教育巴巴 > 教案模板 > 优秀教案 >

八年级数学教案设计

时间: 新华 优秀教案

八年级数学教案设计篇1

一、内容特点

在知识与方法上类似于数系的第一次扩张。也是后继内容学习的基础。

内容定位:了解无理数、实数概念,了解(算术)平方根的概念;会用根号表示数的(算术)平方根,会求平方根、立方根,用有理数估计一个无理数的大致范围,实数简单的四则运算(不要求分母有理化)。

二、设计思路

整体设计思路:

无理数的引入----无理数的表示----实数及其相关概念(包括实数运算),实数的应用贯穿于内容的始终。

学习对象----实数概念及其运算;学习过程----通过拼图活动引进无理数,通过具体问题的解决说明如何表示无理数,进而建立实数概念;以类比,归纳探索的方式,寻求实数的运算法则;学习方式----操作、猜测、抽象、验证、类比、推理等。

具体过程:

首先通过拼图活动和计算器探索活动,给出无理数的概念,然后通过具体问题的解决,引入平方根和立方根的概念和开方运算。最后教科书总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。

第一节:数怎么又不够用了:通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性;借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想;会判断一个数是有理数还是无理数。

第二、三节:平方根、立方根:如何表示正方形的边长?它的值到底是多少?并引入算术平方根、平方根、立方根等概念和开方运算。

第四节:公园有多宽:在实际生活和生产实际中,对于无理数我们常常通过估算来求它的近似值,为此这一节内容介绍估算的方法,包括通过估算比较大小,检验计算结果的合理性等,其目的是发展学生的数感。

第五节:用计算器开方:会用计算器求平方根和立方根。经历运用计算器探求数学规律的活动,发展合情推理的能力。

第六节:实数。总结实数的概念及其分类,并用类比的方法引入实数的相关概念、运算律和运算性质等。

三、一些建议

1.注重概念的形成过程,让学生在概念的形成的过程中,逐步理解所学的概念;关注学生对无理数和实数概念的意义理解。

2.鼓励学生进行探索和交流,重视学生的分析、概括、交流等能力的考察。

3.注意运用类比的方法,使学生清楚新旧知识的区别和联系。

4.淡化二次根式的概念。

八年级数学教案设计篇2

一、教学目标:

1、理解极差的定义,知道极差是用来反映数据波动范围的一个量。

2、会求一组数据的极差。

二、重点、难点和难点的突破方法

1、重点:会求一组数据的极差。

2、难点:本节课内容较容易接受,不存在难点。

三、课堂引入:

下表显示的是上海20_年2月下旬和20_年同期的每日最高气温,如何对这两段时间的气温进行比较呢?

从表中你能得到哪些信息?

比较两段时间气温的高低,求平均气温是一种常用的方法。

经计算可以看出,对于2月下旬的这段时间而言,20_年和20_年上海地区的平均气温相等,都是12度。

这是不是说,两个时段的气温情况没有什么差异呢?

根据两段时间的气温情况可绘成的折线图。

观察一下,它们有区别吗?说说你观察得到的结果。

用一组数据中的最大值减去最小值所得到的差来反映这组数据的变化范围、用这种方法得到的差称为极差(range)。

四、例习题分析

本节课在教材中没有相应的例题,教材P152习题分析

问题1可由极差计算公式直接得出,由于差值较大,结合本题背景可以说明该村贫富差距较大、问题2涉及前一个学期统计知识首先应回忆复习已学知识、问题3答案并不唯一,合理即可。

八年级数学教案设计篇3

教学目标:

1、知识目标:了解图案最常见的构图方式:轴对称、平移、旋转……,理解简单图案设计的意图。认识和欣赏平移,旋转在现实生活中的应用,能够灵活运用轴对称、平移、旋转的组合,设计出简单的图案。

2、能力目标:经历收集、欣赏、分析、操作和设计的过程,培养学生收集和整理信息的能力,分析和解决问题的能力,合作和交流的能力以及创新能力。

3、情感体验点:经历对典型图案设计意图的分析,进一步发展学生的空间观念,增强审美意识,培养学生积极进取的生活态度。

重点与难点:

重点:灵活运用轴对称、平移、旋转……等方法及它们的组合进行的图案设计。

难点:分析典型图案的设计意图。

疑点:在设计的图案中清晰地表现自己的设计意图

教具学具准备:

提前一周布置学生以小组为单位,通过各种渠道收集到的图案、图标的剪贴、临摹以及。多种常见的图案及其形成过程的动画演示。

教学过程设计:

1、情境导入:在优美的音乐中,逐个展示生活中常见的典型图案,并让学生试着说一说每种图案标志的对象。(展示课本图3—23)

明确在欣赏了图案后,简单地复习:平移、旋转的概念,为下面图案的设计作好理论准备。对教材给出的六个图案通过观察、分析进行议论交流,让学生初步了解图案的设计中常常运用图形变换的思想方法,为学生自己设计图案指明方向。其中图(1)、(2)、(3)、(4)、(5)、(6)都可以通过旋转适合角度形成(可以让学生自己说说每个旋转的角度和旋转的次数及旋转中心的位置),另外图(2)、(3)、(5)也可以通过轴对称变换形成(可以让学生指出对轴对称及对称轴的条数),而图(2)可以通过平移形成。

2、课本

1欣赏课本75页图3—24的图案,并分析这个图案形成过程。

评注:图案是密铺图案的代表,旨在通过对典型图案的分析欣赏,使学生逐步能够进行图案设计,同时了解轴对称、平移、旋转变换是图案制作的基本手段。例题解答的关键是确定“基本图案”,然后再运用平移、旋转关系加以说明,注意旋转中心可以为图形上某一特征的点。

评注:可以取其中的任何一个为基本图案,然后通过变换得到。而且变化方式也可以是:左下角的图案通过轴对称变换得到左上图和右下图。

(二)课内练习

(1)以小组为单位,由每组指定一个同学展示该组搜集得到的图案,并在全班交流。

(2)利用下面提供的基本图形,用平移、旋转、轴对称、中心对称等方法进行图案设计,并简要说明自己的设计意图。

(三)议一议

生活中还有那些图案用到了平移或旋转?分析其中的一个,并与同伴进行交流。

(四)课时小结

本课时的重点是了解平移、旋转和轴对称变换是图案设计的基本方法,并能运用这些变换设计出一些简单的图案。

通过今天的学习,你对图案的设计又增加了哪些新的认识?(可以利用平移、旋转、轴对称等多种方法来设计,而且设计的图案要能表达自己的创作意图,再就是图案的设计一定要新颖,独特,这样才能使人过目不忘,达到标志的效果。)

八年级数学上册教案(五)延伸拓展

进一步搜集身边的各种标志性图案,尝试着重新设计它,并结合实际背景分析它的设计意图。

八年级数学教案设计篇4

不知不觉,一学年又要过去了,我对前阶段的教学进行了反思,用新课程的理念、教学模式,对曾经被视为经验的观点和做法进行了重新审视,现将在反思中得到的体会总结如下

一、教学中要转换角色,改变已有的教学行为

(1)新课程要求教师由传统的知识传授者转变为学生学习的组织者。

(2)教师应成为学生学习活动的引导者。

(3)教师应从“师道尊严”的架子中走出来,成为学生学习的参与者。

二、自我提问

在教学中,应经常进行自我提问,如设计教学方案时,可自我提问:“学生已有哪些生活经验和知识储备”,“怎样依据有关理论和学生实际设计易于为学生理解的教学方案”,“学生在接受新知识时会出现哪些情况”,“出现这些情况后如何处理”等。备课时,尽管我预备好各种不同的学习方案,但在实际教学中,还是会遇到一些意想不到的问题,如学生不能按计划时间回答问题,师生之间、同学之间出现争议等。这时,我要根据学生的反馈信息,反思“为什么会出现这样的问题,我如何调整教学计划,采取怎样有效的策

略与措施”,从而顺着学生的思路组织教学,确保教学过程沿着最佳的轨道运行。教学后,教师可以这样自我提问:“我的教学是有效的吗”,“教学中是否出现了令自己惊喜的亮点环节,这个亮点环节产生的原因是什么”,“哪些方面还可以进一步改进”,“我从中学会了什么”等。

三、行动落实

如“合作学习,小组讨论”是新课程倡导的重要的学习理念,然而,在实际教学中,我们看到的往往是一种“形式化”的讨论。“如何使讨论有序又有效地展开”即是我们应该研究的问题。问题确定以后,我们就可以围绕这一问题广泛地收集有关的文献资料,在此基础上提出假设,制定出解决这一问题的行动方案,展开研究活动,并根据研究的实际需要对研究方案作出必要的调整,最后撰写出研究报告。这样,通过一系列的行动研究,不断反思,教师的教学能力和教学水平必将有很大的提高。

