
问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?
(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.
既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:
x2+6x-16=0移项→x2+6x=16
两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9
左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5
解一次方程→x1=2,x2=-8
可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m.
像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.
可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.
例1 用配方法解下列关于x的方程:
(1)x2-8x+1=0 (2)x2-2x-21=0
三、巩固练习
教材第9页 练习1,2.(1)(2).
四、课堂小结
本节课应掌握:
左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.
五、作业 教材第17页 复习巩固2,3.(1)(2).
九年级教案数学反思篇3
教学内容
1.(a≥0)是一个非负数;
2.()2=a(a≥0).
教学目标
理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.
通过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0);最后运用结论严谨解题.
教学重难点关键
1.重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用.
2.难点、关键:用分类思想的方法导出(a≥0)是一个非负数;用探究的方法导出()2=a(a≥0).
教学过程
一、复习引入
(学生活动)口答
1.什么叫二次根式?
2.当a≥0时,叫什么?当a<0时,有意义吗?
老师点评(略).
二、探究新知
议一议:(学生分组讨论,提问解答)
(a≥0)是一个什么数呢?
老师点评:根据学生讨论和上面的练习,我们可以得出
(a≥0)是一个非负数.
做一做:根据算术平方根的意义填空:
()2=_______;()2=_______;()2=______;()2=_______;
()2=______;()2=_______;()2=_______.
老师点评:是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4.
同理可得:()2=2,()2=9,()2=3,()2=,()2=,()2=0,所以
()2=a(a≥0)
例1计算
1.()22.(3)23.()24.()2
分析:我们可以直接利用()2=a(a≥0)的结论解题.
解:()2=,(3)2=32•()2=32•5=45,
()2=,()2=.
三、巩固练习
计算下列各式的值:
()2()2()2()2(4)2
四、应用拓展
例2计算
1.()2(x≥0)2.()23.()2
4.()2
分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;
(4)4x2-12x+9=(2x)2-2•2x•3+32=(2x-3)2≥0.
所以上面的4题都可以运用()2=a(a≥0)的重要结论解题.
解:(1)因为x≥0,所以x+1>0
()2=x+1
(2)∵a2≥0,∴()2=a2
(3)∵a2+2a+1=(a+1)2
又∵(a+1)2≥0,∴a2+2a+1≥0,∴=a2+2a+1
(4)∵4x2-12x+9=(2x)2-2•2x•3+32=(2x-3)2
又∵(2x-3)2≥0
∴4x2-12x+9≥0,∴()2=4x2-12x+9
例3在实数范围内分解下列因式:
(1)x2-3(2)x4-4(3)2x2-3
分析:(略)
五、归纳小结
本节课应掌握:
1.(a≥0)是一个非负数;
2.()2=a(a≥0);反之:a=()2(a≥0).
六、布置作业
1.教材P8复习巩固2.(1)、(2)P97.
2.选用课时作业设计.
3.课后作业:《同步训练》
九年级教案数学反思篇4
1.了解旋转及其旋转中心和旋转角的概念,了解旋转对应点的概念及其应用它们解决一些实际问题.
2.通过复移、轴对称的有关概念及性质,从生活中的数学开始,经历观察,产生概念,应用概念解决一些实际问题.
3.旋转的基本性质.
重点
旋转及对应点的有关概念及其应用.
难点
旋转的基本性质.
一、复习引入
(学生活动)请同学们完成下面各题.
1.将如图所示的四边形ABCD平移,使点B的对应点为点D,作出平移后的图形.
2.如图,已知△ABC和直线l,请你画出△ABC关于l的对称图形△A′B′C′.
3.圆是轴对称图形吗?等腰三角形呢?你还能指出其它的吗?
(口述)老师点评并总结:
(1)平移的有关概念及性质.
(2)如何画一个图形关于一条直线(对称轴)的对称图形并口述它具有的一些性质.
