教育巴巴 > 教学设计 >

中考教案数学

时间: 新华 教学设计

中考教案数学篇1

教学目标

1、知识与技能

能应用所学的函数知识解决现实生活中的问题,会建构函数“模型”。

2、过程与方法

经历探索一次函数的应用问题,发展抽象思维。

3、情感、态度与价值观

培养变量与对应的思想,形成良好的函数观点,体会一次函数的应用价值。

重、难点与关键

1、重点:一次函数的应用。

2、难点:一次函数的应用。

3、关键:从数形结合分析思路入手,提升应用思维。

教学方法

采用“讲练结合”的教学方法,让学生逐步地熟悉一次函数的应用。

教学过程

一、范例点击,应用所学

【例5】小芳以200米/分的速度起跑后,先匀加速跑5分,每分提高速度20米/分,又匀速跑10分,试写出这段时间里她的跑步速度y(单位:米/分)随跑步时间x(单位:分)变化的函数关系式,并画出函数图象。

y=

【例6】A城有肥料200吨,B城有肥料300吨,现要把这些肥料全部运往C、D两乡。从A城往C、D两乡运肥料的费用分别为每吨20元和25元;从B城往C、D两乡运肥料的费用分别为每吨15元和24元,现C乡需要肥料240吨,D乡需要肥料260吨,怎样调运总运费最少?

解:设总运费为y元,A城往运C乡的肥料量为x吨,则运往D乡的肥料量为(200—x)吨。B城运往C、D乡的肥料量分别为(240—x)吨与(60+x)吨。y与x的关系式为:y=20x+25(200—x)+15(240—x)+24(60+x),即y=4x+10040(0≤x≤200)。

由图象可看出:当x=0时,y有最小值10040,因此,从A城运往C乡0吨,运往D乡200吨;从B城运往C乡240吨,运往D乡60吨,此时总运费最少,总运费最小值为10040元。

拓展:若A城有肥料300吨,B城有肥料200吨,其他条件不变,又应怎样调运?

二、随堂练习,巩固深化

课本P119练习。

三、课堂总结,发展潜能

由学生自我评价本节课的表现。

四、布置作业,专题突破

课本P120习题14.2第9,10,11题。

板书设计

1、一次函数的应用例:

中考教案数学篇2

课型复习课教法讲练结合

教学目标(知识、能力、教育)

1.了解分解因式的意义,会用提公因式法、平方差公式和完全平方公式(直接用公式不超过两次)分解因式(指数是正整数).

2.通过乘法公式,的逆向变形,进一步发展学生观察、归纳、类比、概括等能力,发展有条理的思考及语言表达能力

教学重点掌握用提取公因式法、公式法分解因式

教学难点根据题目的形式和特征恰当选择方法进行分解,以提高综合解题能力。

教学媒体学案

教学过程

一:【课前预习】

(一):【知识梳理】

1.分解因式:把一个多项式化成的形式,这种变形叫做把这个多项式分解因式.

2.分解困式的方法:

⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.

⑵运用公式法:平方差公式:;

完全平方公式:;

3.分解因式的&39;步骤:

(1)分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解.

(2)在用公式时,若是两项,可考虑用平方差公式;若是三项,可考虑用完全平方公式;若是三项以上,可先进行适当的分组,然后分解因式。

4.分解因式时常见的思维误区:

提公因式时,其公因式应找字母指数最低的,而不是以首项为准.若有一项被全部提出,括号内的项1易漏掉.分解不彻底,如保留中括号形式,还能继续分解等

(二):【课前练习】

1.下列各组多项式中没有公因式的是()

A.3_-2与6_2-4_B.3(a-b)2与11(b-a)3

C.m_my与nyn_D.abac与abbc

2.下列各题中,分解因式错误的是()

3.列多项式能用平方差公式分解因式的是()

4.分解因式:_2+2_y+y2-4=_____

5.分解因式:(1);

(2);(3);

(4);(5)以上三题用了公式

二:【经典考题剖析】

1.分解因式:

(1);(2);(3);(4)

分析:

①因式分解时,无论有几项,首先考虑提取公因式。提公因式时,不仅注意数,也要注意字母,字母可能是单项式也可能是多项式,一次提尽。

②当某项完全提出后,该项应为1

③注意,

④分解结果(1)不带中括号;(2)数字因数在前,字母因数在后;单项式在前,多项式在后;(3)相同因式写成幂的形式;(4)分解结果应在指定范围内不能再分解为止;若无指定范围,一般在有理数范围内分解。

