五年级数学的教案
五年级数学的教案篇1
教学目标:
1、掌握2、5倍数的特征以及奇数和偶数的概念。
2、能够运用这些特征进行判断。
3、培养学生的概括能力。
教学重点:
1、是2、5倍数的数的特征。
2、奇数和偶数的概念。
教学过程:
一、创设情景,引入新课。
1、复习:根据所学的因数和倍数知识,运用自己的座号说一句完整的话。如:我的座号是5,5是30的因数或5是1的倍数。
同座互说
指名说。
同学们,我们先去看一场电影,座位号是多少的同学应该从双号入口进。
2、游戏
(1)座号是2的倍数的同学起立。
(2)座号是5的倍数的同学起立, 老师分别将2的倍数座号写在黑板左边,5的倍数座号写在黑板右边。
3、引入:2的倍数和5的倍数有哪些特征呢?今天进行研究(板书课题:2、5倍数的特征)。
【反思:设计目的是从学生熟悉的学号引入,学习的材料来源于学生的生活,让学生感到亲切,有利于激发学习的兴趣。从教学实践来看,学生确实兴趣浓厚,达到了既激发兴趣,又提供学习素材的目的。】
二、探究新知
(一)2的倍数的特征。
1、观察:左边集合圈里的2的倍数座号有什么特点?(个位上是0,2,4,6,8。)
2、举出几个2的倍数,看看符不符合这个特点?学生随口举例。
教师:谁能说一说是2的倍数的数的特征?
学生口答后,老师板书:个位上是0,2,4,6,8的数都是2的倍数。
3、奇数和偶数
出示课件:2的倍数的数, 这些数的个位上的数有什么特点?
个位上是0、2、 、 、 的数,都是2的倍数。
自然数中,是2的倍数的数叫做偶数(0也是偶数),不是2的倍数的数叫做奇(ji)数。
老师指出:自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数。习惯上称它们单数、双数。
4、练习:完成课本做一做, 出示课件
下列数中,哪些是奇数,哪些是偶数?
33 98 355 988 0 123
3678 8089 1000 655 5656 881
奇数有:33,355,123,8089,655,881。
偶数有:98,988,0,3678,1000,5656。
【反思:数学思维的方法一般有观察比较、抽象概括、归结演绎等等。设计这个片断的目的是让学生观察根据素材,通过自主学习得出2的倍数的特征,同时培养学生的观察比较、抽象概括的数学思维能力。但在实际中老师提问:“2的倍数学号有什么特点?”后,学生说:“2的倍数都是偶数”。对于这种生成,是我设计中没有预设到的,于是我反问道:“你认为什么样的数是偶数呢?”学生又说“双数就是偶数”,于是我有些急了,不知所以。我只好进一步明确提问:“这些学号的个位上的数有什么特点?”学生这才说到我心中理想的答案:“个位上的数都是0、2、4、6、8等数字”,看来数学课的有些问题不能过于宽泛,要有所指向。同时设计问题时,还要多想想学生可能会怎样回答,多预设几个方案。】
【补充设计:学生完成课本练习后,我临时补充了一个知识点的自然数分类的教学。老师提问:自然数有无数个,0、1、2、3、4、5、6、7……说说这些数分别是什么数?你发现了什么?归纳得出:自然数中,不是偶数,就是奇数。】
(二)5的倍数的特征。
1、教师指右黑板上集合圈:你们能不能用与研究2的倍数的特征的相同方法,找出5的倍数的特征?
2、学生自己动手在课本上找出5的倍数。
在下表中找出5的倍数,并涂上颜色。看看有什么规律。
教师:说一说5的倍数的特征?
个位上是___或___的数,是5的倍数。
板书:个位上是0或者5的数,都是5的倍数。
3、练习:完成课本做一做, 出示课件
下面哪些数是2的倍数?哪些数是5的倍数?哪些数既是2的倍数也是5的倍数?
24 35 67 90 99 15
60 75 106 130 521 280
2的倍数:24,90,60,106,130,280。
5的倍数:35,90,15,60,75,130,280,
既是2的倍数也是5的倍数:90,60,130,280。
做完这道题,你有什么收获?
重点指出
个位上是0的数它既是2的倍数又是5的倍数.
为什么?(末位是0的数既是2的倍数又是5的倍数)同意他的说法吗?自己在百数表中找找这样的数?在哪里?
现在问题怎么解决呢?两位同学都想得到它们?