(3)什么叫轴对称图形?
二、探索新知
我们前面已经复移等有关内容,生活中是否还有其它运动变化呢?回答是肯定的,下面我们就来研究.
1.请同学们看讲台上的大时钟,有什么在不停地转动?旋转围绕什么点呢?从现在到下课时针转了多少度?分针转了多少度?秒针转了多少度?
(口答)老师点评:时针、分针、秒针在不停地转动,它们都绕时钟的中心.从现在到下课时针转了________度,分针转了________度,秒针转了________度.
2.再看我自制的好像风车风轮的玩具,它可以不停地转动.如何转到新的位置?(老师点评略)
3.第1,2两题有什么共同特点呢?
共同特点是如果我们把时钟、风车风轮当成一个图形,那么这些图形都可以绕着某一固定点转动一定的角度.
像这样,把一个图形绕着某一点O转动一个角度的图形变换叫做旋转,点O叫做旋转中心,转动的角叫做旋转角.
如果图形上的点P经过旋转变为点P′,那么这两个点叫做这个旋转的对应点.
下面我们来运用这些概念来解决一些问题.
例1如图,如果把钟表的指针看做三角形OAB,它绕O点按顺时针方向旋转得到△OEF,在这个旋转过程中:
(1)旋转中心是什么?旋转角是什么?
(2)经过旋转,点A,B分别移动到什么位置?
解:(1)旋转中心是O,∠AOE,∠BOF等都是旋转角.
(2)经过旋转,点A和点B分别移动到点E和点F的位置.
自主探究:
请看我手里拿着的硬纸板,我在硬纸板上挖下一个三角形的洞,再挖一个点O作为旋转中心,把挖好的硬纸板放在黑板上,先在黑板上描出这个挖掉的三角形图案(△ABC),然后围绕旋转中心O转动硬纸板,在黑板上再描出这个挖掉的三角形(△A′B′C′),移去硬纸板.
(分组讨论)根据图回答下面问题(一组推荐一人上台说明)
1.线段OA与OA′,OB与OB′,OC与OC′有什么关系?
2.∠AOA′,∠BOB′,∠COC′有什么关系?
3.△ABC与△A′B′C′的形状和大小有什么关系?
老师点评:1.OA=OA′,OB=OB′,OC=OC′,也就是对应点到旋转中心的距离相等.
2.∠AOA′=∠BOB′=∠COC′,我们把这三个相等的角,即对应点与旋转中心所连线段的夹角称为旋转角.
3.△ABC和△A′B′C′形状相同和大小相等,即全等.
综合以上的实验操作得出:
(1)对应点到旋转中心的距离相等;
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前、后的图形全等.
例2如图,△ABC绕C点旋转后,顶点A的对应点为点D,试确定顶点B的对应点的位置,以及旋转后的三角形.
分析:绕C点旋转,A点的对应点是D点,那么旋转角就是∠ACD,根据对应点与旋转中心所连线段的夹角等于旋转角,即∠BCB′=∠ACD,又由对应点到旋转中心的距离相等,即CB=CB′,就可确定B′的位置,如图所示.
解:(1)连接CD;
(2)以CB为一边作∠BCE,使得∠BCE=∠ACD;
(3)在射线CE上截取CB′=CB,则B′即为所求的B的对应点;
(4)连接DB′,则△DB′C就是△ABC绕C点旋转后的图形.
三、课堂小结
(学生总结,老师点评)
本节课应掌握:
1.对应点到旋转中心的距离相等;
2.对应点与旋转中心所连线段的夹角等于旋转角;
3.旋转前、后的图形全等及其它们的应用.
四、作业布置
教材第62~63页习题4,5,6.
