教育巴巴 > 教案模板 > 优秀教案 >

八年级数学教案反思

时间: 新华 优秀教案

八年级数学教案反思篇1

总课时:7课时使用人:

备课时间:第八周上课时间:第十周

第4课时:5、2平面直角坐标系(2)

教学目标

知识与技能

1.在给定的直角坐标系下,会根据坐标描出点的位置;

2.通过找点、连线、观察,确定图形的大致形状的问题,能进一步掌握平面直角坐标系的基本内容。

过程与方法

1.经历画坐标系、描点、连线、看图以及由点找坐标等过程,发展学生的数形结合思想,培养学生的合作交流能力;

2.通过由点确定坐标到根据坐标描点的转化过程,进一步培养学生的转化意识。

情感态度与价值观

通过生动有趣的教学活动,发展学生的合情推理能力和丰富的情感、态度,提高学生学习数学的兴趣。

教学重点:在已知的直角坐标系下找点、连线、观察,确定图形的大致形状。

教学难点:在已知的直角坐标系下找点、连线、观察,确定图形的大致形状。

教学过程

第一环节感受生活中的情境,导入新课(10分钟,学生自己绘图找点)

在上节课中我们学习了平面直角坐标系的定义,以及横轴、纵轴、点的坐标的定义,练习了在平面直角坐标系中由点找坐标,还探讨了横坐标或纵坐标相同的点的连线与坐标轴的关系,坐标轴上点的坐标有什么特点。

练习:指出下列各点以及所在象限或坐标轴:

A(-1,-2.5),B(3,-4),C(,5),D(3,6),E(-2.3,0),F(0,),G(0,0)(抽取学生作答)

由点找坐标是已知点在直角坐标系中的位置,根据这点在方格纸上对应的x轴、y轴上的数字写出它的坐标,反过来,已知坐标,让你在直角坐标系中找点,你能找到吗?这就是本节课的内容。

第二环节分类讨论,探索新知.(15分钟,小组讨论,全班交流)

1.请同学们拿出准备好的方格纸,自己建立平面直角坐标系,然后按照我给出的坐标,在直角坐标系中描点,并依次用线段连接起来。

(-9,3),(-9,0),(-3,0),(-3,3)

(学生操作完毕后)

2.(出示投影)还是在这个平面直角坐标系中,描出下列各组内的点用线段依次连接起来。

(1)(-6,5),(-10,3),(-9,3),(-3,3),(-2,3),(-6,5);

(2)(3.5,9),(2,7),(3,7),(4,7),(5,7),(3.5,9);

(3)(3,7),(1,5),(2,5),(5,5),(6,5),(4,7);

(4)(2,5),(0,3),(3,3),(3,0),(4,0),(4,3),(7,3),(5,5)。

观察所得的图形,你觉得它像什么?

分成4人小组,大家合作在刚才建立的平面直角坐标系中(选出小组中最好的)添画。各人分工,每人画一小题。看哪个小组做得最快?

(出示学生的作品)画出是这样的吗?这幅图画很美,你们觉得它像什么?

这个图形像一栋房子旁边还有一棵大树。

3.做一做

(出示投影)

在书上已建立的直角坐标系画,要求每位同学独立完成。

(学生描点、画图)

(拿出一位做对的学生的作品投影)

你们观察所得的图形和它是否一样?若一样,你能判断出它像什么呢?

(像猫脸)

第三环节学有所用.(10分钟,先独立完成,后小组讨论)

(补充)1.在直角坐标系中描出下列各点,并将各组内的点用线段顺次连接起来。

(1)(0,3),(-4,0),(0,-3),(4,0),(0,3);

(2)(0,0),(4,-3),(8,0),(4,3),(0,0);

(3)(2,0)

观察所得的图形,你觉得它像什么?(像移动的菱形)

2.在直角坐标系中,设法找到若干个点使得连接各点所得的封闭图形是如下图所示的十字。

先独立完成,然后小组讨论是否正确。

第四环节感悟与收获(5分钟,学生总结,全班交流)

本节课在复习上节课的基础上,通过找点、连线、观察,确定图形的大致形状,进一步掌握平面直角坐标系的基本内容。

在例题和练习中,我们画出了不少美丽的图形,自己设计一些图形,并把图形放在直角坐标系下,写出点的坐标。

第五环节布置作业

习题5、4

A组(优等生)1、2、3

B组(中等生)1、2

C组(后三分之一生)1、2

八年级数学教案反思篇2

【教学目标】

1.知识与技能:会推导平方差公式,并且懂得运用平方差公式进行简单计算。

2.过程与方法:经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式。

3.情感、态度与价值观:通过合作学习,体会在解决具体问题过程中与他人合作的重要性,体验数学活动充满着探索性和创造性。

【教学重难点】

重点:平方差公式的推导和运用,以及对平方差公式的几何背景的了解。

难点:平方差公式的应用。

关键:对于平方差公式的推导,我们可以通过教师引导,学生观察、总结、猜想,然后得出结论来突破;抓住平方差公式的本质特征,是正确应用公式来计算的关键。

【教学过程】

【情境设置】

教师请一位学生讲一讲《狗熊掰棒子》的故事

【学生活动】

1位学生有声有色地讲述着《狗熊掰棒子》的故事,其他学生认真听着,不时补充。

【教师归纳】

听了这则故事之后,同学们应该懂得这么一个道理,学习千万不能像狗熊掰棒子一样,前面学,后面忘,那么,上节课我们学习了什么呢?还记得吗?