2.分解因式:(1);(2);(3)

分析:对于二次三项齐次式,将其中一个字母看作末知数,另一个字母视为常数。首先考虑提公因式后,由余下因式的项数为3项,可考虑完全平方式或十字相乘法继续分解;如果项数为2,可考虑平方差、立方差、立方和公式。(3)题无公因式,项数为2项,可考虑平方差公式先分解开,再由项数考虑选择方法继续分解。

3.计算:(1)

(2)

分析:(1)此题先分解因式后约分,则余下首尾两数。

(2)分解后,便有规可循,再求1到2002的和。

4.分解因式:(1);(2)

分析:对于四项或四项以上的多项式的因式分解,一般采用分组分解法,

5.(1)在实数范围内分解因式:;

(2)已知、、是△ABC的三边,且满足,

求证:△ABC为等边三角形。

分析:此题给出的是三边之间的关系,而要证等边三角形,则须考虑证,

从已知给出的等式结构看出,应构造出三个完全平方式,

即可得证,将原式两边同乘以2即可。略证:

即△ABC为等边三角形。

三:【课后训练】

1.若是一个完全平方式,那么的值是()

A.24B.12C.12D.24

2.把多项式因式分解的结果是()

A.B.C.D.

3.如果二次三项式可分解为,则的值为()

A.-1B.1C.-2D.2

4.已知可以被在60~70之间的两个整数整除,则这两个数是()

A.61、63B.61、65C.61、67D.63、65

5.计算:19982002=,=。

6.若,那么=。

7.、满足,分解因式=。

8.因式分解:

(1);(2)

(3);(4)

9.观察下列等式:

想一想,等式左边各项幂的底数与右边幂的底数有何关系?猜一猜可引出什么规律?用等式将其规律表示出来:。

10.已知是△ABC的三边,且满足,试判断△ABC的形状。阅读下面解题过程:

解:由得:

即③

△ABC为Rt△。④

试问:以上解题过程是否正确:;若不正确,请指出错在哪一步?(填代号);错误原因是;本题结论应为。

四:【课后小结】

布置作业地纲

中考教案数学篇3

作为一位刚到岗的教师,教学是我们的工作之一,写教学反思能总结我们的教学经验,怎样写教学反思才更能起到其作用呢?下面是小编精心整理的中班数学优质课教案及教学反思《5以内的序数》,仅供参考,欢迎大家阅读。

案例背景:

在日程生活中,我组织幼儿排队或游戏时都要求幼儿知道自己的位置,可我发现孩子们对序数的概念比较模糊,往往不能清楚的知道自己的位置,根据这个发现,我以《幼儿园知道纲要》为先进的`理念指导,结合本学期幼儿活动材料,我设计了今天的活动,让孩子们从生活和游戏中感受事物的位置关系,让幼儿体验到数学活动带来的乐趣案例描述:

活动目标

1.认识5以内的序数,使幼儿掌握序数词"第几"。

2.学习确定物体在序列中的位置,并能用"第几"表示。

活动准备:

PPT课件、幼儿操作材料、人手一份小板凳、五把自制箭头、音乐活动。

重、难点:

重点:掌握序数词第几。

难点:学习确定物体在序列中位置,并能用"第几"表示。

活动教法与学法:

在整节活动,我始终以幼儿为主体,让幼儿通过多看多想,多说,多体验,使幼儿在活动中一直保持积极,良好的情绪状态。在活动过程中注重老师与幼儿的互动,更重要的是大部分时间安排幼儿多游戏,最后是幼儿动手操作。让幼儿在老师的引导下加深对家乡的认识,培养幼儿热爱家乡的情感。

活动过程:

一、开始部分律动游戏:拍手对数我说一我对一我拍一下就是一,我说二我对二我拍二下就是二......