九年级教案数学反思篇5
一、指导思想:
初三数学是以党和国家的教育教学方针为指导,按照九年义务教育数学课程标准来实施的,其目的是教书育人,使每个学生都能够在此数学学习过程中获得最适合自己的发展。通过初三数学的教学,提供参加生产和进一步学习所必需的数学基础知识与基本技能,进一步培养学生的运算能力、思维能力和空间想象能力,能够运用所学知识解决简单的实际问题,培养学生的数学创新意识、良好个性品质以及初步的唯物主义观。
二、教学内容:
本学期所教初三数学包括第一章证明(二),第二章一元二次方程,第三章证明(三),第四章视图与投影,第五章反比例函数,第六章频率与概率。其中证明(二),证明(三),视图与投影,这三章是与几何图形有关的。一元二次方程,反比例函数这两章是与数及数的运用有关的。频率与概率则是与统计有关。
四、教学目的:
在新课方面通过讲授《证明(二)》和《证明(三)》的有关知识,使学生经历探索、猜测、证明的过程,进一步发展学生的推理论证能力,并能运用这些知识进行论证、计算、和简单的作图。进一步掌握综合法的证明方法,能证明与三角形、平行四边形、等腰梯形、矩形、菱形、以及正方形等有关的性质定理及判定定理,并能够证明其他相关的结论。在《视图与投影》这一章通过具体活动,积累数学活动经验,进一步增强学生的动手能力发展学生的空间思维。在《频率与概率》这一章》让学生理解频率与概率的关频率与概率系进一步体会概率是描述随机现象的数学模型。
在《一元二次方程》和《反比例函数》这两章,让学生了解一元二次方程的各种解法,并能运用一元二次方程和函数解决一些数学问题逐步提高观察和归纳分析能力,体验数学结合的数学方法。同时学会对知识的归纳、整理、和运用。从而培养学生的思维能力和应变能力。
五、教学重点、难点
本册教材包括几几何何部分《证明(二)》,《证明(三)》,《视图与投影》。代娄部分《一元二次方程》,《反比例函数》。以及与统计有关的《频率与概率》。《证明(二)》,《证明(三)》的重点是1、要求学生掌握证明的基本要求和方法,学会推理论证;2、探索证明的思路和方法,提倡证明的多样性。难点是1、引导学生探索、猜测、证明,体会证明的必要性;2、在教学中渗透如归纳、类比、转化等数学思想。《视图与投影》和重点是通过学习和实践活动判断简单物体的三种视图,并能根据三种图形描述基本几何体或实物原型,实现简单物体与其视图之间的相互转化。难点是理解平行投影与中心投影,明确视点、视线和盲区的内容。《一元二次方程》,《反比例函数》的重点是1、掌握一元二次方程的多种解法;2、会画出反比例函数的图像,并能根据图像和解析式探索和理解反比例函数的性质。难占是1、会运用方程和函数建立数学模型,鼓励学生进行探索和交流,倡导解决问题策略的多样化。《频率与概率》的重点是通过实验活动,理解事件发生的频率与概率之间的关系,体会概率是描述随机现象的的数学模型,体会频率的稳定性。难点是注重素材的真实性、科学性、以及来源渠道的多样性,理解试验频率稳定于理论概率,必须借助于大量重复试验,从而提示概率与统计之间的内存联系。
六、教学措施:
针对上述情况,我计划在即将开始的学年教学工作中采取以下几点措施:
1、新课开始前,用一个周左右的时间简要复习上学期的所有内容,特别是几何部分。
2、教学过程中尽量采取多鼓励、多引导、少批评的教育方法。
3、教学速度以适应大多数学生为主,尽量兼顾后进生,注重整体推进。
4、新课教学中涉及到旧知识时,对其作相应的复习回顾。
5、复习阶段多让学生动脑、动手,通过各种习题、综合试题和模拟试题的训练,使学生逐步熟悉各知识点,并能熟练运用。
九年级教案数学反思篇6
九年级数学教案-九年级数学教案设
计
