教育巴巴 > 教案模板 > 优秀教案 >

高中数学教案有哪些

时间: 新华 优秀教案

高中数学教案有哪些篇1

排列问题的应用题是学生学习的难点,也是高考的必考内容,笔者在教学中尝试将排列问题归纳为三种类型来解决:

下面就每一种题型结合例题总结其特点和解法,并附以近年的高考原题供读者参研.

一.能排不能排排列问题(即特殊元素在特殊位置上有特别要求的排列问题)

解决此类问题的关键是特殊元素或特殊位置优先.或使用间接法.

例1.(1)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?

(2)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?

(3)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?

(4)7位同学站成一排,其中甲不能在排头、乙不能站排尾的排法共有多少种?

解析:(1)先考虑甲站在中间有1种方法,再在余下的6个位置排另外6位同学,共种方法;

(2)先考虑甲、乙站在两端的排法有种,再在余下的5个位置排另外5位同学的排法有种,共种方法;

(3)先考虑在除两端外的5个位置选2个安排甲、乙有种,再在余下的5个位置排另外5位同学排法有种,共种方法;本题也可考虑特殊位置优先,即两端的排法有,中间5个位置有种,共种方法;

(4)分两类乙站在排头和乙不站在排头,乙站在排头的排法共有种,乙不站在排头的排法总数为:先在除甲、乙外的5人中选1人安排在排头的方法有种,中间5个位置选1个安排乙的方法有,再在余下的5个位置排另外5位同学的排法有,故共有种方法;本题也可考虑间接法,总排法为,不符合条件的甲在排头和乙站排尾的排法均为,但这两种情况均包含了甲在排头和乙站排尾的情况,故共有种.

例2.某天课表共六节课,要排政治、语文、数学、物理、化学、体育共六门课程,如果第一节不排体育,最后一节不排数学,共有多少种不同的排课方法?

解法1:对特殊元素数学和体育进行分类解决

(1)数学、体育均不排在第一节和第六节,有种,其他有种,共有种;

(2)数学排在第一节、体育排在第六节有一种,其他有种,共有种;

(3)数学排在第一节、体育不在第六节有种,其他有种,共有种;

(4)数学不排在第一节、体育排在第六节有种,其他有种,共有种;

所以符合条件的排法共有种

解法2:对特殊位置第一节和第六节进行分类解决

(1)第一节和第六节均不排数学、体育有种,其他有种,共有种;

(2)第一节排数学、第六节排体育有一种,其他有种,共有种;

(3)第一节排数学、第六节不排体育有种,其他有种,共有种;

(4)第一节不排数学、第六节排体育有种,其他有种,共有种;

所以符合条件的排法共有种.

解法3:本题也可采用间接排除法解决

不考虑任何限制条件共有种排法,不符合题目要求的排法有:(1)数学排在第六节有种;(2)体育排在第一节有种;考虑到这两种情况均包含了数学排在第六节和体育排在第一节的情况种所以符合条件的排法共有种

附:1、(20__北京卷)五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有()

(A)种(B)种(C)种(D)种

解析:本题在解答时将五个不同的子项目理解为5个位置,五个工程队相当于5个不同的元素,这时问题可归结为能排不能排排列问题(即特殊元素在特殊位置上有特别要求的排列问题),先排甲工程队有,其它4个元素在4个位置上的排法为种,总方案为种.故选(B).

2、(20__全国卷Ⅱ)在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有个.

解析:本题在解答时只须考虑个位和千位这两个特殊位置的限制,个位为1、2、3、4中的某一个有4种方法,千位在余下的4个非0数中选择也有4种方法,十位和百位方法数为种,故方法总数为种.

3、(20__福建卷)从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有()

A.300种B.240种C.144种D.96种

解析:本题在解答时只须考虑巴黎这个特殊位置的要求有4种方法,其他3个城市的排法看作标有这3个城市的3个签在5个位置(5个人)中的排列有种,故方法总数为种.故选(B).

