初二数学有关教案
初二数学有关教案篇1
求数的平方根和立方根的运算是数学的基本运算之一,在根式运算、解方程及几何图形解法等问题中经常要用到。学习立方根的意义在于:(1)它有着广泛应用,因为空间形体都是三维的,关于有关体积的计算经常涉及开立方。(2)立方根是奇次方根的特例,就像平方根是偶次方的特例一样,立方根对进一步研究奇次方根的性质具有典型意义。
教学目标:1、能说出开立方、立方根的定义,记住正数、零、负数的立方根的不同结论;能用符号表示a的立方根,并指出被开方数、根指数,会正确读出符号,知道开立方与立方互为逆运算。2、能依据立方根的定义求完全立方数的立方根。教学重点是:立方根相关概念的理解和求法。在教学中突出立方根与平方根的对比,弄清两者的区别与联系,这样做既有利于巩固平方根的概念,又便于加深对立方根的理解。
在教学过程中,我注重体现教师的导向作用和学生的主体地位。本节是新课内容的学习。教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境。
在课堂的引入上采用了一个求立方根的实际应用问题,已知体积,求正方体的棱长。由实际应用问题是学生易于接受。再对已学过的相似运算---平方根进行复习,为接下来与立方根进行比较打下基础。为培养学生自主学习的能力,我为他们布置了问题,让他们带着问题看书。自己找出立方根的基本概念。关于立方根的个数的讨论,是本节的一个难点。考虑到这个结论与平方根的相应结论不同,采用了先启发学生思考的办法,用“想一想”提出有关正数、0、负数立方根个数的思考题,接着安排一个例题,求一些具体数的立方根,在学生经过思考并有了一些感性认识之后,自己总结出结论。其后,引导学生自己总结平方根与立方根的区别,强调:用根号式子表示立方根时,根指数不能省略;以及立方根的性。考虑到如果教学计划提前完成,我在练习卷之外,还准备了一些易混淆的命题让学生判断、区分,巩固所学内容。
本节内容设计了两课时完成,在第二课时进一步深入学习立方根在解方程,以及与平方根部分的综合应用。
初二数学有关教案篇2
教学目标:
1、通过操作活动,使学生体会所学平面图形的特征,并能用自己的语言描述长方形、正方形边的特征。
1、通过观察、操作,使学生初步感知所学图形之间的关系。
3、能根据要求自己操作学具。
4、培养学生团结协作的精神。
教学重难点:
平面图形之间的关系。
教具、学具准备:教师:各种平面图形的图片;学生:学具袋中的平面图形。
教学过程:
一、基础训练。
20以内退位减法的练习。(20题,学生独立在练习纸上完成,电脑计时2分钟。)
二、情景引入。
小朋友们,老师今天要领你们去图形王国参观学习,你们想去吗?
三、探究交流,获取新知。
1、引旧入新,初步感知长方形和正方形的特征。
(1)出示图形王国的向导,引出所学过的图形,学生认一认。
(2)先后出示长短不同的5条线段,让学生选其中的4条分别拼成一个长方形并说说选择它们的理由。
在学生说出理由的同时讲解“对边”的含义。
2、动手操作,具体感知长方形和正方形的特征
(1)设难:你如何证明长方形的对边一样长呢?
先让学生自由说说自己的方法,之后再让学生看书第27面例1中的对折方法,引导学生对折证明。
(2)老师小结并板书:长方形的对边相等。
(3)引导学生通过动手折叠证明正方形的四条边一样长。
(4)老师小结并板书:正方形的四条边都相等。
3、动手拼图,感知平面图形之间的关系。
(1)用两个同样的长方形拼一拼,你能拼成什么图形?
学生先动手拼,再分别展示学生的作品。
(2)教师提出要求:用四个大小相同的正方形你可以拼成什么图形呢。
先让学生动手拼,再分别展示学生的图形。
(3)用四个三角形可能拼出什么图形?