四、教师间需互相学习

山之石,可以攻玉”。教师应多观摩其他教师的课,并与他们进行对话交流。在观摩中,教师应分析其他教师是怎样组织课堂教学的,他们为什么这样组织课堂教学;我上这一课时,是如何组织课堂教学的;我的课堂教学环节和教学效果与他们相比,有什么不同,有什么相同;从他们的教学中我受到了哪些启发;如果我遇到偶发事件,会如何处理?通过这样的反思分析,从他人的教学中得到启发,得到教益。就象我校开展各科教师互相听课,人人参与,人人参评,这就给我们教师进步提供了一个很好的学_台。

五、总结记录

一节课结束或一天的教学任务完成后,我们应该静下心来细细想想:这节课总体设计是否恰当,教学环节是否合理,重点、难点是否突出;今天我有哪些行为是正确的,哪些做得还不够好,哪些地方需要调整、改进;学生的积极性是否调动起来了,学生学得是否愉快,我教得是否愉快,还有什么困惑等。把这些想清楚,作一总结,然后记录下来,这样就为今后的教学提供了可资借鉴的经验。经过长期积累,我们必将获得一笔宝贵的教学财富。

八年级数学教案设计篇5

掌握用因式分解法解一元二次方程.

通过复习用配方法、公式法解一元二次方程,体会和探寻用更简单的方法——因式分解法解一元二次方程,并应用因式分解法解决一些具体问题.

重点

用因式分解法解一元二次方程.

难点

让学生通过比较解一元二次方程的多种方法感悟用因式分解法使解题更简便.

一、复习引入

(学生活动)解下列方程:

(1)2x2+x=0(用配方法)(2)3x2+6x=0(用公式法)

老师点评:(1)配方法将方程两边同除以2后,x前面的系数应为12,12的一半应为14,因此,应加上(14)2,同时减去(14)2.(2)直接用公式求解.

二、探索新知

(学生活动)请同学们口答下面各题.

(老师提问)(1)上面两个方程中有没有常数项?

(2)等式左边的各项有没有共同因式?

(学生先答,老师解答)上面两个方程中都没有常数项;左边都可以因式分解.

因此,上面两个方程都可以写成:

(1)x(2x+1)=0(2)3x(x+2)=0

因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-12.

(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)

因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.

例1解方程:

(1)10x-4.9x2=0(2)x(x-2)+x-2=0(3)5x2-2x-14=x2-2x+34(4)(x-1)2=(3-2x)2

思考:使用因式分解法解一元二次方程的条件是什么?

解:略(方程一边为0,另一边可分解为两个一次因式乘积.)

练习:下面一元二次方程解法中,正确的是()

A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7

B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=25,x2=35

C.(x+2)2+4x=0,∴x1=2,x2=-2

D.x2=x,两边同除以x,得x=1

三、巩固练习

教材第14页练习1,2.

四、课堂小结

本节课要掌握:

(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.

(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.

五、作业布置

教材第17页习题6,8,10,11

八年级数学教案设计篇6

教学目标

1.使学生正确理解不等式的解,不等式的解集,解不等式的概念,掌握在数轴上表示不等式的解的集合的方法;

2.培养学生观察、分析、比较的能力,并初步掌握对比的思想方法;

3.在本节课的教学过程中,渗透数形结合的思想,并使学生初步学会运用数形结合的观点去分析问题、解决问题.

教学重点和难点

重点:不等式的解集的概念及在数轴上表示不等式的解集的方法.

难点:不等式的解集的概念.

课堂教学过程设计

一、从学生原有的认知结构提出问题

1.什么叫不等式?什么叫方程?什么叫方程的解?(请学生举例说明)

2.用不等式表示:

(1)x的3倍大于1; (2)y与5的差大于零;

(3)x与3的和小于6; (4)x的小于2.

(3)当x取下列数值时,不等式x+3<6是否成立?

-4,3.5,-2.5,3,0,2.9.

((2)、(3)两题用投影仪打在屏幕上)

一、讲授新课

1.引导学生运用对比的方法,得出不等式的解的概念

2.不等式的解集及解不等式

首先,向学生提出如下问题:

不等式x+3<6,除了上面提到的,-4,-2.5,0,2.9是它的解外,还有没有其它的解?若有,解的个数是多少?它们的分布是有什么规律?