上述问题归结为能排不能排排列问题,从特殊元素和特殊位置入手解决,抓住了问题的本质,使问题清晰明了,解决起来顺畅自然.

二.相邻不相邻排列问题(即某两或某些元素不能相邻的排列问题)

相邻排列问题一般采用大元素法,即将相邻的元素捆绑作为一个元素,再与其他元素进行排列,解答时注意释放大元素,也叫捆绑法.不相邻排列问题(即某两或某些元素不能相邻的排列问题)一般采用插空法.

例3.7位同学站成一排,

(1)甲、乙和丙三同学必须相邻的排法共有多少种?

(2)甲、乙和丙三名同学都不能相邻的排法共有多少种?

(3)甲、乙两同学间恰好间隔2人的排法共有多少种?

解析:(1)第一步、将甲、乙和丙三人捆绑成一个大元素与另外4人的排列为种,

第二步、释放大元素,即甲、乙和丙在捆绑成的大元素内的排法有种,所以共种;

(2)第一步、先排除甲、乙和丙之外4人共种方法,第二步、甲、乙和丙三人排在4人排好后产生的5个空挡中的任何3个都符合要求,排法有种,所以共有种;(3)先排甲、乙,有种排法,甲、乙两人中间插入的2人是从其余5人中选,有种排法,将已经排好的4人当作一个大元素作为新人参加下一轮4人组的排列,有种排法,所以总的排法共有种.

附:1、(20__辽宁卷)用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1和2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有个.(用数字作答)

解析:第一步、将1和2捆绑成一个大元素,3和4捆绑成一个大元素,5和6捆绑成一个大元素,第二步、排列这三个大元素,第三步、在这三个大元素排好后产生的4个空挡中的任何2个排列7和8,第四步、释放每个大元素(即大元素内的每个小元素在捆绑成的大元素内部排列),所以共有个数.

2、(20__.重庆理)某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,

二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰

好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为()

A.B.C.D.

解析:符合要求的基本事件(排法)共有:第一步、将一班的3位同学捆绑成一个大元素,第二步、这个大元素与其它班的5位同学共6个元素的全排列,第三步、在这个大元素与其它班的5位同学共6个元素的全排列排好后产生的7个空挡中排列二班的2位同学,第四步、释放一班的3位同学捆绑成的大元素,所以共有个;而基本事件总数为个,所以符合条件的概率为.故选(B).

3、(20__京春理)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为()

A.42B.30C.20D.12

解析:分两类:增加的两个新节目不相邻和相邻,两个新节目不相邻采用插空法,在5个节目产生的6个空挡排列共有种,将两个新节目捆绑作为一个元素叉入5个节目产生的6个空挡中的一个位置,再释放两个新节目捆绑成的大元素,共有种,再将两类方法数相加得42种方法.故选(A).

三.机会均等排列问题(即某两或某些元素按特定的方式或顺序排列的排列问题)

解决机会均等排列问题通常是先对所有元素进行全排列,再借助等可能转化,即乘以符合要求的某两(或某些)元素按特定的方式或顺序排列的排法占它们(某两(或某些)元素)全排列的比例,称为等机率法或将特定顺序的排列问题理解为组合问题加以解决.

例4、7位同学站成一排.

(1)甲必须站在乙的左边?

(2)甲、乙和丙三个同学由左到右排列?

解析:(1)7位同学站成一排总的排法共种,包括甲、乙在内的7位同学排队只有甲站在乙的左边和甲站在乙的右边两类,它们的机会是均等的,故满足要求的排法为,本题也可将特定顺序的排列问题理解为组合问题加以解决,即先在7个位置中选出2个位置安排甲、乙,由于甲在乙的左边共有种,再将其余5人在余下的5个位置排列有种,得排法数为种;

(2)参见(1)的分析得(或).

高中数学教案有哪些篇2

直线的方程

教学目标

(1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程.

(2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程.

