教育巴巴 > 教学设计 >

五年级数学上册教案设计

时间: 新华 教学设计

五年级数学上册教案设计篇1

教学目标:

1、理解3的倍数的特征,掌握一个数是否是3的倍数的判断方法。

2、培养分析、比较及综合概括能力。

3、培养合作交流的意识,掌握归纳的方法,获取一定的学习经验。

教学重点:

掌握3的倍数的特征,正确判断一个数是否是3的倍数。

教学难点:

探索3的倍数的特征。

教学过程:

一、【创设情景,明确目标】(3分钟)

(一)创设情景,反馈预习

1、师:课前我们已经完成了导学案自主预习部分,我们已经知道了2、5的倍数特征,下面的数你能判断出下面的数哪些是2的倍数,哪些是5的倍数,哪些即是2的又是5的倍数呢?

P:16、24、85、102、138、170、

2 的倍数:16、24、102、138、170

5的倍数:85、170

即是2的倍数又是5的倍数:170

师:说一说,你是怎么想的?

生1:个位上是02468就是2的倍数。个位是上0或者5的数就是5的倍数。一个数既是2的倍数,又是5的倍数,它的个位上一定是0.

2、看来要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?

生:2的倍数的个位数是0、2、4、6、8;5的倍数个位上是0、5。

师:那么3的倍数有什么特征呢?是不是还看个位数呢?这就是这节课我们要研究的内容。

3、教师板书课题:3的倍数的特征。

(二)明确目标,引领方法

1、出示学习目标(见学案),生自读目标。

2、同伴说说自己的理解,谈谈如何实现目标。

【设计意图】交流预习内容,解决预习中的问题;明确学习目标,带着目标进行合作学习。

二、【自主学习,同伴合作】(15分钟)

(一)自主学习,自我感知

1、小棒游戏,探究规律

师:首先我们来做一个摆小棒的游戏,怎么玩呢?(拿6根小棒)找一个同学在这张数位表上随意用小棒摆出一个数,我能马上猜出它是不是3的倍数。信不信?

师:你来!

师:为了验证我猜得对不对,再请一个同学到前面的展台上用计算器来算一算,跟我比比速度。

学生摆出:51

师:51是3的倍数。我算的比计算器快吧?

师:能摆一个三位数吗?

学生摆出:312

师:312是3的倍数。

师:再来一个难点的。

学生摆出:1123

师:1123不是3的倍数。

师:想知道老师为什么判断的这么快吗?相信通过下面的操作你能发现其中的秘诀。

2、小组合作探究

(1)用3根小棒摆一个数,这些都是3的倍数吗?

师:我们一起来看探究要求:用相应根数的小棒在数位表上各摆出3个数。

小组内合理分工,请大家看一下导学案的合作要求

①根据要求每人用3根小棒摆一个数,并思考是不是3的倍数,3人摆数,1人记录。

②用计算器算一算,将3的倍数圈出来。

③仔细观察表格,从中你发现了什么?

(2)用4根再摆出一些数,这些都是3的倍数吗?

(3)用6根再摆出一些数,这些都是3的倍数吗?

(4)摆出3的倍数与所需的小棒的根数有什么联系?3的倍数有什么特征?

预设

第一组:用3根小棒摆:2、12、102,都分别是3的倍数。

第二组:用4根小棒摆:22、1111、1102,都不是3的倍数。

第三族,用6根小棒摆:都是3的倍数。

问题:你发现了什么?

生:我们发现了3根、6根小棒摆出来的数都是3的倍数。

师评价:关键要看小棒的根数,了不起的发现。

生:只要小棒的根数是3的倍数,这个数就是3的倍数。

师:你们认为除了3根、6根,还有其它情况是吗?具体解释一下。

生: 9根、12根、15根……都行——

(5)真的是这么回事吗?以9为例摆摆看。

师:来,说说你们小组摆出了哪个数,它是不是3的倍数?

生:我用9根小棒摆出了36,36是3的倍数。

师:哪个小组还想出三位数、四位数或是更大的数?

生:我用9根小棒摆出了216,216是3的倍数。

生:我用9根小棒摆出了3015,3015是3的倍数。

师:说得完吗?

生:说不完。

师:大家用九根小棒摆出来的数都是3的倍数吗?那你认为他们小组的结论合理吗?

生:很合理。

师:大家说着,我把它记录下来(板书):只要小棒的根数是3的倍数,摆出来的数就是3的倍数。

师:由摆数所用小棒的根数我们就能快速判断出一个数是不是3的倍数。

3、总结提升

师:通过摆小棒,我们能判断出一个数是不是3的倍数,现在不摆了,也不拨了,通过上面的两次操作,能不能说说什么样的数是3的倍数?

师:小组内交流一下。

小组活动。

师:谁来说说?

生1:各个数位上的数加起来是3的倍数,这个数就是3的倍数。

生2:各个数位上数的和是3的倍数,这个数就是3的倍数。

生3:只要各个数位上数的和是3的倍数,这个数就是3的倍数。

师:无论是小棒的根数还是各个数位上珠子的颗数,实际上也就是各个数位上数的和。只要各个数位上数的和是3的倍数,这个数就是3的倍数。

4、探究原因,区别理解

(1)要想判断一个数是否是2或者5的倍数,只需要看这个数个位上的数。可是,为什么只需要观察个位上的数呢?为什么其他位上的数就不用观察呢?