二、基本部分

1.小羊排队,引导幼儿从左往右从右往左感知5以内的序数,是幼儿掌握序数词第几。

2.小羊抢板凳游戏,学习确定物体在序列中的位置。

3.游戏:抢板凳通过不同的方向,进一步学习物体在序列中的位置。

三、结束部分幼儿操作:送小羊回家幼儿通过操作正确的送小羊回家。

延伸活动:请家长参与活动让幼儿说说自己把小羊送进了第几层楼。

活动反思:

序数在日常生活中随处可见,在电影院,在餐厅,在商店,在幼儿园里,幼儿排队或游戏时都会涉及到序数,幼儿对序数的概念有一定的感知,有一些经验的积累,但是很零碎、不完整、不规范。为此,我们有必要通过集体活动来帮助幼儿进行经验的梳理和提升,使幼儿能正确使用第一至第五的序数词来表示物体在序列中的位置。我们以《指南》理念为指导,让幼儿“能从生活和游戏中感受事物的数量关系并体验到数学的重要和有趣”以及中班幼儿的生理心理特点,让幼儿在体育游戏中轻松地感知五以内物体的排序,体验序数在生活中的作用,体现生活中学和游戏中学数学的理念。

中考教案数学篇4

6.6函数的应用(1)

一、知识要点

一次函数、反比例函数的应用.

二、课前演练

1.(2010上海)一辆汽车在行驶过程中,路程y(千米)与

时间_(小时)之间的函数关系如图所示当时0≤_≤1,

y关于_的函数解析式为y=60_,那么当1≤_≤2时,y

关于_的函数解析式为____________________.

2.(2012丽水)甲、乙两人以相同路线前往离学校12千米

的地方参加植树活动.图中l甲、l乙分别表示甲、乙两人

前往目的地所行驶的路程S(千米)随时间t(分)变化的函

数图象,则每分钟乙比甲多行驶千米.

三、例题分析

例1(20__南京)小颖和小亮上山游玩,小颖乘缆车,小亮步行,两人相约在山顶的缆车终点会合.已知小亮行走到缆车终点的路程是缆车到山顶的线路长的2倍,小颖在小亮出发后50min才乘上缆车,缆车的平均速度为180m/min.设小亮出发_min后行走的路程为ym.图中的折线表示小亮在整个行走过程中y与_的函数关系.

⑴小亮行走的总路程是_______㎝,他途中休息了______min.

⑵①当50≤_≤80时,求y与_的函数关系式;

②当小颖到达缆车终点为时,小亮离缆车终点的路程是多少?

例2(20__成都)如图,反比例函数y=k_(k≠0)的图象经过点(12,8),直线y=-_+b经过该反比例函数图象上的点Q(4,m).

(1)求上述反比例函数和直线的函数表达式;

(2)设该直线与_轴、y轴分别交于A、B两点,与反比例函数

图象的另一个交点为P,连接0P、OQ,求△OPQ的面积.

四、巩固练习

1.拖拉机开始行驶时,油箱中有油4升,如果每小时耗油0.5升,那么油箱中余油y(升)与它工作的时间t(时)之间的函数关系的图象是()

2.已知等腰三角形的周长为10㎝,将底边长y㎝表示为腰长_㎝的关系式是y=10-2_,则其自变量_的取值范围是()

A.00

3.(2012连云港)我市某医药公司要把药品运往外地,现有两种运输方式可供选择:

方式一:使用快递公司的邮车运输,装卸收费400元,另外每公里再加收4元;

方式二:使用铁路运输公司的火车运输,装卸收费820元,另外每公里再加收2元,

(1)分别写出邮车、火车运输的总费用y1(元)、y2(元)与运输路程_(km)之间的函数关系式;

(2)你认为选用哪种运输方式较好,为什么?

4.制作一种产品,需先将材料加热达到60℃后,再进行操作.设该材料温度为y(℃),从加热开始计算的时间为_(分钟).据了解,设该材料加热时,温度y与时间_成一次函数关系;停止加热进行操作时,温度y与时间_成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5分钟后温度达到60℃.

(1)分别求出将材料加热和停止加热进行操作时,y与_的函数关系式;

(2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?

海南初中数学组

§6.7函数的应用(2)

一、知识要点

二次函数在实际问题中的应用.

二、课前演练

1.(20__株洲)某广场有一喷水池,水从地面喷出,如图,

以水平地面为_轴,出水点为原点,建立直角坐标系,

水在空中划出的曲线是抛物线y=-_2+4_(单位:米)的

一部分,则水喷出的最大高度是()

A.4米B.3米C.2米D.1米

2.(20__梧州)20__年5月22日—29日在美丽的青岛市

举行了苏迪曼杯羽毛球混合团体锦标赛.在比赛中,某

次羽毛球的运动路线可以看作是抛物线y=-14_2+b_+c的一

部分(如图),其中出球点B离地面O点的距离是1m,球落

地点A到O点的距离是4m,那么这条抛物线的解析式是()

A.y=-14_2+34_+1B.y=-14_2+34_-1C.y=-14_2-34_+1D.y=-14_2-34_-1

三、例题分析

例1(20__沈阳)一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7_倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5_倍,则预计今年年销售量将比去年年销售量增加_倍(本题中0

(1)用含的代数式表示,今年生产的这种玩具每件的成本为________元,今年生产的这种玩具每件的出厂价为_________元.