(3)掌握直线方程各种形式之间的互化.

(4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力.

(5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点.

(6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法.

教学建议

1.教材分析

(1)知识结构

由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式.

(2)重点、难点分析

①本节的重点是直线方程的点斜式、两点式、一般式,以及根据具体条件求出直线的方程.

解析几何有两项根本性的任务:一个是求曲线的方程;另一个就是用方程研究曲线.本节内容就是求直线的方程,因此是非常重要的内容,它对以后学习用方程讨论直线起着直接的作用,同时也对曲线方程的学习起着重要的作用.

直线的点斜式方程是平面解析几何中所求出的第一个方程,是后面几种特殊形式的源头.学生对点斜式学习的效果将直接影响后继知识的学习.

②本节的难点是直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程的关系证明.

2.教法建议

(1)教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显.教学中各部分知识之间过渡要自然流畅,不生硬.

(2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习“曲线方程”打下基础.

直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证.教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点

(3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解.

(4)教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件.两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率.因此,直线方程的两点式和点斜式在直线方程的几种形式中占有很重要的地位,而已知两点可以求得斜率,所以点斜式又可推出两点式(斜截式和截距式仅是它们的特例),因此点斜式最重要.教学中应突出点斜式、两点式和一般式三个教学高潮.

求直线方程需要两个独立的条件,要依不同的几何条件选用不同形式的方程.根据两个条件运用待定系数法和方程思想求直线方程.

(5)注意正确理解截距的概念,截距不是距离,截距是直线(也是曲线)与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数(或非负实数).

(6)本节中有不少与函数、不等式、三角函数有关的问题,是函数、不等式、三角与直线的重要知识交汇点之一,教学中要适当选择一些有关的问题指导学生练习,培养学生的综合能力.

(7)直线方程的理论在其他学科和生产生活实际中有大量的应用.教学中注意联系实际和其它学科,教师要注意引导,增强学生用数学的意识和能力.

(8)本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能更好地掌握,而不是仅停留在观念上.

高中数学教案有哪些篇3

【高考要求】:三角函数的有关概念(B).

【教学目标】:理解任意角的概念;理解终边相同的角的意义;了解弧度的意义,并能进行弧度与角度的互化.

理解任意角三角函数(正弦、余弦、正切)的定义;初步了解有向线段的概念,会利用单位圆中的三角函数线表示任意角的正弦、余弦、正切.

【教学重难点】:终边相同的角的意义和任意角三角函数(正弦、余弦、正切)的定义.

【知识复习与自学质疑】

一、问题.

1、角的概念是什么?角按旋转方向分为哪几类?

2、在平面直角坐标系内角分为哪几类?与终边相同的角怎么表示?

3、什么是弧度和弧度制?弧度和角度怎么换算?弧度和实数有什么样的关系?

4、弧度制下圆的弧长公式和扇形的面积公式是什么?

5、任意角的三角函数的定义是什么?在各象限的符号怎么确定?

6、你能在单位圆中画出正弦、余弦和正切线吗?

7、同角三角函数有哪些基本关系式?

二、练习.

1.给出下列命题:

(1)小于的角是锐角;(2)若是第一象限的角,则必为第一象限的角;

(3)第三象限的角必大于第二象限的角;(4)第二象限的角是钝角;

(5)相等的角必是终边相同的角;终边相同的角不一定相等;

(6)角2与角的终边不可能相同;

(7)若角与角有相同的终边,则角(的终边必在轴的非负半轴上。其中正确的命题的序号是

2.设P点是角终边上一点,且满足则的值是

3.一个扇形弧AOB的面积是1,它的周长为4,则该扇形的中心角=弦AB长=

4.若则角的终边在象限。

5.在直角坐标系中,若角与角的终边互为反向延长线,则角与角之间的关系是

6.若是第三象限的角,则-,的终边落在何处?

【交流展示、互动探究与精讲点拨】

例1.如图,分别是角的终边.