提问:2的倍数有哪些?5的倍数呢?60和90是什么数?
【反思:小学数学知识系统性较强,特级老师张兴华大力提倡“为迁移而教”很有道理。什么是迁移呢?迁移是一个心理学名词,是指一种学习对另一种学习的影响,它广泛地存在于学科教学之中,先前学习中的知识、技能、积极情感对后继学习产生促进作用的叫做正迁移,否则就是负迁移。5的倍数教学比较顺利,正是由于有前面2的倍数特征探索,学生较好地实现了学习方法的迁移。】
三、练习巩固
谈话:今天,我们主要研究了什么?下面的时间,我们就围绕这些知识来练习几道题。
1、选出两张数字卡片,按要求组成一个数。
(1)组成的数是偶数;
(2)组成的数是5的倍数;
(3)组成的数既是2的倍数又是5的倍数;
2、用0、2、5三个数字组成一个三位数。
(1)。组成的数是2的倍数;
(2)。组成的数是5的倍数。
先做第一小题,同桌学生合作摆、写,再组织交流明确方法技巧,然后按照方法完成其余两小题
3、把下表中4的倍数涂上颜色。
4 的倍数是2的倍数吗?今天我们研究了2和5的倍数,4可有点不高兴了,干嘛不研究一下我的倍数的特征呢? 先让学生涂一涂,涂后老师提出:2看了一下4的倍数,可得意了,你们知道2得意什么吗?(4的倍数都是2的倍数)那么4能不能反过来说:2的倍数也都是4 的倍数呢?
4、下面的判断对吗?说说你的理由。
(1)个位上是2、4、6的数,都是2的倍数。
(2)个位上是1、3、5、7、9的数都是奇数。
(3)在全部自然数里,不是奇数就是偶数。
5、思考:奇数与偶数的和是奇数还是偶数?奇数 与奇数的和是奇数还是偶数,偶数与偶 数的和呢?
四、全课总结
今天你有什么收获?
板书设计:
2和5的倍数特征
5的倍数: 15、30、50、65,,,, 个位上是0或5的数 (偶数)是2的倍数: 个位上是0、2、4、6、8的数 (奇数)不是2的倍数 个位上是1、3、5、7、9的数 2的 倍数 5的倍数 作业纸: 在5的倍数中画“ ”
五年级数学的教案篇2
教学目标:
1、通过生活中的情境,进一步体会小数除法在实际生活中的应用。
2、利用已有知识,自主探究除数是整数商是小数的小数除法的计算方法。
3、正确掌握已学过的小数除法的计算方法,并能运用小数除法解决日常生活中的简单问题。
教学重点:
除数是整数,商是小数的小数除法的计算方法。
教学难点:
除得的结果有余数,补“0”继续除。
教学过程:
一、复习导入
课件出示情境主题图
开学了,班级购置了打扫卫生用具,买6把笤帚共花了18.6元,买4个簸箕共花了24元。你能提出哪些问题?怎样计算?
引导学生列出算式并独立计算:18.6÷624÷4
计算后说一说整数除法与小数除法的异同。
二、对比中探索,交流中生成
师:复习题中的两道问题同学们解决得非常好,如果老师把它们稍作改动,你还会不会计算呢?
教师把情境题中的18.6改成18.9,把24改成26.
1、初步尝试,发现问题。
请你尝试计算这两题,你发现了什么?
2、独立思考,尝试解决。
师:有余数还能不能继续除下去?该怎么继续除?试算18.9÷6
3、讨论交流,异中求同。
(1)在小组内汇报自己的计算方法。
(2)展示汇报。(可能出现第4页中几种不同的方法)
(3)对比这几种方法:有什么相同的地方?
引导学生发现,无论是转化成整数,拆分整数与小数分别除,还是竖式的方法,都有一个共同的地方,就是小数的末尾可以添“0”继续除,在具体的情境中可以解释为,18元里有6个3元,9?里有6个1角,剩余的3角可以换算成30分,30分里有6个5分,合在一起就是3.15元。
4、应用方法,归纳总结。
竖式计算26÷4
(1)引导学生发现,整数除以整数有余数时,可以在被除数个位后点小数点,添“0”继续除,商的小数点一定要与被除数的小数点对齐。
(2)尝试总结除数是整数的小数除法的计算方法。
三、巩固练习。
1、买16个玩具恐龙花了12元,平均每个玩具恐龙多少元?