【学生回答】

多项式乘以多项式。

【教师激发】

大家是不是已经掌握呢?还是早扔掉了呢?和小狗熊犯了同样的错误呢?下面我们就来做这几道题,看看你是否掌握了以前的知识。

【问题牵引】

计算:

(1)(x+2)(x—2);(2)(1+3a)(1—3a);

(3)(x+5y)(x—5y);(4)(y+3z)(y—3z)。

做完之后,观察以上算式及运算结果,你能发现什么规律?再举两个例子验证你的发现。

【学生活动】

分四人小组,合作学习,获得以下结果:

(1)(x+2)(x—2)=x2—4;

(2)(1+3a)(1—3a)=1—9a2;

(3)(x+5y)(x—5y)=x2—25y2;

(4)(y+3z)(y—3z)=y2—9z2。

【教师活动】

请一位学生上台演示,然后引导学生仔细观察以上算式及其运算结果,寻找规律。

【学生活动】

讨论

【教师引导】

刚才同学们从上述算式中找到了这一组整式乘法的结果的规律,这些是一类特殊的多项式相乘,那么如何用字母来表示刚才同学们所归纳出来的特殊多项式相乘的规律呢?

【学生回答】

可以用(a+b)(a—b)表示左边,那么右边就可以表示成a2—b2了,即(a+b)(a—b)=a2—b2。

用语言描述就是:两个数的和与这两个数的差的积,等于这两个数的平方差。

【教师活动】

表扬学生的探索精神,引出课题──平方差,并说明这是一个平方差公式和公式中的字母含义。

八年级数学教案反思篇3

教学目标:

1、知识目标:

(1)掌握已知三边画三角形的方法;

(2)掌握边边边公理,能用边边边公理证明两个三角形全等;

(3)会添加较明显的辅助线.

2、能力目标:

(1)通过尺规作图使学生得到技能的训练;

(2)通过公理的初步应用,初步培养学生的逻辑推理能力.

3、情感目标:

(1)在公理的形成过程中渗透:实验、观察、归纳;

(2)通过变式训练,培养学生“举一反三”的学习习惯.

教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。

教学用具:直尺,微机

教学方法:自学辅导

教学过程:

1、新课引入

投影显示

问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?

这个问题让学生议论后回答,他们的答案或许只是一种感觉。于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。

2、公理的获得

问:通过上面问题的分析,满足什么条件的两个三角形全等?

让学生粗略地概括出边边边的公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)

公理:有三边对应相等的两个三角形全等。

应用格式:(略)

强调说明:

(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)

(3)、此公理与前面学过的公理区别与联系

(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。

(5)说明AAA与SSA不能判定三角形全等。

3、公理的应用

(1)讲解例1。学生分析完成,教师注重完成后的点评。

例1如图△ABC是一个钢架,AB=ACAD是连接点A与BC中点D的支架

求证:AD⊥BC

分析:(设问程序)

(1)要证AD⊥BC只要证什么?

(2)要证∠1=只要证什么?

(3)要证∠1=∠2只要证什么?

(4)△ABD和△ACD全等的条件具备吗?依据是什么?

证明:(略)

(2)讲解例2(投影例2)

例2已知:如图AB=DC,AD=BC

求证:∠A=∠C

(1)学生思考、分析、讨论,教师巡视,适当参与讨论。

(2)找学生代表口述证明思路。

思路1:连接BD(如图)

证△ABD≌△CDB(SSS)先得∠A=∠C

思路2:连接AC证△ABC≌CDA(SSS)先得∠1=∠2,∠3=∠4再由∠1+∠4=∠2+∠3得∠BAD=∠BCD

(3)教师共同讨论后,说明思路1较优,让学生用思路1在练习本上写出证明,一名学生板书,教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。

例3如图,已知AB=AC,DB=DC

(1)若E、F、G、H分别是各边的中点,求证:EH=FG

(2)若AD、BC连接交于点P,问AD、BC有何关系?证明你的结论。

学生思考、分析,适当点拨,找学生代表口述证明思路

让学生在练习本上写出证明,然后选择投影显示。

证明:(略)

说明:证直线垂直可证两直线夹角等于,而由两邻补角相等证两直线的夹角等于,又是很重要的一种方法。

例4如图,已知:△ABC中,BC=2AB,AD、AE分别是△ABC、△ABD的中线,

求证:AC=2AE.