(1)求终边落在阴影部分(含边界)的所有角的集合;

(2)求终边落在阴影部分、且在上所有角的集合;

(3)求始边在OM位置,终边在ON位置的所有角的集合.

例2.(1)已知角的终边在直线上,求的值;

(2)已知角的终边上有一点A,求的值。

例3.若,则在第象限.

例4.若一扇形的周长为20,则当扇形的圆心角等于多少弧度时,这个扇形的面积最大?最大面积是多少?

【矫正反馈】

1、若锐角的终边上一点的坐标为,则角的弧度数为.

2、若,又是第二,第三象限角,则的取值范围是.

3、一个半径为的扇形,如果它的周长等于弧所在半圆的弧长,那么该扇形的圆心角度数是弧度或角度,该扇形的面积是.

4、已知点P在第三象限,则角终边在第象限.

5、设角的终边过点P,则的值为.

6、已知角的终边上一点P且,求和的值.

【迁移应用】

1、经过3小时35分钟,分针转过的角的弧度是.时针转过的角的弧度数是.

2、若点P在第一象限,则在内的取值范围是.

3、若点P从(1,0)出发,沿单位圆逆时针方向运动弧长到达Q点,则Q点坐标为.

4、如果为小于360的正角,且角的7倍数的角的终边与这个角的终边重合,求角的值.

高中数学教案有哪些篇4

课题:

等比数列的概念

教学目标

1、通过教学使学生理解等比数列的概念,推导并掌握通项公式、

2、使学生进一步体会类比、归纳的思想,培养学生的观察、概括能力、

3、培养学生勤于思考,实事求是的精神,及严谨的科学态度、

教学重点,难点

重点、难点是等比数列的定义的归纳及通项公式的推导、

教学用具

投影仪,多媒体软件,电脑、

教学方法

讨论、谈话法、

教学过程

一、提出问题

给出以下几组数列,将它们分类,说出分类标准、(幻灯片)

①—2,1,4,7,10,13,16,19,…

②8,16,32,64,128,256,…

③1,1,1,1,1,1,1,…

④243,81,27,9,3,1,,,…

⑤31,29,27,25,23,21,19,…

⑥1,—1,1,—1,1,—1,1,—1,…

⑦1,—10,100,—1000,10000,—100000,…

⑧0,0,0,0,0,0,0,…

由学生发表意见(可能按项与项之间的关系分为递增数列、递减数列、常数数列、摆动数列,也可能分为等差、等比两类),统一一种分法,其中②③④⑥⑦为有共同性质的一类数列(学生看不出③的情况也无妨,得出定义后再考察③是否为等比数列)、

二、讲解新课

请学生说出数列②③④⑥⑦的共同特性,教师指出实际生活中也有许多类似的例子,如变形虫分裂问题、假设每经过一个单位时间每个变形虫都分裂为两个变形虫,再假设开始有一个变形虫,经过一个单位时间它分裂为两个变形虫,经过两个单位时间就有了四个变形虫,…,一直进行下去,记录下每个单位时间的变形虫个数得到了一列数

这个数列也具有前面的几个数列的共同特性,这是我们将要研究的另一类数列——等比数列、(这里播放变形虫分裂的多媒体软件的第一步)

等比数列(板书)

1、等比数列的定义(板书)

根据等比数列与等差数列的名字的区别与联系,尝试给等比数列下定义、学生一般回答可能不够完美,多数情况下,有了等差数列的基础是可以由学生概括出来的教师写出等比数列的定义,标注出重点词语、

请学生指出等比数列②③④⑥⑦各自的公比,并思考有无数列既是等差数列又是等比数列、学生通过观察可以发现③是这样的数列,教师再追问,还有没有其他的例子,让学生再举两例、而后请学生概括这类数列的一般形式,学生可能说形如的数列都满足既是等差又是等比数列,让学生讨论后得出结论:当时,数列既是等差又是等比数列,当时,它只是等差数列,而不是等比数列、教师追问理由,引出对等比数列的认识:

2、对定义的认识(板书)

(1)等比数列的首项不为0;

(2)等比数列的每一项都不为0,即

问题:一个数列各项均不为0是这个数列为等比数列的什么条件?