研究16

师:上节课我们讲过,16是2的倍数,它是由一个十和六个一组成的,那么想想把一个十,两个两个的分,会出现什么结果?(也就是说如果把16两个两个地分,正好可以分完,没有余数)

但既然十位上没有剩余,那十位上的数还需要观察吗?(我们只需要观察个位上的6根小棒就可以,把它两个两个地分能正好分完)

用刚才的方法判断5的倍数为什么也只观察个位?(因为一个百被5分完没有余数)

看来判断2、5不受百位和十位的影响,只需要观察个位上的数就可以。

通过刚才地研究,我们更加熟练了判断2、5倍数的方法,还知道了为什么只需要观察个位上的数就可以了。

(2)问:为什么3的倍数特征要看各个数位相加的和呢?

举例24是不是3的倍数,但是个位4是吗?这是为什么?自己分一分,画一画,看看24为什么是3的倍数?

一个十3个3个分余1根,第二个余1根,两个各余1根,在和个位继续分,

138分一分,试一试,看看是不是3的倍数

一个百3个3个分最后剩1根,三个十3个3个分,每个余1根,所以剩三个一,个位傻上还剩一个8,合起来继续分,12个继续分。

(2)总结:梳理一下:24、138,分一遍,你发现什么?(剩余就是3的倍数。数位是几,余数就是几)无论百位上是几,3个3个分完,就剩几。

P:剩余的小棒正好是每个数位加起来的数。(因为这些数位和剩下的数相同,所以可以直接把数位上的数相加,如果和是3的倍数,那么这个数就是3的倍数,如果不是,就不是3的倍数。)

三、【巩固拓展,形成能力】(10分钟)

(一)巩固训练,夯实基础

1、口头练习:是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是3的倍数,再算一算各个数位上的和是不是3的倍数?

把一个数各个数位上的数相加是3的倍数……

2、圈出下面是3的倍数的数:42、78、111、165、655、5988

3、□2,这是一个两位数,十位被遮盖住了,如果它是3的倍数,猜一猜,这个数可能是几?为什么?

(预设:生1:1。

师:可以吗?还有其他答案吗?

生2:1,4,7都可以。

师:理由呢?

生2:1+2=3,4+2=6,7+2=9,3,6,9都是3的倍数,所以填1、4、7都可以。

师:恭喜你,三种可能都被你们猜中了!

师:如果它既是2的倍数,又是3的倍数呢?

生:24。

师:为什么只有24可以呢?

生:因为只有24既是2的倍数,又是3的倍数。)

(二)拓展训练,灵活创新

以前我们用除法来检验这个数是不是3的倍数,今天我们又学了3的倍数特征,我们只需要求各个数位上的和是3的倍数就可以,但是如果遇到这样的题怎么办?(PPT)

13689362754、123456789

老师:如果用各个数位之和是3的倍数,比较麻烦。

但是我们用划掉3的倍数的方法求,这样即便是很复杂的数也能特别轻易的解决。比如:13689362754,从左开始,1不够,看13,是3的4倍,余1,和6组成16余1,18算完……

后面的练习我们下课完成,好,这节课不仅发现3的特征,还根据特点发现简便地判断方法,更可贵的发现了背后的道理。学习数学就是这样,不仅要知其然还要知其所以然。希望同学们能在快乐的数学海洋里继续愉快地畅游。这节课我们就上到这里,下课。

教师巡视,个别辅导。

(二)同伴讨论,互助共进

完成学案中“同伴合作,互助共进”内容。

重点交流学生所举的例子。

教师巡视,个别辅导。

【设计意图】这一环节由学生自学和同伴合作,完成因数倍数的知识的学习。

四、【师生共学,交流分享】(5分钟)

(一)小组展示,彰显风采

指名小组进行汇报。

(二)师生完善,共同提高

1、学生纠正、补充、质疑

2、教师精讲、点拨、评价

在学生讨论比较充分的基础上,教师进行点拨来完善学生对比的认识。

【设计意图】通过教师的点拨完善学生对比的认识。

五、【巩固拓展,形成能力】(10分钟)

(一)巩固训练,夯实基础

先由学生自主完成学案中相应的内容,再同桌交流,完善答案。

1、是不是3的倍数都有这个规律呢?随便写一个数:先用除法算算是不是是不是3的倍数,再算一算各个数位上的和是不是3的倍数?

把一个数各个数位上的数相加是3的倍数……

2、看一看哪些是3的倍数:42、78、111、165、655、5988

原来判断是用除法,现在用加法。改革了

3、不用计算,能快速算出来那个式子有余数吗?

802、3;342、3

4、下面的数是3的倍数吗?888、555,那这样的三位数都是三的倍数吗?P:777、888,可以想成3个8相乘,像这样的三位数一定是3的倍数

5、下面都是吗?789、345、654

都是,有什么特点?相邻、连续三个自然数。

是不是所有都是呢?举例:123.为什么呢?