把拼法不同的图案展示出来,并加以表扬肯定。
4、课中操:《小手拍拍》
5、平面图形之间的相互转换。
(1)正方形转换成三角形。
(2)长方形转换成正方形。
(3)圆形转换成正方形。
四、应用知识,体验成功。
1、说出图中是用哪些图形拼出来的。
2、出示两个大小不同的长方形,问:它们能否拼成一个正方形呢?为什么?
3、生活中的拼图。
出示几组生活中的图案,让学生感受图形拼组的实用、美观,激发学习兴趣。
五、质疑问难
长方形和正方形有什么不同?
六、小结本课内容。
1、小朋友们,今天我们一起学习了什么内容?
2、谈一谈你的收获。
初二数学有关教案篇3
教学目标
1、理解用配方法解一元二次方程的基本步骤。
2、会用配方法解二次项系数为1的一元二次方程。
3、进一步体会化归的思想方法。
重点难点
重点:会用配方法解一元二次方程.
难点:使一元二次方程中含未知数的项在一个完全平方式里。
教学过程
(一)复习引入
1、用配方法解方程x2+x-1=0,学生练习后再完成课本P.13的“做一做”.
2、用配方法解二次项系数为1的一元二次方程的基本步骤是什么?
(二)创设情境
现在我们已经会用配方法解二次项系数为1的一元二次方程,而对于二次项系数不为1的一元二次方程能不能用配方法解?
怎样解这类方程:2x2-4x-6=0
(三)探究新知
让学生议一议解方程2x2-4x-6=0的方法,然后总结得出:对于二次项系数不为1的一元二次方程,可将方程两边同除以二次项的系数,把二次项系数化为1,然后按上一节课所学的方法来解。让学生进一步体会化归的思想。
(四)讲解例题
1、展示课本P.14例8,按课本方式讲解。
2、引导学生完成课本P.14例9的填空。
3、归纳用配方法解一元二次方程的基本步骤:首先将方程化为二次项系数是1的一般形式;其次加上一次项系数的一半的平方,再减去这个数,使得含未知数的项在一个完全平方式里;最后将配方后的一元二次方程用因式分解法或直接开平方法来解。
(五)应用新知
课本P.15,练习。
(六)课堂小结
1、用配方法解一元二次方程的基本步骤是什么?
2、配方法是一种重要的数学方法,它的重要性不仅仅表现在一元二次方程的解法中,在今后学习二次函数,高中学习二次曲线时都要经常用到。
3、配方法是解一元二次方程的通法,但是由于配方的过程要进行较繁琐的运算,在解一元二次方程时,实际运用较少。
4、按图1—l的框图小结前面所学解
一元二次方程的算法。
(七)思考与拓展
不解方程,只通过配方判定下列方程解的
情况。
(1)4x2+4x+1=0;(2)x2-2x-5=0;
(3)–x2+2x-5=0;
[解]把各方程分别配方得
(1)(x+)2=0;
(2)(x-1)2=6;
(3)(x-1)2=-4
由此可得方程(1)有两个相等的实数根,方程(2)有两个不相等的实数根,方程(3)没有实数根。
点评:通过解答这三个问题,使学生能灵活运用“配方法”,并强化学生对一元二次方程解的三种情况的认识。
初二数学有关教案篇4
教学目标
1、知道解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方程。
2、学会用因式分解法和直接开平方法解形如(ax+b)2-k=0(k≥0)的方程。
3、引导学生体会“降次”化归的思路。
重点难点
重点:掌握用因式分解法和直接开平方法解形如(ax+b)2-k=0(k≥0)的方程。
难点:通过分解因式或直接开平方将一元二次方程降次为一元一次方程。
教学过程
(一)复习引入
1、判断下列说法是否正确
(1)若p=1,q=1,则pq=l(),若pq=l,则p=1,q=1();
(2)若p=0,g=0,则pq=0(),若pq=0,则p=0或q=0();
(3)若x+3=0或x-6=0,则(x+3)(x-6)=0(),
若(x+3)(x-6)=0,则x+3=0或x-6=0();
(4)若x+3=或x-6=2,则(x+3)(x-6)=1(),
若(x+3)(x-6)=1,则x+3=或x-6=2()。
答案:(1)√,×。(2)√,√。(3)√,√。(4)√,×。
2、填空:若x2=a;则x叫a的,x=;若x2=4,则x=;
若x2=2,则x=。
答案:平方根,±,±2,±。
(二)创设情境
前面我们已经学了一元一次方程和二元一次方程组的解法,解二元一次方程组的基本思路是什么?(消元、化二元一次方程组为一元一次方程)。由解二元一次方程组的基本思路,你能想出解一元二次方程的基本思路吗?