(启发学生利用试验的方法,结合数轴直观研究.具体作法是,在数轴上将是x+3<6的解的数值-4,-2.5,0,2.9用实心圆点画出,将不是x+3<6的解的数值3.5,4,3用空心圆圈画出,好像是“挖去了”一样.如下图所示)

然后,启发学生,通过观察这些点在数轴上的分布情况,可看出寻求不等式x+3<6的解的关键值是“3”,用小于3的任何数替代x,不等式x+3<6均成立;用大于或等于3的任何数替代x,不等式x+3<6均不成立.即能使不等式x+3<6成立的未知数x的值是小于3的所有数,用不等式表示为x<3.把能够使不等式x+3<6成立的所有x值的集合叫做不等式x+3<6的集合.简称不等式x+3<6的解集,记作x<3.

最后,请学生总结出不等式的解集及解不等式的概念.(若学生总结有困难,教师可作适当的启发、补充)

一般地说,一个含有未知数的不等式的所有解,组成这个不等式的解的集合.简称为这个不等式的解集.

不等式一般有无限多个解.

求不等式的解集的过程,叫做解不等式.

3.启发学生如何在数轴上表示不等式的解集

我们知道解不等式不能只求个别解,而应求它的解集,一般而言,不等式的解集不是由一个数或几个数组成的,而是由无限多个数组成的,如x<3.那么如何在数轴上直观地表示不等式x+3<6的解集x<3呢?(先让学生想一想,然后请一名学生到黑板上试着用数轴表示一下,其余同学在下面自行完成,教师巡视,并针对黑板上板演的结果做讲解)

在数轴上表示3的点的左边部分,表示解集x<3.如下图所示.

由于x=3不是不等式x+3<6的解,所以其中表示3的点用空心圆圈标出来.(表示挖去x=3这个点)

记号“≥”读作大于或等于,既不小于;记号“≤”读作小于或等于,即不大于.

例如不等式x+5≥3的解集是x≥-2(想一想,为什么?并请一名学生回答)在数轴上表示如下图.

即用数轴上表示-2的点和它的右边部分表示出来.由于解中包含x=-2,故其中表示-2的点用实心圆点表示.

此处,教师应强调,这里特别要注意区别是用空心圆圈“。”还是用实心圆点“.”,是左边部分,还是右边部分.

三、应用举例,变式练习

例1 在数轴上表示下列不等式的解集:

(1)x≤-5; (2)x≥0; (3)x>-1;

(4)1≤X≤4; (5)-2<x≤3; p="" (6)-2≤x<3.

解(1),(2),(3)略.

(4)在数轴上表示1≤x≤4,如下图

(5)在数轴上表示-2<x≤3,如下图< p="">

(此题在讲解时,教师要着重强调:注意所给题目中的解集是否包含分界点,是左边部分还是右边部分.本题应分别让6名学生板演,其余学生自行完成,教师巡视遇到问题,及时纠正)

例2 用不等式表示下列数量关系,再用数轴表示出来:

(1)x小于-1; (2)x不小于-1;

(3)a是正数; (4)b是非负数.

解:(1)x小于-1表示为x<-1;(用数轴表示略)

(2)x不小于-1表示为x≥-1;(用数轴表示略)

(3)a是正数表示为a>0;(用数轴表示略)

(4)b是非负数表示为b≥0.(用数轴表示略)

(以上各小题分别请四名学生回答,教师板书,最后,请学生在笔记本上画数轴表示)

例3 用不等式的解集表示出下列各数轴所表示的数的范围.(投影,请学生口答,教师板演)

解:(1)x<2; (2)x≥-1.5; (3)-2≤x<1.

(本题从另一例面来揭示不等式的解集与数轴上表示数的范围的一种对应关系,从而进一步加深学生对不等式解集的理解,以使学生进一步领会到数形结合的方法具有形象,直观,易于说明问题的优点)

练习(1)用简明语言叙述下列不等式表示什么数:①x>0;②x<0;③x>-1;④x≤-1.

(2)在数轴上表示下列不等式的解集:

①x>3; ②x≥-1; ③x≤-1.5;

④0≤x<5; ⑤-2<x≤2; p="" ⑥-2<x<.