(2)求今年这种玩具的每件利润y元与_之间的函数关系式.

(3)设今年这种玩具的年销售利润为w万元,求当_为何值时,今年的年销售利润最大?最大年销售利润是多少万元?

注:年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量.

四、巩固练习

1.(20__西宁)西宁中心广场有各种音乐喷泉,其中一个喷水管

的最大高度为3米,此时距喷水管的水平距离为12米,在如图

所示的坐标系中,这个喷泉的函数关系式是()

A.y=-(_-12)2+3B.y=-3(_+12)2+3C.y=-12(_-12)2+3D.y=-12(_+12)2+3

2.(20__聊城)某公园草坪的防护栏由100段形状

相同的抛物线形构件组成,为了牢固起见,每段

护栏需要间距0.4m加设一根不锈钢的支柱,防护

栏的最高点距底部0.5m(如图),则这条防护栏需

要不锈钢支柱的总长度至少为()

A.50mB.100mC.160mD.200m

3.(20__甘肃)如图,正方形ABCD边长为1,E、F、G、H分别为各边上的点,且AE=BF=CG=DH,设小正方形EFGH的面积为s,AE为_,则s关于_的函数图象大致是()

4.某公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价_(元/件)可近似看作一次函数y=k_+b的关系(如图).

(1)根据图象,求出一次函数的解析式;

(2)设公司获得的毛利润为S元.

①试用销售单价_表示毛利润S;

②请结合S与_的函数图象说明:销售单价定为多少时,该公司可获得最大利润?最大利润是多少?此时销售量是多少?

5.(20__曲靖)一名男生推铅球,铅球行进高度y(单位:m)与水平距离_(单位:m)之间的关系是y=-112_2+23_+53,铅球运行路线如图.

(1)求铅球推出的水平距离;

(2)通过计算说明铅球行进高度能否达到4m.

中考教案数学篇5

一、教材分析:

(一)教材的地位及作用:

梯形是人们最为熟悉的几何图形之一,在生活中有着极为广泛的应用。在小学阶段学生对梯形已经有了初步的认识、本节课再次将学生带入梯形的殿堂,进一步探究梯形的相关概念、等腰梯形的性质以及解决梯形问题的策略,是四边形知识螺旋发展的一个重要环节、

(二)教学目标;

根据教材的地位及作用,考虑到学生已有的认知结构心理特征,我将本节课的教学目标确定为:

1、知识与技能目标:

(1)掌握梯形的相关概念,了解等腰梯形同一底上的两个内角相等,两条对角线相等的性质。

(2)培养学生初步应用等腰梯形的性质解决问题的能力。

2、过程与方法目标:

(1)使学生经历探究梯形相关的概念,等腰梯形性质的过程。

(2)在解决等腰梯形的应用问题的过程中,尝试多样化的方法和策略。

3、情感、态度与价值观目标:

(1)在简单的操作活动中,发展学生的说理意识和主动探究的习惯,同时培养学生的合作意识和交流能力。

(2)体会探索发现的乐趣,增强学习数学的自信心。

(三)教学重点、难点:

本着课程标准,在钻研教材的基础上,我确定:

1、本节课的教学重点是:探索等腰梯形的性质并能运用它解决一些简单的问题。

2、教学难点:梯形有关计算和推理中的常用策略、

二、教法分析:

针对本节课的特点,采用“创设情境—动手操作—合作交流—知识运用”为主线的教学方法。

三、学法指导:

《数学课程标准纲要》指出:有效的数学学习活动不能单纯依赖模仿和记忆,动手实践、自主探索与合作交流是学习数学的重要方式、为了充分体现《新课标》的要求,本节课采用“动手实践,合作探究”的学习方法。使学生积极参与教学过程,通过合作交流,激发学生的学习兴趣,体验探索的快乐,使学生的主体地位得到充分的发挥、

四、教学过程:

(一)创设情境,导入课题。

让学生拿出准备好的平行四边形纸片和剪刀,只剪一刀,保证留下的纸片是是四边形,那么留下的四边形是什么图形?学生动手操作,我参与到学生活动中,及时搜集学生可能出现的情况。

学生容易发现,当所剪的边与相对的边平行时,得到的是平行四边形,那么不平行时,得到的是什么图形呢?由此导入课题。

设计意图:从学生刚刚研究过的的平行四边形入手,让学生既复习运用了平行四边形的相关知识,又有利于加强对比,顺利过渡到梯形的研究。

(二)动手操作,合作探究。

探究一、梯形的相关概念。

由剪纸的体验,学生很容易概括出梯形的定义,进一步引导学生认识梯形的相关概念。强调:上下底的区分是根据长度,而不是根据其位置。

紧接着让学生举出生活中梯形的实例,学生的举例可能会拘泥于校园,教室,家里的物品,这时我利用课件向学生展示墨西哥的金字塔,年上海世博会中国会馆的的图片,让学生发现图片中的梯形,感受梯形的美。接着,利用多媒体展示一组图片,让学生进一步感受生活中的梯形。设计意图:让学生学会用数学的眼光看世界,体会数学与现实生活的联系、为了加深学生学生对梯形高的意义的理解,我设计了“画一画”:在一张有平行线条的纸上作一个梯形ABCD,使AD∥BC,并作出它的一条高。

待学生画好后,分别指出梯形的上底、下底和高。设计意图:让学生体会梯形高的作法,理解梯形高的意义以及梯形的高有无数条。学生知道了什么是梯形,那么梯形与平行四边形有什么异同?学生小组讨论交流后汇报,借助课件的动画效果加以强调。并进一步提出以下问题:

1、梯形是平行四边形吗

2、一组对边平行这组对边不相等的四边形是梯形吗?

设计意图:通过讨论使学生认识到,平行四边形和梯形属于四边形的两个不同分支,探究二、特殊梯形

为得到等腰梯形、直角梯形的定义,我设计了下面的活动:剪一剪:如图,把一张矩形纸片对折后,用剪刀沿斜线剪开,然后将其展开,可得到一个什么图形?

让学生从学具中拿出矩形纸片,按大屏幕的要求完成剪纸,并向大家展示,所得到的是什么图形?剪下的是什么图形?这时我鼓励学生由剪纸过程说说什么样的梯形是等腰梯形,什么样的梯形是直角梯形,结合课件的动画效果给出等腰梯形和直角梯形的定义。

(三)总结反思,纳入系统。

1、通过本节课的学习你得到了哪些新知识?

2、解答关于等腰梯形的问题后,你获得了哪些方法?设计意图:这是一次知识与情感的交流,培养学生自我反馈,自主发展的意识。

(四)布置作业,拓展思维。

学生经过以上四个环节的学习,已经初步掌握了等腰梯形的性质,但学生的能力有待进一步提升,因此作业布置为:

1、基础性作业:课本121面习题4、8节1、2、3题。

2、拓展性作业:在下图所给的平行四边形(矩形)纸片上画一条裁剪直线,将该纸片裁剪成两部分,并把这两部分重新拼成如下图形:

(1)等腰梯形。

(2)直角梯形。

要求:所拼成的图形互不重叠且不留空隙。设计意图:进一步培养学生动手操作能力及独立分析问题解决问题的能力,让学生更好的会学数学,用数学的理念。同时为下节课的学习埋下伏笔。

五、教学评价。

本节课通过设置问题情境、多媒体展示、学生画图、探究,使学生在“做中学”。

学生在实际操作中,经历了自主探究、合作交流的学习方式,既发展了学生的个性潜能,又培养了他们的合作精神,教师始终是活动的组织者、引导者、合作者,学生是以研究者、探索者的角色出现在教学过程中,主体地位得到了充分体现,使教学过程成为一个再发现、再创造的认识过程,培养学生用转化的思想来探索新问题。