(3)公比不为0、

用数学式子表示等比数列的定义、

是等比数列

①、在这个式子的写法上可能会有一些争议,如写成

,可让学生研究行不行,好不好;接下来再问,能否改写为

是等比数列?为什么不能?式子给出了数列第项与第

项的数量关系,但能否确定一个等比数列?(不能)确定一个等比数列需要几个条件?当给定了首项及公比后,如何求任意一项的值?所以要研究通项公式、

3、等比数列的通项公式(板书)

问题:用和表示第项

①不完全归纳法

②叠乘法,…,,这个式子相乘得,所以(板书)

(1)等比数列的通项公式得出通项公式后,让学生思考如何认识通项公式、(板书)

(2)对公式的认识

由学生来说,最后归结:

①函数观点;

②方程思想(因在等差数列中已有认识,此处再复习巩固而已)、

这里强调方程思想解决问题、方程中有四个量,知三求一,这是公式最简单的应用,请学生举例(应能编出四类问题)、解题格式是什么?(不仅要会解题,还要注意规范表述的训练)

如果增加一个条件,就多知道了一个量,这是公式的更高层次的应用,下节课再研究、同学可以试着编几道题。

三、小结

1、本节课研究了等比数列的概念,得到了通项公式;

2、注意在研究内容与方法上要与等差数列相类比;

3、用方程的思想认识通项公式,并加以应用。

探究活动

将一张很大的薄纸对折,对折30次后(如果可能的话)有多厚?不妨假设这张纸的厚度为0、01毫米。

参考答案:

30次后,厚度为,这个厚度超过了世界最高的山峰——珠穆朗玛峰的高度。如果纸再薄一些,比如纸厚0、001毫米,对折34次就超过珠穆朗玛峰的高度了、还记得国王的承诺吗?第31个格子中的米已经是1073741824粒了,后边的格子中的米就更多了,最后一个格子中的米应是粒,用计算器算一下吧(对数算也行)。

高中数学教案有哪些篇5

教学目标:

1、理解流程图的选择结构这种基本逻辑结构。

2、能识别和理解简单的框图的功能。

3、能运用三种基本逻辑结构设计流程图以解决简单的问题。

教学方法:

1、通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知。

2、在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构。

教学过程:

一、问题情境

情境:

某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为

其中(单位:)为行李的重量。

试给出计算费用(单位:元)的一个算法,并画出流程图。

二、学生活动

学生讨论,教师引导学生进行表达。

解算法为:

输入行李的重量;

如果,那么,

否则;

输出行李的重量和运费。

上述算法可以用流程图表示为:

教师边讲解边画出第10页图1-2-6。

在上述计费过程中,第二步进行了判断。

三、建构数学

1、选择结构的概念:

先根据条件作出判断,再决定执行哪一种操作的结构称为选择结构。

如图:虚线框内是一个选择结构,它包含一个判断框,当条件成立(或称条件为“真”)时执行,否则执行。

2、说明:

(1)有些问题需要按给定的条件进行分析、比较和判断,并按判断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;

(2)选择结构也称为分支结构或选取结构,它要先根据指定的条件进行判断,再由判断的结果决定执行两条分支路径中的某一条;

(3)在上图的选择结构中,只能执行和之一,不可能既执行,又执行,但或两个框中可以有一个是空的,即不执行任何操作;

(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和两个退出点。

3、思考:教材第7页图所示的算法中,哪一步进行了判断?