654,把大的给小的,把6给4,三个都是5了,把较大数给叫小叔一个,数字和不变,所以一定是3的倍数。

6、是吗?363、669、993。是。有简便的方法吗?每个数学都是3的倍数,这个数字和一定是3的倍数。

五年级数学上册教案设计篇2

教学要求①使学生进一步理解整除的意义。②使学生掌握整除、约数与倍数的概念,以及它们之间的相互依存关系,渗透辨证唯物主义思想。③培养学生抽象概括与观察思考的能力。

教学重点约数和倍数的意义

教学难点理解除尽和整除,约数和倍数等概念间的联系和区别。

教学过程

一、创设情境

1、计算下面三组题。

(1)23÷7=(2)6÷5=(3)15÷3=

11÷3=1.8÷3=24÷2=

2、观察并回答。

(1)上面哪个算式中的第一个数能被第二个数整除?

(2)在什么情况下,才可以说“一个数能被另一个数整除”?

(3)如果用整数a表示被除数,整数b(b≠0)表示除数,可以怎样说?(让学生看教材第49页关于“整除”的一段话)

3、思考:我们在说一个数能被另一个数整除时,必须具备哪几个条件?

①被除数、除数都是整数,除数不等于0

明确三点②商必须是整数缺一不可

③商的后面没有余数

4、除尽与整除的区别与联系。

(1)像6÷5=1.21.8÷3=0.6我们只能说第一个数能被第二个数。

(2)除尽被除数和除数(不等于0),不一定是整数,商是有限小数,没有余数。

整除被除数和除数(不为0)都是整数,商是整数,没有余数。(三整无余)

师:一个数能被另一个数整除表示的是两个整数之间的一种关系,它们还有另一种关系,这就是我们今天要学习的约数和倍数关系(板书课题:约数和倍数的意义)

二、探索研究

1.小组学约数和倍数的意义。

(1)让学生看教材第50页有关约数和倍数的一段话。

(2)小组讨论:两个数在什么情况下才有约数和倍数关系?“约数和倍数是相互依存的”是什么意思?

(3)在复习的第1题中,请你指出哪个数是哪个数的倍数,哪个数是哪个数的约数?为什么?

(4)倍与倍数意义一样吗?

如:15是3的倍数,表示15能被3整除。

1.5是0.3的5倍,5倍表示1.5除以0.3的商。

(5)注意事项。让学生看教材第50页的注意。

三、课堂实践

1.做教材第51页的“做一做”。

2.做练习十一的第1题。

3.做练习十一的第2题。

4.做练习十一的第3题。

5.做练习十一的第4题。

60的约数有。

6的倍数有。

四、课堂小结

学生小结今天学习的内容。

课后反思:

给学生以丰富的材料,让他们在感性认识的基础上,通过主动的探索学习掌握概念。

五年级数学上册教案设计篇3

教学目标:

1.结合具体活动情境,经历测量石块体积的实验过程,探索不规则物体体积的测量方法。

2.在实践与探究过程中,尝试用多种方法解决实际问题。

教学重难点:

探索不规则物体体积的方法,尝试用多种方法解决实际问题。

教学活动:

一、创设情况,引入新知

1.出示石块

问:如何测量石块的体积?什么是石块的体积?

极书课题。

2.以小组为单位,先讨论、制定测量方案。

问:能直接用公式吗?不能怎么办?

3.小组派代表介绍测量方案。

学生观察石块

想一想,如何测量石块的体积。

学生分组讨论,制定测量方案

学生的测量方案可能有:

方案一:取一个正方体容器,里面放一定的水,量出水面的高度后把石块沉入水中,再一次量出水面的高度。这时计算一下水面升高了几厘米,用“底面积×高”计算出升高的水的体积,也就是石块的体积了,也可以分别计算放入石块前的水的体积与放入石块后的总体积之差。

方案二:是将石块放入盛满水的容器中,并将溢出的水倒入有刻度的量杯中,然后直接读出溢出的水的体积,就是石块的体积。

方案三:可以用细沙代替水,方法类似于方法一、方法二。

设计意图:创设情景,激发学生学习新知的兴趣。引导学生小组合作,制定测量方案。

引导学生探索与体会测量不规则物体的体积的方法。

二、进行实验

让学生按各自小组制定的方案小组合作进行测算。

小组代表领取所需测量工具,学生小组合作动手测量,并且列式计算

设计意图:通过实验,使学生明白把不规则的石块体积转化成了测量计算水的体积的方法不只一种。

三、试一试

1.在一个正方体容器里,测量一个苹果的体积。

2.测量一粒黄豆的体积。

学生小组合作进行测算

3.小结。

师:通过实验,这节课你有什么收获?

请几名学生说说自己的收获

设计意图:让学生再一次运用在操索活动中得到的测量方法去测量其它不规则物体的体积。

四、数学万花筒

课件出示阿基米德的洗浴故事

学生听老师讲述阿基米德的洗浴故事

五年级数学上册教案设计篇4

教学目标:

1、初步理解“平均数”的含义,探讨“求平均数”问题的分析方法。

2、能正确列式解答“求平均数”问题。

教学重点难点:

初步理解“平均数”的含义。探讨“求平均数”问题的分析方法。

教学过程:

一、引入

1、师:三个数学小伙伴都想和老师比赛投篮,1分钟内看谁投中的个数多。小胖1分钟投中了5个,他认为这不能完全代表他的水平,于是要求再给他两次机会,让他能充分发挥出水平。第二次,他投中了5个,第三次,还是5个。看来他的水平很稳定,用5来代表他1分钟投篮的水平合适吗?