九年级数学教案设计文桥中学
吴园田课题:太阳光与影子
课型:新授课教学目标
知识目标:
1、
经历实践、探索的过程,了解平行投影的含义,能够确定物体在太阳光下影子。
2、通过观察、想象,了解不同时刻物体在太阳光下形成的影子的大小和方向是不同的。
3、了解平行投影与物体三种视图之间的关系。
能力目标:
1、经历实践,探索的过程,培养学生的实践探索能力。
2、通过观察、想象,了解不同时刻物体在太阳光下形成的影子的大小和方向的不
同,培养学生的观察能力和想象能力。
情感目标:
1、让学生体会影子在生活中的大量存在,使学生能积极参与数学学习活动,激发学生学习数学的动机和兴趣。
2、让学生认识数学与人类生活的密切联系及对人类历史发展的作用,体验数学活动充满着探索与创造。
教学重点平行投影的含义;物体在太阳光下影子的确定;平行投影与物体三种视图之间的关系。
教学难点让学生经历操作与观察、演示与想象、直观与推理等过程,自己归纳总结得出有关结论。
教学方法和手段观察想象法,实践推理法。
教学设计理念本节的设计遵循学生学习数学的心理规律,强调学生从已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步与发展。
本节课向学生提供充分从事数学活动的机会,帮助他们在自主探索和合
作交流的过程中真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。
教学组织形式分组探究,集中教授。
教学过程
创设问题情境,引入新课引入:太阳光与影子是我们日常生活中的常见现象,大家在其他课程的学习中已经积累了物体在太阳光下形成的影子的有关知识,本节课我们通过众多实例进一步讨论物体在太阳光下所形成的影子的大小、形状、方向等。
新课学习
1.投影的定义师:大家肯定见过影子,你能举出实例吗?在太阳光下人和树有影子;在有月亮的晚上,人和树也有影子;建筑物在太阳和月亮下也有影子.
师:大家对于影子是司空见惯了,那么,有没有想过影子能给人类带来什么好处呢?
生:我爷爷在田地里干活时,经常根据他的影子来判断时间的早晚;我奶奶在家也经常根据太阳照在门口的影子的大小,来判断是否是晌午了。
师:很好.现在我们确定时间
时,是通过看表来确定的,但在古代并没有表,勤劳的古代前辈利用智慧制造出了日晷.日晷是我国古代利用日影测定时刻的仪器,它由“晷面”和“晷针”组成,当太阳光照在日晷上时,晷针的影子就会投向晷面,随着时间的推移,晷针的影子在晷面上慢慢地移动,以此来显示时刻。
其实不止在太阳光下,只要在光线的照射下,会在地面或墙壁上留下它的影子,这就是投影现象。
像上面提到的晷针的影子,以及窗户的影子、遮阳伞的影子都是在太阳光下形成的。
2.做一做
取若干长短不等的小棒及三角形、矩形纸片,观察它们在太阳光下的影子。
改变小棒或纸片的位置和方向,它们的影子发生了什么变化?师:大家先想象一下,长短不等的小棒及三角形、矩形纸片,它们在太阳光下的影子是什么形状?生:影子的形状应该不变,只是大小发生变化而已.因此,影子分别是线段、三角形、
矩形。
师:大家的想象是否与现实相符呢?我们一齐来做一个试验。
生:试验的结果与想象不一定相符,三角形的纸片在太阳光下的影子有时是三角形,有时是线段;矩形在太阳光下的影子有时是平行四边形,有时是线段。
师:现在来想象第二个问题。
生:由人的影子在一天中的大小不同,可以判断小棒或纸片的影子也是大小不同。
师:请大家再进行试验,互相交换意见后得出结论。
生:当改变小棒或纸片的位置和方向时,它们的影子也相应地发生变化。