高中数学教案有哪些篇6

一:说教材

平面向量的数量积是两向量之间的乘法,而平面向量的坐标表示把向量之间的运算转化为数之间的运算。本节内容是在平面向量的坐标表示以及平面向量的数量积及其运算律的基础上,介绍了平面向量数量积的坐标表示,平面两点间的距离公式,和向量垂直的坐标表示的充要条件。为解决直线垂直问题,三角形边角的有关问题提供了很好的办法。本节内容也是全章重要内容之一。

二:说学习目标和要求

通过本节的学习,要让学生掌握

(1):平面向量数量积的坐标表示。

(2):平面两点间的距离公式。

(3):向量垂直的坐标表示的充要条件。

以及它们的一些简单应用,以上三点也是本节课的重点,本节课的难点是向量垂直的坐标表示的充要条件以及它的灵活应用。

三:说教法

在教学过程中,我主要采用了以下几种教学方法:

(1)启发式教学法

因为本节课重点的坐标表示公式的推导相对比较容易,所以这节课我准备让学生自行推导出两个向量数量积的坐标表示公式,然后引导学生发现几个重要的结论:如模的计算公式,平面两点间的距离公式,向量垂直的坐标表示的充要条件。

(2)讲解式教学法

主要是讲清概念,解除学生在概念理解上的疑惑感;例题讲解时,演示解题过程!

主要辅助教学的手段(powerpoint)

(3)讨论式教学法

主要是通过学生之间的相互交流来加深对较难问题的理解,提高学生的自学能力和发现、分析、解决问题以及创新能力。

四:说学法

学生是课堂的主体,一切教学活动都要围绕学生展开,借以诱发学生的学习兴趣,增强课堂上和学生的交流,从而达到及时发现问题,解决问题的目的。通过精讲多练,充分调动学生自主学习的积极性。如让学生自己动手推导两个向量数量积的坐标公式,引导学生推导4个重要的结论!并在具体的问题中,让学生建立方程的思想,更好的解决问题!

五:说教学过程

这节课我准备这样进行:

首先提出问题:要算出两个非零向量的数量积,我们需要知道哪些量?

继续提出问题:假如知道两个非零向量的坐标,是不是可以用这两个向量的坐标来表示这两个向量的数量积呢?

引导学生自己推导平面向量数量积的坐标表示公式,在此公式基础上还可以引导学生得到以下几个重要结论:

(1) 模的计算公式

(2)平面两点间的距离公式。

(3)两向量夹角的余弦的坐标表示

(4)两个向量垂直的标表示的充要条件

第二部分是例题讲解,通过例题讲解,使学生更加熟悉公式并会加以应用。

例题1是书上122页例1,此题是直接用平面向量数量积的坐标公式的题,目的是让学生熟悉这个公式,并在此题基础上,求这两个向量的夹角?目的是让学生熟悉两向量夹角的余弦的坐标表示公式例题2是直接证明直线垂直的题,虽然比较简单,但体现了一种重要的证明方法,这种方法要让学生掌握,其实这一例题也是两个向量垂直坐标表示的充要条件的一个应用:即两个向量的数量积是否为零是判断相应的两条直线是否垂直的重要方法之一。

例题3是在例2的基础上稍微作了一下改变,目的是让学生会应用公式来解决问题,并让学生在这要有建立方程的思想。

再配以练习,让学生能熟练的应用公式,掌握今天所学内容。

高中数学教案有哪些篇7

教学目标

1。 理解的定义,初步掌握的图象,性质及其简单应用。

2。 通过的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法。

3。 通过对的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣。

教学重点和难点

重点是理解的定义,把握图象和性质。

难点是认识底数对函数值影响的认识。

教学用具

投影仪

教学方法

启发讨论研究式

教学过程

一。 引入新课

我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数———————。

1。6。(板书)

这类函数之所以重点介绍的原因就是它是实际生活中的一种需要。比如我们看下面的问题:

问题1:某种细胞_时,由1个_成2个,2个_成4个,……一个这样的细胞_ 次后,得到的细胞_的个数 与 之间,构成一个函数关系,能写出 与 之间的函数关系式吗?