(3)用观察法求不等式<1的解集,并用不等式和数轴分别表示出来.

(4)观察不等式<1的解集,并用不等式和数轴分别表示出来,它的正数解是什么?

自然数解是什么?(表示选作题)

四、师生共同小结

针对本节课所学内容,请学生回答以下问题:

1.如何区别不等式的解,不等式的解集及解不等式这几个概念?

2.找出一元一次方程与不等式在“解”,“求解”等概念上的异同点.

3.记号“≥”、“≤”各表示什么含义?

4.在数轴上表示不等式解集时应注意什么?

结合学生的回答,教师再强调指出,不等式的解、不等式的解集及解不等式这三者的定义是区别它们的标准;在数轴上表示不等式解集时,需特别注意解的范围的分界点,以便在数轴上正确使用空心圆圈“。”和实心圆点“·”.

五、作业

1.不等式x+3≤6的解集是什么?

2.在数轴上表示下列不等式的解集:

(1)x≤1; (2)x≤0; (3)-1<x≤5;< p="">

(4)-3≤x≤2; (5)-2<x<; p="" (6)-≤x<.

3.求不等式x+2<5的正整数解.

课堂教学设计说明由于本节课的知识点比较多,因此,在设计教学过程时,紧紧抓住不等式的解集这一重点知识.通过对方程的解的电义的回忆,对比学习不等式的解及解集.同时,为了进一步加深学生对不等式的解集的理解,教学中注意运用以下几种教学方法:(1)启发学生用试验的方法,结合数轴直观形象来研究不等式的解和解集;(2)比较方程与不等式的解的异同点;(3)通过例题与练习,加深理解.

在数轴上表示数是数形结合的具体体现.而在数轴上表示不等式的解集则又进了一步.因此,在设计教学过程时,就充分考虑到应使学生通过本节课的学习,进一步领会数形结合的思想方法具有形象、直观、易于说明问题的优点,并初步学会用数形结合的观念去处理问题、解决问题.

八年级数学教案设计篇7

教学目标

(一)知识目标:

1.通过拼图活动,让学生感受无理数产生的实际背景和引入的必要性.

2.能判断给出的数是否为有理数;并能说出现由.

(二)能力训练目标:

1.让学生亲自动手做拼图活动,感受无理数存在的必要性和合理性,培养大家的动手能力和合作精神.

2.通过回顾有理数的有关知识,能正确地进行推理和判断,识别某些数是否为有理数,训练他们的思维判断能力.

(三)情感与价值观目标:

1.激励学生积极参与教学活动,提高大家学习数学的热情.

2.引导学生充分进行交流,讨论与探索等教学活动,培养他们的合作与钻研精神.

3.了解有关无理数发现的知识,鼓励学生大胆质疑,培养他们为真理而奋斗的精神.

教学重点

1.让学生经历无理数发现的过程.感知生活中确实存在着不同于有理数的数.

2.会判断一个数是否为有理数.

教学难点

1.把两个边长为1的正方形拼成一个大正方形的动手操作过程.

2.判断一个数是否为有理数.

教学方法

教师引导,主要由学生分组讨论得出结果.

教学过程

一、创设问题情境,引入新课

[师]同学们,我们学过不计其数的数,概括起来我们都学过哪些数呢?

[生]在小学我们学过自然数、小数、分数.

[生]在初一我们还学过负数.

[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.

二、讲授新课

1.问题的提出

[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?

[生]好.(学生非常高兴地投入活动中).

[师]经过大家的共同努力,每个小组都完成了任务,请各组把拼的图展示一下.

同学们非常踊跃地呈现自己的作品给老师.

[师]现在我们一齐把大家的做法总结一下:

下面请大家思考一个问题,假设拼成大正方形的边长为a,则a应满足什么条件呢?

[生甲]a是正方形的边长,所以a肯定是正数.

[生乙]因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a2=2.

[生丙]由a2=2可判断a应是1点几.

[师]大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a是整数吗?a是分数吗?请大家分组讨论后回答.

[生甲]我们组的结论是:因为12=1,22=4,32=9,…整数的平方越来越大,所以a应在1和2之间,故a不可能是整数.

[生乙]因为,…两个相同因数的乘积都为分数,所以a不可能是分数.

[师]经过大家的讨论可知,在等式a2=2中,a既不是整数,也不是分数,所以a不是有理数,但在现实生活中确实存在像a这样的数,由此看来,数又不够用了.