证明:(略)

学生口述证明思路,教师强调说明:“中线”条件下的常规作辅助线法。

5、课堂小结:

(1)判定三角形全等的方法:3个公理1个推论(SAS、ASA、AAS、SSS)

在这些方法中,每一个都需要3个条件,3个条件中都至少包含条边。

(2)三种方法的综合运用

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

6、布置作业:

a、书面作业P7011、12

b、上交作业P7014P71B组3

八年级数学教案反思篇4

第二环节:探索发现勾股定理

1.探究活动一

内容:投影显示如下地板砖示意图,引导学生从面积角度观察图形:

问:你能发现各图中三个正方形的面积之间有何关系吗?

学生通过观察,归纳发现:

结论1以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积。

意图:从观察实际生活中常见的地板砖入手,让学生感受到数学就在我们身边.通过对特殊情形的探究得到结论1,为探究活动二作铺垫。

效果:1.探究活动一让学生独立观察,自主探究,培养独立思考的习惯和能力;2.通过探索发现,让学生得到成功体验,激发进一步探究的热情和愿望。

2.探究活动二

内容:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢?

(1)观察下面两幅图:

(2)填表:

A的面积

(单位面积)B的面积

(单位面积)C的面积

(单位面积)

左图

右图

(3)你是怎样得到正方形C的面积的?与同伴交流(学生可能会做出多种方法,教师应给予充分肯定)。

学生的方法可能有:

方法一:

如图1,将正方形C分割为四个全等的直角三角形和一个小正方形。

方法二:

如图2,在正方形C外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积。

方法三:

如图3,正方形C中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法。

(4)分析填表的数据,你发现了什么?

学生通过分析数据,归纳出:

结论2以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.

意图:探究活动二意在让学生通过观察、计算、探讨、归纳进一步发现一般直角三角形的性质.由于正方形C的面积计算是一个难点,为此设计了一个交流环节.

效果:学生通过充分讨论探究,在突破正方形C的面积计算这一难点后得出结论2.

3.议一议

内容:(1)你能用直角三角形的边长,,来表示上图中正方形的面积吗?

(2)你能发现直角三角形三边长度之间存在什么关系吗?

(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?

勾股定理:直角三角形两直角边的平方和等于斜边的平方.如果用,分别表示直角三角形的两直角边和斜边,那么。

数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”因此而得名(在西方文献中又称为毕达哥拉斯定理)。

意图:议一议意在让学生在结论2的基础上,进一步发现直角三角形三边关系,得到勾股定理。

效果:1.让学生归纳表述结论,可培养学生的抽象概括能力及语言表达能力;2.通过作图培养学生的动手实践能力。

八年级数学教案反思篇5

教学目的:

1、在具体的操作活动中,让学生认、读、写11-20各数,掌握20以内数的顺序,初步建立数位的概念。

2、结合学生的实际情况,让学生填写算式。

3、在教学中渗透数的顺序,并进行社会秩序教育。

4、学会与人合作,体会计算的多样化,发展学生思维。

教学重点:

掌握20以内数的顺序。

教学难点:

初步建立数的概念

教学准备:

每组一个数位计数器及40-50根小棒等。

教学方法:

抓问题,用多种游戏,把抽象的数位具体化。

教学步骤:

一、创设情景,寻找关键问题

1、数学课研究数学问题,一些小棒会有什么数学问题。

(每张桌子发40-50根小棒,玩小棒时间为3-5分钟)

2、你发现了什么数学问题。

(目的:练习20以内数的顺序,也可以在玩小棒中发现十根捆一捆)

3、游戏,看谁的手小巧。

老师报数,学生用棒子表示,讨论:快的同学的诀窍。

出示:十根可以捆一捆。

再进行游戏,让学生习惯中把1捆当作10根用。

4、完成:

()个一()个十

试一试,在计数器拔出10

个位只有几颗珠子,怎么办?(10个一是1个10)

在个位拔上一颗珠子,表示1个十,也表示10个一。

二、自主合作,解决数位顺序。

在解决了10是1个十也是10个一后,还能过度试一试在计数器上表示。接下来就是让学生通过自主合作,数位,组成和算式结合,理解11-20各数。

1、11-20各数在计数器上怎么表示呢?