二、新授

1、师:小淘气1分钟投了3个,他也要求再给两次机会。第二次投中5个,第三次投中4个。

刚刚小胖三次都投中5个,那显然就用5来代表小胖的水平。现在用几来代表小淘气1分钟的水平呢,说说理由。

生:用4来表示……;用5来表示……。

师:用超常发挥的补救发挥失常的,这时候,用4来代表他的水平比较合适。这个方法叫做移多补少。(板书)还有其它想法吗?

生:因为4在3和5的中间;把超常发挥和发挥失常的去掉,他们不具备代表性;因为4是3、4、5的平均数……

师:不管超常发挥还是发挥失常,都是他自己投的,就先求和再均分,(板书)能使每一次的个数一样多。移多补少的目的也是将每一次的个数变成一样多(板书)。用一样多的这个数来代表他的水平合适吗?

遇到这样数据多多少少的,就可以通过先求和再均分,找到能代表他水平的数。

2、师:小丁丁直接要求有3次机会,不看不知道,一看吓一跳。

第一次投了3个,第二次投了7个,第三次2个,看来水平很不稳定,一起用手势高低来表示他的三次投篮结果。

师:你觉得用几来代表他1分钟的水平呢?

生:计算,是4。

师:4是从哪里来的?前面的小淘气是3个、4个、5个,好歹还有个4出现,这里一个4都没有,怎么会用4来代表呢?和同桌说说道理。

生:3+7+2=12个12÷3=4个(板书算式)

生:还可以用移多补少的方法,把7拿出1给3,再拿出2给2。(媒体)

师:现在用4来代表小丁丁的水平合适吗?不管是求和均分还是移多补少,这两个方法的目的都是使得数据变得同样多,像这样通过求和均分或者移多补少,使得数据变得同样多,就是在求原来这些数据的平均数。(板书)

我们说,4是3、7、2这3个三个数的平均数。

那么小淘气的投篮水平也是4,这个4又是哪些数的平均数呢?

生:他投了3次,所以4是3、4、5的平均数。

师:这个4能代表小丁丁第一次的投篮水平吗?能代表他第二次的投篮水平吗?能代表他第三次的投篮水平吗?我们辛苦了那么久,结果这个4既不能代表第一次的水平,又不能代表第二次的水平,也不能代表第三次的水平,那它到底代表的什么呢?

师:平均数不代表某一次的水平,而是代表这一组数据的平均水平、整体水平。(板书)

3、师:终于轮到老师投篮了,老师想要4次投篮机会,小朋友会同意吗?为什么?

师:小丁丁笑了,老师,我们比的是平均水平,又不是比总数,你投好了,还要除以4,投得差了,仍然要除以4,更差了。我们就同意你投4次。

老师第一次1分钟投进了4个,第二次6个,第三次5个。到这里老师心里十分后悔,如果只投三次就好了。老师想就此收手,你们猜3个小朋友会同意吗?为什么?老师如果投第四次,可能赢吗?也可能输。

老师第四次投中了1个。我赢了还是输了?算一算。

如果我第四次投中了5个,我的水平是多少?如果第四次投中了9个呢?

三、练习

1、姚明比平均身高高,既然有人比平均身高高一点,就有人的身高……

不然移多补少补给谁去呢?

2、平均身高160,但不是人人都160,排在中间的人一定是160吗?

3、平均水深才110,所以以他140的身高肯定淹不死,是吗?

生:这是平均水深,是移多补少的结果,是求和均分的结果,也许有的地方比140深得多。

出示水下图片。

师:掌握了平均数以后,回到生活中再来看在这些数据还会上当吗?

4、有一则调查新闻,说先在的男性平均寿命是71岁。30年过去了,男性平均寿命从68上升到了71,该高兴还是难过?可是一个老爷爷看到新闻都难过得哭出来了,他今天刚过了70岁生日,你觉得他为什么会难过?他有必要去难过吗?说明他不懂平均数。你懂不懂平均数?你能用今天学的本领来劝劝他,让他喜笑颜开吗?

5、想不想猜一猜女性的平均寿命比男性长还是短?出示。《20__年世界卫生报告》显示:目前,中国男性的平均寿命大约是71岁,女性的平均寿命大约是74岁。

四、总结

五年级数学上册教案设计篇5

教学目标:

1.知道公共生活需要良好秩序来维护,初步形成规则意识。

2.明确构建有序和谐的公共生活人人有责,积极参与公共生活。

3.学会从不同角度观察社会现象,尝试用合法、合理的方式解决生活问题。

教学重点:帮助学生认识到公共生活需要良好的秩序来维护,树立共生活需要秩序的观念。

教学难点:让学生从个人、社会、国家的角度综合思考如何共建有序生活。

教学准备:课件

教学过程

一、谈话导入

同学们,公共场所是我们大家共同生活、学习、工作的地方,需要有良好的秩序来维护。街道上的行人和车辆顺畅通行,需要公共交通秩序;公国里人们愉快地游玩,需要公共卫生秩序……良好的公共秩序是人们安居乐业的保障,是社会稳定和进步的基础。今天,我们一起学习第5课《建立良好的公共秩序》。

二、说一说

1、你到过哪些公共场所?你知道这些公共场所的秩序吗?