2、错题诊所。
209÷5=41810÷25=41.26÷18=0.7
3、先估算下面各题的商哪些大于1,哪些小于1,再竖式计算。
32÷812÷252.45÷3
4、一只蜜蜂的飞行速度是蝴蝶的2倍,如果蜜蜂每小时飞行11千米,蝴蝶每小时能飞行多少千米?
四、课堂总结
本节课你有哪些收获?
五年级数学的教案篇3
一、教学目标
1、在具体的情境中,进一步认识分数,发展数感,体会数学与生活的密切联系。
2、结合具体情境,进一步体会整数与部分的关系。
二、重点难点
重点:理解整体1,体会一个分数对应的整体不同,所表示的具体数量也不相同。
难点:充分体会整数与部分的关系。
三、教学过程
(一)复习旧知,导入新课
1、我们在三年级已经对分数有了初步的认识,你能举出一些分数吗?说说它们分别表示什么意义?
2、今天我们一起来学习《分数的再认识》。
(二)创设情境,学习新知
活动一:分笔游戏,体会单位一
1、分笔活动,找4名同学拿着自己的笔来到讲台。(笔数是2的倍数:4、4、6、8)
2、请你们4名同学拿出自己笔的1/2,看谁拿的又快又准。
3、另找4名同学检查。
4、同学们自己说说是怎么分的。(把全部铅笔平均分成两份,拿出其中的一份。)
5、师提问:他们都是拿出全部笔的1/2,可是拿出来的笔却有的一样多,有的不一样多,这是为什么呢?(每位同学的总数不一样)
6、师总结:最初每位同学笔的整体不同,也就是单位1不同造成的,所以,他们的1/2也不同。原来分数还有这样一个特点,你对它是不是又有了新的认识?
活动二:教材P34说一说。
1、带着新的认识,我们来判断两个小朋友看的书一样多吗?
2、小刚和小明都看了各自书的1/3,他们看得页数一样多吗?为什么?学生独立思考一会,同桌交流,再全班反馈。
3、师总结:因为书的薄厚不同,也就是总页数不同,所以两人看的页数也不同。(整体不同,相同分数表示的数量也不同。)
4、在什么情况下,他们读的一样多呢?(整体相同,相同分数表示的数量也相同。)
5、请同学们再帮老师解决一个问题:王兴国吃了一个苹果的3/4,李晓阳也吃了一个苹果的3/4。王兴国说:我俩吃的一样多。李晓阳说:我吃得比你多。他们谁说得对呢?
(三)巩固练习
1、教材P34画一画。
2、教材P35练一练第一题、第二题。(在练习中,针对错误比较多的,进行集体讲解,少的则个别讲解)
四、板书设计
分数的再认识
整体不同,相同分数表示的数量也不同。
整体相同,相同分数表示的数量也相同。
五、教学反思
本节课的教学,我采取以小游戏为开篇来引导学生进一步认识分数,理解分数的意义。在教学和练习中我重点强调了平均分和体会整数与部分的关系。学生在练习时,也能体会到整体不同,相同分数表示的数量也不同,如印度洋海啸捐款一题。但在练一练第一题写分数时出现错误很多,其主要原因在于书中没有平均分,而是要画一条辅助线和旋转图形。
五年级数学的教案篇4
教学目标:
1、通过动手操作,知道长方体、正方体的展开图,加深对长方体、正方体的认识。
2、在想象、操作等活动中,发展空间观念,激发学习数学的兴趣。
教学重点:
通过动手操作,知道长方体、正方体的展开图,加深对长方体、正方体的认识。
教学难点:
通过动手操作,知道长方体、正方体的展开图,加深对长方体、正方体的认识。
教具准备:
长方体、正方体的模型,纸盒、剪刀、尺子。
教学过程:
一、复习
说一说:复习长方体、正方体的特征。
相同点:(1)六个面(2)12条棱(3)8个顶点
不同点:六个面的面积。
二、动手操作,知道长方体、正方体的展开图。
1、剪一剪:
引导学生通过把1个正方体盒子沿着棱剪开图。
2、说一说:
正方体展开图是怎样的?
3、将长方体盒子沿棱剪开,试试看。
4、比一比。学生回顾:
长方体和正方体的基本特征{相同点不同点
学生动手剪开正方体纸盒。
观察,得到了一个怎么样的展开图。
小组中进行交流。说说自己剪的方法,比一比展开图是否相同?