2.做一做

投影片§2.1.1A

(1)在下图中,以直角三角形的斜边为边的正方形的面积是多少?

(2)设该正方形的边长为b,则b应满足什么条件?b是有理数吗?

[师]请大家先回忆一下勾股定理的内容.

[生]在直角三角形中,若两条直角边长为a,b,斜边为c,则有a2+b2=c2.

[师]在这题中,两条直角边分别为1和2,斜边为b,根据勾股定理得b2=12+22,即b2=5,则b是有理数吗?请举手回答.

[生甲]因为22=4,32=9,4<5<9,所以b不可能是整数.

[生乙]没有两个相同的分数相乘得5,故b不可能是分数.

[生丙]因为没有一个整数或分数的平方为5,所以5不是有理数.

[师]大家分析得很准确,像上面讨论的数a,b都不是有理数,而是另一类数——无理数.关于无理数的发现是付出了昂贵的代价的.早在公元前,古希腊数学家毕达哥拉斯认为万物皆“数”,即“宇宙间的一切现象都能归结为整数或整数之比”,也就是一切现象都可用有理数去描述.后来,这个学派中的一个叫希伯索斯的成员发现边长为1的正方形的对角线的长不能用整数或整数之比来表示,这个发现动摇了毕达哥拉斯学派的信条,据说为此希伯索斯被投进了大海,他为真理而献出了宝贵的生命,但真理是不可战胜的,后来古希腊人终于正视了希伯索斯的发现.也就是我们前面谈过的a2=2中的a不是有理数.

我们现在所学的知识都是前人给我们总结出来的,我们一方面应积极地学习这些经验,另一方面我们也不能死搬教条,要大胆质疑,如不这样科学就会永远停留在某处而不前进,要向古希腊的希伯索斯学习,学习他为捍卫真理而勇于献身的精神.

三、课堂练习

(一)课本P35随堂练习

如图,正三角形ABC的边长为2,高为h,h可能是整数吗?可能是分数吗?

解:由正三角形的性质可知BD=1,在Rt△ABD中,由勾股定理得h2=3.h不可能是整数,也不可能是分数.

(二)补充练习

为了加固一个高2米、宽1米的大门,需要在对角线位置加固一条木板,设木板长为a米,则由勾股定理得a2=12+22,即a2=5,a的值大约是多少?这个值可能是分数吗?

解:a的值大约是2.2,这个值不可能是分数.

四、课堂小结

1.通过拼图活动,经历无理数产生的实际背景,让学生感受有理数又不够用了.

2.能判断一个数是否为有理数.

五、课后作业:见作业本。

§2.1数怎么又不够用了(二)

教学目标

(一)知识目标:

1.借助计算器探索无理数是无限不循环小数,并从中体会无限逼近的思想.

2.会判断一个数是有理数还是无理数.

(二)能力训练目标:

1.借助计算器进行估算,培养学生的估算能力,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考、合作交流的意识和能力.

2.探索无理数的定义,以及无理数与有理数的区别,并能辨别出一个数是无理数还是有理数,训练大家的思维判断能力.

(三)情感与价值观目标:

1.让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力.

2.充分调动学生的积极性,培养他们的合作精神,提高他们的辨识能力.

教学重点

1.无理数概念的探索过程.

2.用计算器进行无理数的估算.

3.了解无理数与有理数的区别,并能正确地进行判断.

教学难点

1.无理数概念的建立及估算.

2.用所学定义正确判断所给数的属性.

教学方法

老师指导学生探索法

教学过程

一、创设问题情境,引入新课

[师]同学们,我们在上节课了解到有理数又不够用了,并且我们还发现了一些数,如a2=2,b2=5中的a,b既不是整数,也不是分数,那么它们究竟是什么数呢?本节课我们就来揭示它的真面目.

二、讲授新课

1.导入:[师]请看图

大家判断一下3个正方形的边长之间有怎样的大小关系?说说你的理由.

[生]因为3个正方形的面积分别为1,2,4,而面积又等于边长的平方,所以面积大的正方形边长就大.

[师]大家能不能判断一下面积为2的正方形的边长a的大致范围呢?

[生]因为a2大于1且a2小于4,所以a大致为1点几.