引导学生思考得出结论:解一元二次方程的基本思路是“降次”化一元二次方程为一元一次方程。
给出1.1节问题一中的方程:(35-2x)2-900=0。
问:怎样将这个方程“降次”为一元一次方程?
(三)探究新知
让学生对上述问题展开讨论,教师再利用“复习引入”中的内容引导学生,按课本P.6那样,用因式分解法和直接开平方法,将方程(35-2x)2-900=0“降次”为两个一元一次方程来解。让学生知道什么叫因式分解法和直接开平方法。
(四)讲解例题
展示课本P.7例1,例2。
按课本方式引导学生用因式分解法和直接开平方法解一元二次方程。
引导同学们小结:对于形如(ax+b)2-k=0(k≥0)的方程,既可用因式分解法解,又可用直接开平方法解。
因式分解法的基本步骤是:把方程化成一边为0,另一边是两个一次因式的乘积(本节课主要是用平方差公式分解因式)的形式,然后使每一个一次因式等于0,分别解两个一元一次方程,得到的两个解就是原一元二次方程的解。
直接开平方法的步骤是:把方程变形成(ax+b)2=k(k≥0),然后直接开平方得ax+b=和ax+b=-,分别解这两个一元一次方程,得到的解就是原一元二次方程的解。
注意:(1)因式分解法适用于一边是0,另一边可分解成两个一次因式乘积的一元二次方程;
(2)直接开平方法适用于形如(ax+b)2=k(k≥0)的方程,由于负数没有平方根,所以规定k≥0,当k<0时,方程无实数解。
(五)应用新知
课本P.8,练习。
(六)课堂小结
1、解一元二次方程的基本思路是什么?
2、通过“降次”,把—元二次方程化为两个一元一次方程的方法有哪些?基本步骤是什么?
3、因式分解法和直接开平方法适用于解什么形式的一元二次方程?
(七)思考与拓展
不解方程,你能说出下列方程根的情况吗?
(1)-4x2+1=0;(2)x2+3=0;(3)(5-3x)2=0;(4)(2x+1)2+5=0。
答案:(1)有两个不相等的实数根;(2)和(4)没有实数根;(3)有两个相等的实数根
通过解答这个问题,使学生明确一元二次方程的解有三种情况。
布置作业
初二数学有关教案篇5
一、学习目标:让学生了解多项式公因式的意义,初步会用提公因式法分解因式
二、重点难点
重点:能观察出多项式的公因式,并根据分配律把公因式提出来
难点:让学生识别多项式的公因式.
三、合作学习:
公因式与提公因式法分解因式的概念.
三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c)
既ma+mb+mc=m(a+b+c)
由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。
四、精讲精练
例1、将下列各式分解因式:
(1)3x+6;(2)7x2-21x;(3)8a3b2-12ab3c+abc(4)-24x3-12x2+28x.
例2把下列各式分解因式:
(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.
(3)a(x-3)+2b(x-3)
通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.
首先找各项系数的____________________,如8和12的公约数是4.
其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的.
课堂练习
1.写出下列多项式各项的公因式.