中考教案数学篇6

一、第一轮复习【3月初—4月中旬】

1、第一轮复习的形式:“梳理知识脉络,构建知识体系”————理解为主,做题为辅

(1)目的:过三关

①过记忆关

必须做到:在准确理解的基础上,牢记所有的基本概念(定义)、公式、定理,推论(性质,法则)等。

②过基本方法关

需要做到:以基本题型为纲,理解并掌握中学数学中的基本解题方法,例如:配方法,因式分解法,整体法,待定系数法,构造法,反证法等。

③过基本技能关

应该做到:无论是对典型题、基本题,还是对综合题,应该很清楚地知道该题目所要考查的知识点,并能找到相应的解题方法。

(2)宗旨:知识系统化

在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构。

①数与代数

分为3个大单元:数与式、方程与不等式、函数。

②空间和图形

分为5个大单元:几何基本概念(线与角)与三角形,四边形,圆与视图,相似与解直角三角形,图形的变换。

③统计与概率

分为2个大单元:统计与概率。

(3)配套练习以《中考精英》为主,复习完每个单元进行一次单元测试,重视补缺工作。

2、第一轮复习应注意的问题

(1)必须扎扎实实夯实基础

中考试题按难:中:易=1:2:7的比例,基础分占总分的70%,因此必须对基础数学知识做到“准确理解”和“熟练掌握”,在应用基础知识时能做到熟练、正确和迅速。

(2)必须深钻教材,不能脱离课本。

(3)掌握基础知识,一定要从理解角度出发。

数学知识的学习,必须要建立逻辑思维能力,基础知识只有理解透了,才可以举一反三、触类旁通。相对而言,“题海战术”在这个阶段是不适用的。

(5)定期检查学生完成的作业,及时反馈对于作业、练习、测验中的问题,将问题渗透在以后的教学过程中,进行反馈、矫正和强化。

二、第二轮复习【4月中旬—5月初】

1、第二轮复习的形式

第一阶段是总复习的基础,侧重双基训练,第二阶段是第一阶段复习的延伸和提高,侧重培养学生的数学能力。第二轮复习时间相对集中,在第一轮复习的基础上,进行拔高,适当增加难度;主要集中在热点、难点、重点内容上,特别是重点;注意数学思想的形成和数学方法的掌握,这就需要充分发挥教师的主导作用。可进行专题复习,如“方程型综合问题”、“应用性的函数题”、“不等式应用题”、“统计类的应用题”、“几何综合问题”、“探索性应用题”、“开放题”、“阅读理解题”、“方案设计”、“动手操作”等问题以便学生熟悉、适应这类题型。

2、第二轮复习应该注意的几个问题

(1)第二轮复习不再以节、章、单元为单位,而是以专题为单位。

(2)专题选择要准、安排时间要合理。专题选的准不准,取决于对教学大纲和中考题的研究。专题要有代表性,切忌面面俱到;专题要有针对性,围绕热点、难点、重点特别是中考必考内容选定专题;根据专题特点安排时间,重要处要狠下功夫,不惜“浪费”时间,舍得投入精力。

(3)专题复习的适当拔高。专题复习要有一定的难度,这是第二轮复习的特点决定的,没有一定的难度,学生的能力是很难提高的,提高学生的能力,是第二轮复习的任务。但要兼顾各种因素把握一个度。

(4)专题复习的重点是揭示思维过程。不能加大学生的练习量,更不能把学生推进题海;不能急于赶进度,在这里赶进度,是产生“糊涂阵”的主要原因。

三、第三轮复习【5月中旬-6月初】

1、第三轮复习的形式

第三轮复习的形式是模拟中考的综合拉练,查漏补缺,这好比是一个建筑工程的验收阶段,考前练兵。研究历年的中考题,训练答题技巧、考场心态、临场发挥的能力等。

2、第三轮复习应该注意的几个问题

(1)模拟题必须要有模拟的特点。时间的安排,题量的多少,低、中、高档题的比例,总体难度的控制等要切近中考题。

(2)给特殊的题加批语。某几个题只有个别学生出错,这样的题不能占用课堂上的时间,个别学生的问题,就在试卷上以批语的形式给与讲解。

(3)留给学生一定的纠错和消化时间。教师讲过的内容,学生要整理下来;教师没讲的自己解错的题要纠错;与之相关的基础知识要再记忆再巩固。

(4)调节学生的生物钟。尽量把学习、思考的时间调整得与中考答卷时间相吻合。

总之,在九年级数学总复习中,发掘教材,夯实基础是根本;共同参与,注重过程是前提;精选习题,提质减负是核心;强化训练,发展能力是目的。开发学生的思维空间,真正训练学生的综合能力及水平。

我坚信,只要付出了辛勤的汗水,那么收获的一定是丰收的喜悦。只要心中有一片希望的田野,勤奋耕耘终将迎来一片翠绿。

56046