[师]很好.a肯定比1大而比2小,可以表示为1<a<2.那么a究竟是1点几呢?请大家用计算器进行探索,首先确定十分位,十分位究竟是几呢?如1.12=1.21,1.22=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a2=2,故a应比1.4大且比1.5小,可以写成1.4<a<1.5,所以a是1点4几,即十分位上是4,请大家用同样的方法确定百分位、千分位上的数字.<p="">

[生]因为1.412=1.9881,1.422=2.0164,所以a应比1.41大且比1.42小,所以百分位上数字为1.

[生]因为1.4112=1.990921,1.4122=1.993744,1.4132=1.996569,1.4142=1.999396,1.4152=2.002225,所以a应比1.414大而比1.415小,即千分位上的数字为4.

[生]因为1.41422=1.99996164,1.41432=2.00024449,所以a应比1.4142大且比1.4143小,即万分位上的数字为2.

[师]大家非常聪明,请一位同学把自己的探索过程整理一下,用表格的形式反映出来.

[生]我的探索过程如下.

边长a面积S

1<a<2p=""1<s<4

1.4<a<1.5p=""1.96<s<2.25

1.41<a<1.42p=""1.9881<s<2.0164

1.414<a<1.415p=""1.999396<s<2.002225

1.4142<a<1.4143p=""1.99996164<s<2.00024449

[师]还可以继续下去吗?

[生]可以.

[师]请大家继续探索,并判断a是有限小数吗?

[生]a=1.41421356…,还可以再继续进行,且a是一个无限不循环小数.

[师]请大家用上面的方法估计面积为5的正方形的边长b的值.边长b会不会算到某一位时,它的平方恰好等于5?请大家分组合作后回答.(约4分钟)

[生]b=2.236067978…,还可以再继续进行,b也是一个无限不循环小数.

[生]边长b不会算到某一位时,它的平方恰好等于5,但我不知道为什么.

[师]好.这位同学很坦诚,不会就要大胆地提出来,而不要冒充会,这样才能把知识学扎实,学透,大家应该向这位同学学习.这个问题我来回答.如果b算到某一位时,它的平方恰好等于5,即b是一个有限小数,那么它的平方一定是一个有限小数,而不可能是5,所以b不可能是有限小数.

2.无理数的定义

请大家把下列各数表示成小数.

3,,并看它们是有限小数还是无限小数,是循环小数还是不循环小数.大家可以每个小组计算一个数,这样可以节省时间.

[生]3=3.0,=0.8,=,

[生]3,是有限小数,是无限循环小数.

[师]上面这些数都是有理数,所以有理数总可以用有限小数或无限循环小数表示.反过来,任何有限小数或无限循环小数都是有理数.

像上面研究过的a2=2,b2=5中的a,b是无限不循环小数.

无限不循环小数叫无理数(irrationalnumber).

除上面的a,b外,圆周率π=3.14159265…也是一个无限不循环小数,0.5858858885…(相邻两个5之间8的个数逐次加1)也是一个无限不循环小数,它们都是无理数.

3.有理数与无理数的主要区别

(1)无理数是无限不循环小数,有理数是有限小数或无限循环小数.

(2)任何一个有理数都可以化为分数的形式,而无理数则不能.

4.例题讲解

下列各数中,哪些是有理数?哪些是无理数?

3.14,-,,0.1010010001…(相邻两个1之间0的个数逐次加1).

解:有理数有3.14,-,.无理数有0.1010010001….

三、课堂练习

(一)随堂练习

下列各数中,哪些是有理数?哪些是无理数?

0.4583,,-π,-,18.

解:有理数有0.4583,,-,18.无理数有-π.

(二)补充练习

投影片(§2.1.2A)

判断题

(1)有理数与无理数的差都是有理数.

(2)无限小数都是无理数.

(3)无理数都是无限小数.

(4)两个无理数的和不一定是无理数.

解:(1)错.例π-1是无理数.

(2)错.例是有理数.

(3)对.因为无理数就是无限不循环小数,所以是无限小数.

(4)对.因为两个符号相反的无理数之和是有理数.例π-π=0.

投影片(§2.1.2B)

下列各数中,哪些是有理数?哪些是无理数?

0.351,-,3.14159,-5.2323332…,123456789101112…(由相继的正整数组成).

解:有理数有0.351,-,3.14159,

无理数有-5.2323332…,123456789101112….

投影片(§2.1.2C)

在下列每一个圈里,至少填入三个适当的数.