由学生回答: 与 之间的关系式,可以表示为 。

问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了 次后绳子剩余的长度为 米,试写出 与 之间的函数关系。

由学生回答: 。

在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量 均在指数的位置上,那么就把形如这样的函数称为。

一。 的概念(板书)

1。定义:形如 的函数称为。(板书)

教师在给出定义之后再对定义作几点说明。

2。几点说明 (板书)

(1) 关于对 的规定:

教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若 会有什么问题?如 ,此时 , 等在实数范围内相应的函数值不存在。

若 对于 都无意义,若 则 无论 取何值,它总是1,对它没有研究的必要。为了避免上述各种情况的发生,所以规定 且 。

(2)关于的定义域 (板书)

教师引导学生回顾指数范围,发现指数可以取有理数。此时教师可指出,其实当指数为无理数时, 也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以的定义域为 。扩充的另一个原因是因为使她它更具代表更有应用价值。

(3)关于是否是的判断(板书)

刚才分别认识了中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是,请看下面函数是否是。

(1) , (2) , (3)

(4) , (5) 。

学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是,其中(3) 可以写成 ,也是指数图象。

最后提醒学生的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质。

3。归纳性质

作图的用什么方法。用列表描点发现,教师准备明确性质,再由学生回答。

函数

1。定义域 :

2。值域:

3。奇偶性 :既不是奇函数也不是偶函数

4。截距:在 轴上没有,在 轴上为1。

对于性质1和2可以两条合在一起说,并追问起什么作用。(确定图象存在的大致位置)对第3条还应会证明。对于单调性,我建议找一些特殊点。,先看一看,再下定论。对最后一条也是指导函数图象画图的依据。(图象位于 轴上方,且与 轴不相交。)

在此基础上,教师可指导学生列表,描点了。取点时还要提醒学生由于不具备对称性,故 的值应有正有负,且由于单调性不清,所取点的个数不能太少。

此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据。连点成线时,一定提醒学生图象的变化趋势(当 越小,图象越靠近 轴, 越大,图象上升的越快),并连出光滑曲线。

二。图象与性质(板书)

1。图象的画法:性质指导下的列表描点法。

2。草图:

当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且 ,取值可分为两段)让学生明白需再画第二个,不妨取 为例。

此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是的方法,而图象变换的方法更为简单。即 = 与 图象之间关于 轴对称,而此时 的图象已经有了,具备了变换的条件。让学生自己做对称,教师借助计算机画图,在同一坐标系下得到 的图象。

最后问学生是否需要再画。(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如 的图象一起比较,再找共性)

由于图象是形的特征,所以先从几何角度看它们有什么特征。教师可列一个表,如下:

以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满。

填好后,让学生仿照此例再列一个 的表,将相应的内容填好。为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质。

3。性质。

(1)无论 为何值, 都有定义域为 ,值域为 ,都过点 。

(2) 时, 在定义域内为增函数, 时, 为减函数。

(3) 时, , 时, 。

总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质。

三。简单应用 (板书)

1。利用单调性比大小。 (板书)

一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题。首先我们来看下面的问题。

例1。 比较下列各组数的大小

(1) 与 ; (2) 与 ;

(3) 与1 。(板书)

首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同。再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小。然后以第(1)题为例,给出解答过程。

解: 在 上是增函数,且< 。(板书)

教师最后再强调过程必须写清三句话:

(1) 构造函数并指明函数的单调区间及相应的单调性。

(2) 自变量的大小比较。

(3) 函数值的大小比较。

后两个题的过程略。要求学生仿照第(1)题叙述过程。

例2。比较下列各组数的大小

(1) 与 ; (2) 与 ;

(3) 与 。(板书)

先让学生观察例2中各组数与例1中的区别,再思考解决的方法。引导学生发现对(1)来说 可以写成 ,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说 可以写成 ,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决。(教师可提示学生的函数值与1有关,可以用1来起桥梁作用)