师:大家有没有注意到,刚才在做实验时有一种特殊情况,当小棒或纸片与投影面平行时,所形成的影子的大小和形状的特点呢?生:当小棒或纸片与投影面平行时,所形成的影子的大小和形状与原物体全等。
师:太阳光线可以看成平行光线,像这样的光线所形成的投影称为平行投影。
上面讨论过的小棒或纸片的影子就是平行投影。
3.议一议
P122图中的三幅图是在我国北方某地某天上午不同时刻的同一位置拍摄的。
(1)在三个不同的时刻,同一棵树的影子长度不同,请将它们按拍摄的先后顺序进行排列,并说明你的理由。
(2)在同一时刻,大树和小树的影子与它们的高度之间有什么关系?与同伴进行交流。
师:请大家互相讨论后发表自己的看法。
生:顺序应为(3)(2)(1)。
因为在早晨,太阳位于正东方向,此时树的影子较长,影子位于树的正西方向,在上午,随着太阳位置的变化,树影的长度逐渐变短,树影也由正西方向向正北方向移动。
(2)因为大树的影子较长,小树的影子较短,因此应该有大树的高度与其影子的长度之比等于小树高度与其影长之比。
生:我认为应该是大树与小树高度之比等于大树与小树影长之比。
4.做一做某校墙边有甲、乙两根木杆。
(1)某一时刻甲木杆在阳光下的影子如P124图所示,你能画出此时乙木杆的影子吗?(用线段表
示影子)(2)在上图中,当乙木杆移动到什么位置时,其影子刚好不落在墙上?(3)在你所画的图形中有相似三角形吗?为什么?
师:请大家:互相讨论来解答。
九年级教案数学反思篇7
根据学校工作安排,本学期我担任初三级数学教学工作任务,为更好普及九年义务教育,同时向高中输送合格人才,现将本学期教学计划如下:
一、指导思想
在教学中努力推进九年义务教育?落实新课改?体现新理念?培养创新精神。通过数学课的教学?使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能努力培养学生的运算能力、逻辑思维能力?以及分析问题和解决问题的能力
二、学情分析:
新学期,根据初三年级分班的实际,首先是先摸清底子,稳住学生,然后根据学生学情分布情况,重新划分学习小组,对新分班过来的学生,做好各方面的工作,使他们迅速适应新环境,然后,尽快帮他们找到新的学习榜样和新学伴,帮他们树立竞争意识和发展意识以及创新意识,鼓励大家在新学期,获得更大的进步,取得更大的发展。
三、教学内容
本学期所教数学包括第二十一章《二次根式》,第二十二章《一元二次方程》,第二十三章《旋转》,第二十四章《圆》。第二十五章《概率初步》。代数三章,几何两章。而且本学期要授完下册第二十七章内容。
四、教学目标:
本学期的主要教学任务目标:
(1)根据学情,调整好教学进度,优化学习方法,激活知识积累。
(2)形成知识网络,解决实际问题。
(3)强化规范训练,提高应考能力。
(4)关注学生特长需求,做好学生心理疏导。
具体的说,教育学生掌握基础知识与基本技能,培养学生的逻辑思维能力、运算能力、空间观念和解决简单实际问题的能力,使学生逐步学会正确、合理地进行运算,逐步学会观察分析、综合、抽象、概括。会用归纳演绎、类比进行简单的推理。使学生懂得数学来源与实践又反过来作用于实践。提高学习数学的兴趣,逐步培养学生具有良好的学习习惯,实事求是的态度。顽强的学习毅力和独立思考、探索的新思想。培养学生应用数学知识解决问题的能力。
知识技能目标:掌握二次根式的概念、性质及计算;会解一元二次方程;理解旋转的基本性质;掌握圆及与圆有关的概念、性质;理解概率在生活中的应用。
过程方法目标:培养学生的观察、探究、推理、归纳的能力,发展学生合情推理能力、逻辑推理能力和推理认证表达能力,提高知识综合应用能力。
态度情感目标:进一步感受数学与日常生活密不可分的联系,同时对学生进行辩证唯物主义世界观教育。