问题提出后,可以组织学生讨论交流,并加以解决,并结合p68的图示表达自己的想法,学生之间互相交流,实现生生互动。

(这儿注意11-20的表达多样,只要求至少一样,方法选择,方法应用应由学生通过自主交流来确定。)

2、

1个十,1个一是1110+1=11

10和11,十位上是1,没有变,个位由0变成1,就是11。

3、15、19、20的数位可重点检查。

(20的数位可由10-20,也可19-20来描述。)

4、小结,从右边起,第一位是个位,第二位是十位,数位不一样,数也不一样,十位上1表示1个十,个位上1表示1个一。

5、练习:(口算)

10+910+810+710+610+5

10+410+39+108+107+10

6+105+104+103+10

三、实践应用,实现知识延伸

1、寻找粗心丢失的数。

游戏报数。(报数时丢一些中间数)

2、开火车顺数

游戏:数数(顺数和倒数)

3、拔珠游戏(师生――生生)

报数13,拔13并写出13,同时说13的含义,还可画珠。

4、p691-6自己完成。

四、课外实践,拓展知识应用。

1、完成10-20各数数位图及小棒图。

2、和父母互说10-20各数组成。

八年级数学教案反思篇6

知识目标:理解函数的概念,能准确识别出函数关系中的自变量和函数

能力目标:会用变化的量描述事物

情感目标:回用运动的观点观察事物,分析事物

重点:函数的概念

难点:函数的概念

教学媒体:多媒体电脑,计算器

教学说明:注意区分函数与非函数的关系,学会确定自变量的取值范围

教学设计:

引入:

信息1:小明在14岁生日时,看到他爸爸为他记录的以前各年周岁时体重数值表,你能看出小明各周岁时体重是如何变化的吗?

新课:

问题:(1)如图是某日的气温变化图。

①这张图告诉我们哪些信息?

②这张图是怎样来展示这天各时刻的温度和刻画这铁的气温变化规律的?

(2)收音机上的刻度盘的波长和频率分别是用米(m)和赫兹(KHz)为单位标刻的,下表中是一些对应的数:

①这表告诉我们哪些信息?

②这张表是怎样刻画波长和频率之间的变化规律的,你能用一个表达式表示出来吗?

一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有惟一确定的值与其对应,那么我们就说x是自变量,y是x的函数。如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。

范例:例1判断下列变量之间是不是函数关系:

(5)长方形的宽一定时,其长与面积;

(6)等腰三角形的底边长与面积;

(7)某人的年龄与身高;

活动1:阅读教材7页观察1.后完成教材8页探究,利用计算器发现变量和函数的关系

思考:自变量是否可以任意取值

例2一辆汽车的油箱中现有汽油50L,如果不再加油,那么油箱中的油量y(单位:L)随行驶里程x(单位:km)的增加而减少,平均耗油量为0.1L/km。

(1)写出表示y与x的函数关系式.

(2)指出自变量x的取值范围.

(3)汽车行驶200km时,油箱中还有多少汽油?

解:(1)y=50-0.1x

(2)0500

(3)x=200,y=30

活动2:练习教材9页练习

小结:(1)函数概念

(2)自变量,函数值

(3)自变量的取值范围确定

作业:18页:2,3,4题

八年级数学教案反思篇7

课题:三角形全等的判定(三)

教学目标:

1、知识目标:

(1)掌握已知三边画三角形的方法;

(2)掌握边边边公理,能用边边边公理证明两个三角形全等;

(3)会添加较明显的辅助线.

2、能力目标:

(1)通过尺规作图使学生得到技能的训练;

(2)通过公理的初步应用,初步培养学生的逻辑推理能力.

3、情感目标:

(1)在公理的形成过程中渗透:实验、观察、归纳;

(2)通过变式训练,培养学生“举一反三”的学习习惯.

教学重点:SSS公理、灵活地应用学过的各种判定方法判定三角形全等。

教学难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中最适当的方法判定两个三角形全等。

教学用具:直尺,微机

教学方法:自学辅导

教学过程:

1、新课引入

投影显示

问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你最少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?

这个问题让学生议论后回答,他们的答案或许只是一种感觉。于是教师要引导学生,抓住问题的本质:三角形的三个元素――三条边。

2、公理的获得

问:通过上面问题的分析,满足什么条件的两个三角形全等?

让学生粗略地概括出边边边的公理。然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。(这里用尺规画图法)

公理:有三边对应相等的两个三角形全等。

应用格式:(略)

强调说明:

(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)

(3)、此公理与前面学过的公理区别与联系

(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。

(5)说明AAA与SSA不能判定三角形全等。

3、公理的应用

(1)讲解例1。学生分析完成,教师注重完成后的点评。

例1如图△ABC是一个钢架,AB=ACAD是连接点A与BC中点D的支架

求证:AD⊥BC

分析:(设问程序)

(1)要证AD⊥BC只要证什么?

(2)要证∠1=

只要证什么?(3)要证∠1=∠2只要证什么?

(4)△ABD和△ACD全等的条件具备吗?依据是什么?

证明:(略)

56501