最后由学生说出 >1,<1,>。

解决后由教师小结比较大小的方法

(1) 构造函数的方法: 数的特征是同底不同指(包括可转化为同底的)

(2) 搭桥比较法: 用特殊的数1或0。

三。巩固练习

练习:比较下列各组数的大小(板书)

(1) 与 (2) 与 ;

(3) 与 ; (4) 与 。解答过程略

四。小结

1。的概念

2。的图象和性质

3。简单应用

五 。板书设计

高中数学教案有哪些篇8

教学目标

(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;

(2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;

(3)掌握排列数公式,并能根据具体的问题,写出符合要求的排列数;

(4)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;

(5)通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的学习态度。

教学建议

一、知识结构

二、重点难点分析

本小节的重点是排列的定义、排列数及排列数的公式,并运用这个公式去解决有关排列数的应用问题.难点是导出排列数的公式和解有关排列的应用题.突破重点、难点的关键是对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中.

从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,称为从n个不同元素中任取m个元素的一个排列.因此,两个相同排列,当且仅当他们的元素完全相同,并且元素的排列顺序也完全相同.排列数是指从n个不同元素中任取m(m≤n)个元素的所有不同排列的种数,只要弄清相同排列、不同排列,才有可能计算相应的排列数.排列与排列数是两个概念,前者是具有m个元素的排列,后者是这种排列的不同种数.从集合的角度看,从n个元素的有限集中取出m个组成的有序集,相当于一个排列,而这种有序集的个数,就是相应的排列数.

公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.要重点分析好 的推导.

排列的应用题是本节教材的难点,通过本节例题的分析,应注意培养学生解决应用问题的能力.

在分析应用题的解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用.

在教学排列应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求.

三、教法建议

①在讲解排列数的概念时,要注意区分“排列数”与“一个排列”这两个概念.一个排列是指“从n个不同元素中,任取出m个元素,按照一定的顺序摆成一排”,它不是一个数,而是具体的一件事;排列数是指“从n个不同元素中取出m个元素的所有排列的个数”,它是一个数.例如,从3个元素a,b,c中每次取出2个元素,按照一定的顺序排成一排,有如下几种:

ab,ac,ba,bc,ca,cb,

其中每一种都叫一个排列,共有6种,而数字6就是排列数,符号 表示排列数.

②排列的定义中包含两个基本内容,一是“取出元素”,二是“按一定顺序排列”.

从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素完全不同,或元素部分相同或元素完全相同而顺序不同的排列,都不是同一排列。叫不同排列.

在定义中“一定顺序”就是说与位置有关,在实际问题中,要由具体问题的性质和条件来决定,这一点要特别注意,这也是与后面学习的组合的根本区别.

在排列的定义中 ,如果 有的书上叫选排列,如果 ,此时叫全排列.

要特别注意,不加特殊说明,本章不研究重复排列问题.

③关于排列数公式的推导的教学.公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解.课本上用的是不完全归纳法,先推导 , ,…,再推广到 ,这样由特殊到一般,由具体到抽象的讲法,学生是不难理解的.

导出公式 后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“n”、“m”比较复杂的时候把公式写错.这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是n,后面每个因数都比它前面一个因数少1,最后一个因数是 ,共m个因数相乘.”这实际是讲三个特点:第一个因数是什么?最后一个因数是什么?一共有多少个连续的自然数相乘.

公式 是在引出全排列数公式 后,将排列数公式变形后得到的公式.对这个公式指出两点:(1)在一般情况下,要计算具体的排列数的值,常用前一个公式,而要对含有字母的排列数的式子进行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;(2)为使这个公式在 时也能成立,规定 ,如同 时 一样,是一种规定,因此,不能按阶乘数的原意作解释.

④建议应充分利用树形图对问题进行分析,这样比较直观,便于理解.

⑤学生在开始做排列应用题的作业时,应要求他们写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实.随着学生解题熟练程度的提高,可以逐步降低这种要求.

55927