2、议议、做做:同学们常去公共场所,请你照例子用有关的规则提醒大家,明确有关公共场所应遵守的公共秩序。

a.上车时;b.到影剧院;c.到游乐场;d.在商店

3、同学们说得很好,有了规则的约束,我们的生活可以更加和谐有序。

4、除了这些规则外,生活中也有很多规则,上节课老师已经让同学们去观察生活,收集我们身边的规则了,谁愿意把自己收集的规则与大家分享一下。

5、学生分享自己收集到的身边的规则。

6、教师引导:听了同学们的发言,你有什么感受?没有规则,我们连走路都不安全,看来规则是非常重要的。

三、认识公共标志

1、(出示课件)你在哪些公共场所见过这样的标志?(出示:请安静、请依次排队、请勿吸烟…)

2、当你看到这些标志时你是怎样做的?

小结:公共标志的设置一方面有利于维护良好的公共秩序,利于保护人们的生命财产安全。另一方面,更多关注社会生活中的公共标志,在理解公共标志设置意义的基础上,形成有序参与公共生活的态度情感。

四、深化认识

1.出示图:

(图画内容:小明等几位同学在一个车站停车场里打闹,小刚劝他别这样做,他不听,正在这时,一辆客车从车站开出,另一辆正要进站,小明他们不让道,在两辆客车间追打,司机来了个急刹车,才避免了重大事故的发生。)

问:

①几个小学生干了一件什么事?他们扰乱了哪里的秩序,结果怎样?

②哪位同学的行为是好的?他做了什么事?

师小结:不遵守公共秩序害处大。

2.下面这些说法正确吗?请用事例说明理由。

①有的同学说:“如果不要公共秩序;大家随随便便,自由自在,想干什么就干什么,不是更好吗?

②一个人不遵守公共秩序没有关系。

师小结:遵守公共秩序是必要的,每个人都必须自觉遵守,秩序是自由的第一条件。遵守公共秩序可以使公共场所里被服务者心情舒畅,服务者满意,公共场所井然有序,展示我们自己的文明程度。

五、守规才有序

1、教师引导:俗话说:“不以规矩,不能成方圆。”社会的发展,文明的进步离不开规则,无处不在的规则约束了社会每个成员的行为,维护了社会的正常秩序。

2、说一说,我们在不同的公共场所应该怎么办?

师再问:当你见到不守公共秩序的行为该怎样办?(启发学生答出:要阻止、批评等)

教师小结:同学们,通过刚才的讨论,我们明白了只有大家共同遵守规则,才能创造和谐文明的社会环境,正如学者莱蒙特所说的:“世界上的一切都必须按照一定的规矩秩序各就各位。”

六、课堂总结

师:通过今天对《建立良好的公共秩序》这一课的学习,我们懂得了什么?

在生回答的基础上师进一步谈话:生活中有许多看起来是微不足道的事情,实际上都同社会的主产、生活乃至每个社会成员的工作、学习、生活密不可分,如果一个社会的公共秩序受到了破坏,这个社会的正常生产和生活也就受到极大的影响,社会风气就会颓败,反之如果一个社会的每个成员都学法、懂法、守法、护法,拥有一个良好的公共秩序,那么社会就会有条有理,井然有序,因此建立一个良好的社会公共秩序,是我们大家的迫切希望,希望同学们从我做起,从现在做起,认真遵守公共秩序吧!

五年级数学上册教案设计篇6

教材分析:

该内容是在学生已经学习了“约数和倍数的意义”、“质数和合数、分解质因数”、“公约数”等的基础上进行教学的,既是对前面知识的综合运用,同时又是学生学习“通分”所必不可少的知识基础。因而是本单元的教学重点,是本册教材的核心内容。本课的教学,对于学生的后续学习和发展,具有举足轻重的作用。借鉴前面的学习方法学习后面的内容是本课设计中很重要的一个教学特色,这样设计不仅使教学变得轻松,而且能使学生在学习知识的同时掌握一些学习方法,这些学习策略和方法的掌握,对于今后的学习是很有帮助的。

学情分析:

五年级学生的生活经验和知识背景更为丰富,动手欲较强,学生认识数的概念时更愿意自主参与,自己发现。再者,学生个人的解题能力有限,而小组合作则能更好地激发他们的数学思维,通过交流获得数学信息。

教学目标:

(体现多维目标;体现学生思维能力培养)

1、让学生通过具体的操作和交流活动,认识公倍数和最小公倍数,会用列举法求两个数的最小公倍数。

2、让学生经历探索和发现数学知识的过程,积累数学活动的经验,培养学生自主探索合作交流的能力。

3、渗透集合思想,培养学生的抽象概括能力

教学重点:

公倍数与最小公倍数的概念建立。

教学难点:

运用“公倍数与最小公倍数”解决生活实际问题

教法学法:

为了实现教学目标,达到《标准》中的要求,也为了更好的解决教学重、难点,我将本节课设计成寓教于乐的形式,将教学内容融入一环环的学生自主探索发现的过程中,引导学生动手、动脑、动口。

教学过程:

媒体运用

任务导学

明确任务

师:课前我们来做个报数游戏,看谁的反应最快。请两大组的同学参加。

师:请报到3的倍数的同学起立,报到4的倍数的同学起立。你们发现了什么?他们为什么要起立两次?(因为他们报到的号数既是3的倍数又是4的倍数)是吗?咱们一起来验证一下。(师板书:12、24)

师:像这些数既是3的倍数,又是4的倍数,我们就把这些数叫做3和4的公倍数。(板书:公倍数)今天这节课我们一起来研究公倍数。

一、课堂探究,自主学习

1、出示例1

师:同学们,仔细读要求,你们认为解决这个问题要注意什么?