(1)ma+mb2)4kx-8ky(3)5y3+20y2(4)a2b-2ab2+ab
2.把下列各式分解因式
(1)8x-72(2)a2b-5ab
(3)4m3-6m2(4)a2b-5ab+9b
(5)(p-q)2+(q-p)3(6)3m(x-y)-2(y-x)2
五、小结:
总结出找公因式的一般步骤.:
首先找各项系数的大公约数,
其次找各项中含有的相同的字母,相同字母的指数取次数最小的.
注意:(a-b)2=(b-a)2
六、作业1、教科书习题
2、已知2x-y=1/3,xy=2,求2x4y3-x3y43、(-2)20__+(-2)20__
4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3
初二数学有关教案篇6
一、学生学情分析
学生的技能基础:学生通过对本章前几节课的学习,已经学习了整式的概念、整式的加减、幂的运算、整式的乘法、平方差公式,这些基础知识的学习为本节课的学习奠定了基础.
学生活动经验基础:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识的学习过程中,学生经历了很多探究学习的过程,具有了一定的独立探究意识以及与同伴合作交流的能力.
二、教学目标
知识与技能:
(1)让学生会推导完全平方公式,并能进行简单的应用.
(2)了解完全平方公式的几何背景.
数学能力:
(1)由学生经历探索完全平方公式的过程,进一步发展学生的符号感与推理能力.
(2)发展学生的数形结合的数学思想.
情感与态度:
将学生头脑中的前概念暴露出来进行分析,避免形成教学上的“相异构想”.
三、教学重难点
教学重点:1、完全平方公式的推导;
2、完全平方公式的应用;
教学难点:1、消除学生头脑中的前概念,避免形成“相异构想”;
2、完全平方公式结构的认知及正确应用.
四、教学设计分析
本节课设计了十一个教学环节:学生练习、暴露问题——验证——推广到一般情况,形成公式——数形结合——进一步拓广——总结口诀——公式应用——学生反馈——学生PK——学生反思——巩固练习.
第一环节:学生练习、暴露问题
活动内容:计算:(a+2)2
设想学生的做法有以下几种可能:
①(a+2)2=a2+22
②(a+2)2=a2+2a+22
③正确做法;
针对这几种结果都将a=1代入计算,得出①②都是错误的,但③的做法是否一定正确呢?怎么验证?
活动目的:在很多学生的头脑中,认为两数和的完全平方与两数的平方和等同,即:
(a+2)2=a2+22,如果不将这种定式思维,就很难建立起一个正确的概念;这一环节的目的就是让学生的这种错误或其它错误充分暴露出来,并让学生充分认识到自己原有的定式思维是错误的,为下一步构建新的思维模式埋下伏笔.
第二环节:验证(a+2)2=a2–4a+22
活动内容:(a+2)2=(a+2)•(a+2)=a2+2a+2a+22
活动目的:在前一环节已经打破了学生的原有的思维定式的基础上,给学生建立正确的思维方法,避免形成“相异构想”.
第三环节:推广到一般情况,形成公式
活动内容:(a+b)2=(a+b)(a+b)=a2+ab+ab+b2=a2+2ab+b2
活动目的:让学生经历从特殊到一般的探究过程,体验到发现的快乐.
第四环节:数形结合
活动内容:设问:在多项式的乘法中,很多公式都都可以用几何图形进行解释,那么完全平方公式怎样用几何图形解释呢?
展示动画,用几何图形诠释完全平方公式的几何意义.
学生思考:还有没有其它的方法来诠释完全平方公式?(课后思考)
活动目的:让学生进一步认识到数与形都不是孤立存在的,数与形是可以有机地结合在一起,从而发展学生的数形结合的数学思想.