[生]有理数集合填0,,-3.

无理数集合填-π,-π,0.323323332….

四、课时小结

本节课我们学习了以下内容.

1.用计算器进行无理数的估算.

2.无理数的定义.

3.判断一个数是无理数或有理数.

五、课后作业:见作业本。

§2.2平方根(1)

教学目标:

1、了解算术平方根的概念,会用根号表示一个数的算术平方根。

2、会求一个正数的算术平方根。

3、了解算术平方根的性质。

教学重点:算术平方根的概念、性质,会用根号表示一个正数的算术平方根。

教学难点:算术平方根的概念、性质。

教学过程:

一、问题引入

1.教师活动:回顾上节课的拼图活动及探索无理数的过程,提出问题:面积为13的正方形的边长究竟是多少?

学生活动:

(1)完成课本P32的填空:

a2=_____b2=____,

c2=_____d2=_____e2=______,f2=______

(2)a,b,c,d,e,f中哪些是有理数,哪些是无理数?你能表示它们吗?

2.师生互动

集体交流后,说明无理数也需要一种表示方法。

二、讲授新课:

算术平方根的概念:一般地,如果一个正数的平方等于,即,那么,这个正数就叫做的算术平方根。记为:“”读做根号。特别地,0的算术平方根是0。

那么,则=b2=3,则b=;……

这样的话,一个非负数的算术平方根就可以表示为。

例1分别写出下列各数的算术平方根

(要求一个数的算术平方根,一般的方法是先按平方的概念来找哪个数的平方等于这个数。)

例2自由下落物体的高度h(米)与下落时间t(秒)的关系为h=4.9t2.有一铁球从19.6米高的建筑物上自由下落,到达地面需要多长时间?

学生活动:一个同学在黑板上板演,其他同学在练习本上做,然后交流。

师生互动:完成引例中的,则,以后我们可以利用计算器求出这个数的近似值。

三、随堂练习:P391

四、小结:

(1)内容总结:

①算术平方根的定义、表示;

②的双重非负性。

(2)方法归纳:

转化的数学方法:即将陌生的问题转化为熟悉的问题解决。

五、作业:

P40习题2.312

八年级数学教案设计篇8

学习目标:

1.理解平行线的意义两条直线的两种位置关系;

2.理解并掌握平行公理及其推论的内容;

3.会根据几何语句画图,会用直尺和三角板画平行线;

学习重点:

探索和掌握平行公理及其推论.

学习难点:

对平行线本质属性的理解,用几何语言描述图形的性质

一、学习过程:预习提问

两条直线相交有几个交点?

平面内两条直线的位置关系除相交外,还有哪些呢?

(一)画平行线

1、工具:直尺、三角板

2、方法:一"落";二"靠";三"移";四"画"。

3、请你根据此方法练习画平行线:

已知:直线a,点B,点C.

(1)过点B画直线a的平行线,能画几条?

(2)过点C画直线a的平行线,它与过点B的平行线平行吗?

(二)平行公理及推论

1、思考:上图中,①过点B画直线a的平行线,能画条;

②过点C画直线a的平行线,能画条;

③你画的直线有什么位置关系?。

②探索:如图,P是直线AB外一点,CD与EF相交于P.若CD与AB平行,则EF与AB平行吗?为什么?

二、自我检测:

(一)选择题:

1、下列推理正确的是()

A、因为a//d,b//c,所以c//dB、因为a//c,b//d,所以c//d

C、因为a//b,a//c,所以b//cD、因为a//b,d//c,所以a//c

2.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则它们交点的个数为()

A.0个B.1个C.2个D.3个

(二)填空题:

1、在同一平面内,与已知直线L平行的直线有条,而经过L外一点,与已知直线L平行的直线有且只有条。

2、在同一平面内,直线L1与L2满足下列条件,写出其对应的位置关系:

(1)L1与L2没有公共点,则L1与L2;

(2)L1与L2有且只有一个公共点,则L1与L2;

(3)L1与L2有两个公共点,则L1与L2。

3、在同一平面内,一个角的两边与另一个角的两边分别平行,那么这两个角的大小关系是。

4、平面内有a、b、c三条直线,则它们的交点个数可能是个。

三、CD⊥AB于D,E是BC上一点,EF⊥AB于F,∠1=∠2.试说明∠BDG+∠B=180°。

56489