生独立思考,领会题意和要求。

课件出示

合作

探究

2、合作交流,动手操作

我们每一对同桌都准备了一张方格纸和一些长3厘米、宽2厘米的长方形,下面就用这些长方形来代替瓷砖在方格纸上来摆一摆、画一画或直接算一算。

3、汇报交流

师板书:2的倍数:2、4、6、8、10、12、14……

3的倍数:3、6、9、12、15、18……

2和3的公倍数:6、12、24……

二、交流展示

1、明确意义

师提出问题:为什么不能铺成边长是4厘米或9厘米的正方形?除了能铺成边长是6厘米的正方形之外,还可以铺成边长是多少厘米的正方形?最小是多少厘米?你发现能铺成的正方形的边长有什么特点?

(设计意图:这几个问题连环递进,通过第一问使学生理解4只是2的倍数,9只是3的倍数,不论是边长4厘米还是9厘米均不符合题意,从而使学生深刻理解"公"字的含义;通过第二、三问使学生发现能铺成的正方形的边长必须是2和3的公倍数,而只要符合这个条件的正方形是有无数个的,从而渗透了数形结合与极限思想。)

师:通过刚才的报数和铺正方形的过程,现在谁能用自己的话说说什么是公倍数和最小公倍数?在韦恩图上怎么表示?

2、找最小公倍数

师:是不是只有2和3才有公倍数呢?其你也举个例子里找一找他们的公倍数,有一个要求:看谁能在规定的时间里找到的公倍数最多,用的方法最巧。

汇报交流

师:请找到最多的同学说一说,你有什么好方法介绍给大家。

3、发现特殊关系的两个数的最小公倍数的特点

师让学生举例,然后将学生所举的例子分成了3类。启发学生:我是根据什么标准来分的?你所举的例子属于哪一类?咱们再来看一看,他们的最小公倍数有什么特点?(让举例的学生汇报最小公倍数)

得出规律:两个数是互质关系的,它们的最小公倍数就是他们的乘积;

两个数是倍数关系的,它们的最小公倍数就是较大的那个数。

如果以后让你找两个数的最小公倍数,你会怎么做?

三、反馈拓展

1、拓展提升

13和2()1000和25()

18和6()8和9()

1和12()9和15()

2、师:运用公倍数的知识,可以解决许多生活中的实际问题。一天周老师和一位乐清的同学在温州参加完同学会之后,第二天要赶回来上班,从温州新南站我们了解到以下一些信息

师:为了能同时出发,你认为周老师该选择哪些时间出发?

3、求三个数的公倍数

四、课堂总结

这节课我们学习了什么?你有什么收获?

五、评价检测

练习十七2、3、4题

五年级数学上册教案设计篇7

教学目标:

1、经历知识的形成过程,理解约分的含义。

2、探索并掌握约分的方法,能正确地进行约分。

3、经历观察、操作和讨论等学习活动,体验数学学习的乐趣。

教学重点:

理解约分的含义。

教学难点:

能正确地进行约分。

教学准备:

卡纸、彩笔。

教学活动:

一、创设情境,导入新课。

师:“美味蛋糕店”的师傅招收学员时考了这样一道题目:请你在最快的时间里切出一块蛋糕的8/24,要求切得比较均匀。今天老师也想拿这道题目考考你们,看看哪些同学们能被选上。

二、实践操作,探究新知。

1.引导发现,明确概念。

师:请同学们拿出一张卡纸。表示出这张卡纸的8/24,想一想怎样做?

(学生动手操作,展示成果并解说)

师:从上面这些学生的发言中你能得到什么结论?

让生通过用分数表示阴影部分找出一组相等的分数:

8/24=4/12=2/6=1/3

教师根据学生汇报,有选择地板书。

师:现在请同学们观察黑板上的三个式子,你发现了什么?引导学生回答出:

(1)它们的分子和分母都同时除以了一个相同的数,所以这些分数的大小都不变。

(2)是同时除以它们的公因数。

师:说得非常准确,这里的除数都是什么数?

生:分子和分母的公因数。

引导学生归纳出:像这样,把一个分数的分子、分母同时除以公因数,分数的值不变,这个过程叫作约分。

师:还有什么发现?

引导学生说出:约分后这些分数的分子和分母都越来越小,但分数值都相等。最后一个式子的得数是1/3不能“再往下除了”。

师肯定:准确地说1/3不能再约分了。谁知道,为什么不能“再约分了”?