第五环节:进一步拓广
活动内容:推导两数差的完全平方公式:(a–b)2=a2–2ab+b2
方法1:(a–b)2=(a–b)(a–b)=a2–ab–ab+b2=a2–2ab+b2
方法2:(a–b)2=[a+(–b)]2=a2+2a(–b)+(–b)2=a2–2ab+b2
活动目的:让学生经历由两数和的完全平方公式拓广到两数差的完全平方公式的过程,体会到符号差异带来的结果差异,由第二种推导方法体会到两数差的完全平方公式是两数和的完全平方公式的应用.
第六环节:总结口诀、认识特征
活动内容:比较两个公式的共同点与不同点:(a+b)2=a2+2ab+b2
(a–b)2=a2–2ab+b2
特征:①左边都是一个二项式的完全平方,两者仅有一个符号不同;右边都是二次三项式,其中第一、三项是公式左边二项式中每一项的平方,中间一项是左边二项式中两项乘积的两倍,两者也仅一个符号不同;
②公式中的a、b可以是任意一个代数式(数、字母、单项式、多项式)
口诀:首平方,尾平方,首尾相乘的两倍在中央.
活动目的:认识完全平方公式的特征,总结出完全平方公式的口诀,便于学生理解与记忆,避免学生在应用该公式中出现错误.
第七环节:公式应用
活动内容:例:计算:①(2x–3)2;②(4x+)2
解:①(2x–3)2=(2x)2–2•(2x)•3+32=4x2–12x+9
②(4x+)2=(4x)2+2•••••(4x)()+()2=16x2+2xy+
活动目的:在前几个环节中,学生对完全平方公式已经有了感性认识,通过本环节的讲解以及下一环节的练习,使学生逐步经历认识——模仿——再认识.从而上升到理性认识的阶段.
第八环节:随堂练习
活动内容:计算:①;②;③(n+1)2–n2
活动目的:通过学生的反馈练习,使教师能全面了解学生对完全平方公式的理解是否到位,完全平方公式的应用是否得当,以便教师能及时地进行查缺补漏.
第九环节:学生PK
活动内容:每个学生各出五道完全平方公式的计算题给自己的同桌解答,比一比谁的准确性率高,速度快.
活动目的:活跃课堂气氛,激起学生的好胜心,进一步巩固学生对完全平方公式的理解与应用.
第十环节:学生反思
活动内容:通过今天这堂课的学习,你有哪些收获?
收获1:认识了完全平方公式,并能简单应用;
收获2:了解了两数和与两数差的完全平方公式之间的差异;
收获3:感受到数形结合的数学思想在数学中的作用.
活动目的:通过对一堂课的归纳与总结,巩固学生对完全平方公式的认识,体会数学思想的精妙.
第十一环节:布置作业:
课本P43习题1.13
初二数学有关教案篇7
一、读一读学习目标:1、熟练证明的基本步骤和书写格式;
2、会根据“同位角相等,两直线平行”(公理)证明“同旁内角互补,两直线平行”“内错角相等,两直线平行”(定理),并能应用这些结论。
二、试一试
自学指导:平行线判定公理:同位角相等,两直线平行
1、自学教材P229-231,学完后合上课本完成下列各题:
(1)已知:如右图所示,∠1和∠2是直线a,b被直线c截出的同旁内角,且∠1和∠2互补。利用平行线判定公理证明a∥b
由此得,平行线判定定理1:;
(2)已知:如右图所示,∠1和∠2是直线a,b被直线c截出的内错角,且∠1=∠2利用平行线判定公理或上述已证明的判定定理证明a∥b
由此得,平行线判定定理2:.
三、练一练
1、在教材上完成P231随堂练习1;P232知识技能1;P233问题解决
2、已知:如右图所示,直线a,b被直线c所截,且∠1+∠2=180°
求证:a∥b你有几种证明方法?请选择其中两种方法来证明
五、记一记:证明命题的一般步骤:
(1)根据题意画出图形(若已给出图形,则可省略)
(2)根据题设和结论,结合图形,写出已知和求证;
(3)经过分析,找出已知退出求证的途径,写出证明过程;
(4)检查证明过程是否正确完善。