引生答出:因为1和3没有公因数。所以不能“再约分了”。

总结并揭示:像1/3这样的分数,当分子和分母没有公因数的分数,我们把它叫做最简分数。约分的最后结果应该是:最简分数。

师:谁能举个例子来说明,什么是最简分数?

生:(举例说明)。

2.探索约分的方法。

请两个同学来介绍一下约分的过程。

师:谁能完整的说一说约分的方法和应注意的问题。

3.师:通过上面的学习我们知道了,要在最快的时间里切出一个蛋糕的8/24,其实也就是切出这块蛋糕的1/3,这样也就顺利地完成了题目要求!

三、课堂练习,巩固应用。

教材第48页“练一练”。

(1)学生试做。(2)集体交流。

四、畅谈收获,全课总结。

通过本课的学习,你有什么收获?

教学反思:

1.创设了生动有趣的情境,调动了学生的学习积极性,激发了学生强烈的求知欲。

2.在学习约分之前,学生已经探索了分数的基本性质,学习了求最大公因数的方法,因此合理的知识迁移,较好地帮助了学生理解“约分”的含义,使知识深入浅出,便于学生理解和掌握。

3.为学生提供了充分探究和发现的时间与空间,从约分含义的理解到约分方法的学习,教学的重点和难点都是在学生的发现、探究、交流中解决,使课堂充满了活力。

五年级数学上册教案设计篇8

教学内容:教材第19页的内容

教学目标:

知识与技能:让学生了解在生活情景中确定物体位置的多种方法,能在具体情境中学会用“第几排第几座”、“第几层第几号”、“第几组第几个”等方式描述物体在平面中的相对位置,或根据平面位置确定物体。

过程与方法:知道可以在平面上用两上数据确定物体的位置,在确定位置的过程中培养学生的空间观念渗透平面坐标最基本的知识。

情感态度价值观:体会生活中处处有数学,产生对数学的亲切感。

教学重难点:

重点:学会用“第几排第几座”、“第几层第几号”、“第几组第几个”等方式描述物体在平面中的相对位置,或根据平面位置确定物体,并解决一些生活中的实际问题。

难点:学根据“第几排第几座”、“第几层第几号”、“第几组第几个”等方式描述物体在平面中的相对位置。

教学方法:直观演示法与自主探索、小组合作的方法。

教学准备:多媒体、投影仪等有关内容图片。

教学过程:

一、创设情境,引出新知。

1、 出示多媒体课件或图片:一位教师到图书馆借书,询问图书管理员工具书所在位置,然后图书员告诉他图书所在位置。

2、 学生观看多媒体课件或图片,听教师讲解,初次接触位置这个概念。

3、 引入本课学习并板书课题。

4、 学生在教师的引导下回忆某物体的位置,确定它们的位置,联系具体生活场景和经验,进入到下面的学习中。

设计意图:通过具体的直观演示以及具体的情景联系,充分调动学生对学习的兴趣,为学习新知奠定基础。

二、例题展示:

1、投影出示例1的内容。

(1)学生读题,了解已知信息。

教师引导学生可以根据自己在教室里的位置来思考这个问题。

(2)问:已知张亮同学是第二列、第三行的同学,你能指出谁是张亮同学吗?

学生联系实际的基础上根据图中张亮所在的列数的行数来确定张亮的位置,教师给予肯定。

(3)如果用(2,3)表示张亮同学的位置,你能表示王艳和赵强同学的位置吗?看一看有什么不同?

启发学生思考,引导学生用数对表示位置。

2、引导学生用刚才的方法小结:先从前往后确定第几行,再从左往右确定第几列,这样就能用第几行第几列确定同学们的位置。

设计意图:通过具体的实例引导学生认识第几行和第几列的判断方法,经历应用数学知识分析问题和解决问题的过程。

三、做一做,巩固确定位置的方法。

1、出示情景。组织学生观察情景,思考教师的提问。

2、引导学生利用在例题中学到的确定位置的方法来回答问题。

3、组织学生用一组数字来表示它们的位置。学生思考后可交流讨论,最后全班汇报。

四、反馈练习。

完成教材第19 页的做一做。

五、课堂小结。

六、作业:选用课时作业。

板书设计:

位置

竖排叫列   横排叫行

确定第几列一般从左往右数,确定第几行一般从前往后数。

课后小记与反思:

第二课时  位置(二)

课型:讲授课

教学内容:教材第20页及相关教学内容

教学目标:

知识与技能:知道在生活中如何根据示意图找到位置。

过程与方法:理解可以用一组数来确定位置关系,通过确立一个坐标图形来找准方位。

情感态度价值观:体会生活中处处有数学,产生数学的亲切感,把位置关系的学习与生活场景紧密联系起来。

教学重难点:

重点:能够通过示意图找到物体的具体位置。

难点:理解用一对数来确定位置的方法,并把它用于实践中。

教学方法:直观演示法和自主探究与小组合作的学习方式。

教学准备:多媒体课件或实物等。

教学时间:

教学过程

一、联系生活,引入新课。

1、谈话导入。

学生回顾在生活所见的示意图,回答教师问题,。

2、引入新课,板书课题。

设计意图:通过对前面知识的复习,以及具体的直观演示和具体的情景联系,充分调动学生对学习的兴趣,为学习新知奠定基础。

二、例题展示。

1、出示例2。

学生读题,明白示意图,初步了解题目中的每个位置是用一个坐标的形式来表示的,每一个游览区和一对数相对应。

2、学生可提问质疑,可小组讨论,可互相回答问题。全班交流。

交流时教师要引导学生认识示意图,知道它们是如何标示各区域所在位置的。

小结:横排和竖排所构成的区域就是整个动物园的范围。

每个小区域所对应的数值就是整个动物园这个大范围的一个坐标点。通过这些坐标点,我们就能够确定某个游览区的具体位置。

3、组织学生说说其他场馆的位置,同时教师板书。

4、引导学生进一步理解场馆位置与坐标中各点对应的关系。

5、练习:在图上标出这些场馆的位置。

6、小结:通过例题我们把一个区域的示意图用坐标的形式表示出来,通过对应的坐标位置就可以确定所要找的地方的位置。

三、做一做,巩固确定位置的知识。

出示练习,引导学生完成练习。

四、反馈练习。

五、课堂总结。

在练习中,要紧紧把握图形,从题目入手,寻找位置与坐标数值的对应关系,明确它们之间是一一对应的关系,可以互相判断对方。

六、作业:选用课时作业。

板书设计:

位置

第三课时 位置(练习课)

教学内容:人教版小学数学五年级教材P21——23练习五2、3、5、6、7、8题

教学目标:

1、通过练习,使学生进一步提高用数对表示、确定位置的能力。

2、通过练习,进一步提高学生抽象思维能力,发展学生的空间观念,体验数学与生活的联系。

教学重点:通过练习,使学生进一步提高用数对表示、确定位置的能力。

教学难点:发展学生的空间观念,体验数学与生活的联系。

教学过程:

一、 基础性练习

1、填一填,再回答

⑴、用数对表示平面图中的位置时,我们规定:竖排叫做( ),横排叫做( ),确定第几列一般从( )往( )数,确定第几行一般从( )往( )数。

⑵、○在第4列第5行,用数对表示是( , ); 用数对表示是(2,7),那么它在第( )列第( )行,(8,7)在图中表示第( )列第( )行的位置。 2、动物园的平面图。

①、动态生成方格图,渗透坐标思想

②、你能用数对表示出大门的位置吗?请生汇报,说理。

③、游戏:猜景点

任选你想去的一个景点,用数对表示它的位置。小组内同学看数对说地名,看看说得对吗?全班交流。 如果想去的景点是在( ,4),可能是哪里?

得出:一个数能准确说出一个地点的位置吗?数对中的两个数能帮助我们很快在平面图上找到某个具体的地点。

④鳄鱼潭在(2,4),请标出。图上(4,2)和(2,4)表示的位置相同吗?为什么? 得出:数对表示位置时不仅要用两个数,还要注意两个数的顺序。

⑤小强的位置在(3,1),他要去的地方位置在(6,5),你能沿着方格线画出他的行走路线吗? 过渡:数对能表示一个人的具体位置,平面图上一个地点,利用数对还能准确描述图形的具体位置。

二、巩固性练习:

书本第2、3、5、6、7、8题,学生先独立练习,老师再有选择、有重点地加以点评,指正(为节省课堂教学时间,这部分练习可以课前布置)。

三、发展性练习

1、移动图形

⑴、在格子图上画一个直角三角形ABC,并构建一个平面示意图,确定列和行,用数对表示这个直角三角形的三个顶点。

⑵、把三角形ABC向右平移5格再向上平移两格后的图形用A’、B’、C’标出对应的点,并用数对表示A’、B’、C’的位置。

⑶、把三角形ABC绕B点逆时针90°,得到的图形用A”、B”、C”标出对应的点,并用数对表示A”、B”、C”的位置。 2、五子棋

明明和小强下五子棋:

明明执黑子先下,小强执白子后下。 明明和小强的落子位置用数对表示是:

明明:1、(4,5) 2、(5,6) 3、(6,7) 4、(7,8) 5、(4,7) 6、(5,7)

小强:1、(5,5) 2、(6,6) 3、(3,4) 4、(8,9) 5、(4,4) 6、(7,7)

⑴、请你根据所给的信息,画出一个简单的棋盘,并在棋盘上画出黑子和白子。

⑵、你认为谁赢的可能性大?如果你是明明,你的下一步棋子准备放哪?请用数对表示。 3、涂色游戏

根据下面给出的数对给方格涂上相应的颜色,并说说涂出的图形是什么。

红色:(3,4),(4,5),(5,6),(6,7),(7,6),(8,5),(9,4),(4,4),(5,4),(6,4),(7,4),(8,4)。

蓝色:(4,1),(4,2),(4,3),(8,1),(8,2),(8,3)。 黄色:(8,6),(8,7)。

绿色:(7,10),(8,9),(8,11),(9,9),(9,11),(10,9),(10,11),(11,10)。

四、课堂总结:

用数对确定位置在生活中有着广泛的应用,同学们说说在哪些领域会用到这个知识?我们学好这个知识对于大家以后指导自己的生活,工作都有重要的作用。我们今天练习的这些内容?你觉得自己掌握的情况如何?有哪些地方还需要加强?

56636