引导学生剪开长方体盒子,观察长方体的展开图。
引导学生对长方体盒子和正方体盒子进行比较。
通过复习巩固对长方体、正方体的认识。引入认识展开长方体、正方体的折叠。
通过剪一剪等实践活动,把长方体、正方体盒子剪开得到平面图形的活动,引导学生直观认识长方体和正方体的展开图。
教师指导与教学过程学生学习活动过程设计意图
相同点:有六个面。
不同点:六个面的大小不同。
5、做一做
引导学生观察图形正方体?长方体?
①围成正方体所要的条件?
②用手中的材料尝试折叠。
③独立想一想哪些图形符合要求。
④组织学生进行交流。
三、练一练
1、教科书第17页“练一练”第1题。
引导学生:看展开图。
在操作中进行验证。
先让学生看展开图进行思考,并把结果写下来,然后再利用附页中的图试一试。
思考:与1、2、3号面相对的的是几号面?
2、教科书第17页“练一练”第2题。
先让学生按展开图说说哪两个面是相对的面,再联系长方体说说展开图中的各个长方形对应的是长方体中的哪个面。
3、动手折一折,试一试。
通过做一做,引导学生体会展开图形与长方体、正方体的联系。
通过折叠正方体、长方体的展开图,发展学生的空间观念。
四、全课小结
跟小组内的同学谈谈你这节课的收获在什么?
板书设计:
展开与折叠
面―――体
五年级数学的教案篇5
教学内容
教科书第1页的例1、例2和试一试,完成练一练和练习一的第1~2题。
教学目标要求
理解方程的含义,初步体会等式与方程的联系与区别,体会方程就是一类特殊的等式。
教学重点
理解并掌握方程的意义。
教学难点
会列方程表示数量关系。
教学过程
一、教学例一
1.出示例1的天平图,让学生观察。
提问:图中画的是什么?从图中能知道些什么?想到什么?
2.引导:
(1)让不熟悉天平不认识天平的学生认识天平,了解天平的作用。
(2)如果学生能主动列出等式,告诉学生:像“50+50=100”这样的式子是等式,并让学生说说这个等式表示的意思;如果学生不能列出等式,则可提出“你会用等式表示天平两边物体的质量关系吗?”
二、教学例二
1.出示例2的天平图,引导学生分别用式子表示天平两边物体的质量关系。
2.引导:告诉学生这些式子中的“x”都是未知数;观察这些式子,说一说写出的式子中哪些是等式,这些等式都有什么共同的特点。
3.讨论和交流:写出的式子中,有几个是等式,有几个不是,而写出的等式都含有未知数,在此基础上,揭示方程的概念。
三、完成练一练
1、下面的式子哪些是等式?哪些是方程?
2.将每个算式中用图形表示的未知数改写成字母。
四、巩固练习
1.完成练习一第1题
先仔细观察题中的式子,在小组里说说哪些是等式,哪些是方程,再全班交流。要告诉学生,方程中的未知数可以用x表示,也可以用y表示,还可以用其他字母表示,以免学生误以为方程是含有未知数x的等式。
2.完成练习一第2题
五、小结
今天,我们学习了什么内容?你有哪些收获?需要提醒同学们注意什么?还有什么问题?
六、作业
完成补充习题
板书设计:
方程的意义
X+50=100
X+X=100
像X+50=150、2X=200这样含有未知数的等式叫做方程。
五年级数学的教案篇6
教学目标:
1、使学生尝试运用“列表”、“画示意图”等方法发现规律,运用数的奇偶性解决生活中的一些简单问题。
2、让学生经历探索加法运算中数的奇偶性变化的过程,发现数的奇偶性的变化规律。
3、在活动中培养等毛生的观察、推理和归纳能力。
4、学生通过自主探索发现规律,感受数学内在的魅力,培养学生学习数学的兴趣。
教学重点:探索数的奇偶性变化规律。
教具学具准备:数字卡片,盒子,奖品。
教学过程:
复习引入新课。(通过引导学生回忆、提问或列举等形式,复习奇、偶数的意义。)
活动1:数的奇偶性在生活中的应用。
(一)激趣导入。
清早,笑笑第一个走进了教室,像往常一样把门打开后就去开灯,结果灯未亮,于是,他自言自语地说了声“停电了”就走到座位上坐下。不一会儿,同学们陆陆续续来到了教室,看到教室里光线有些暗,都下意识地伸手去按电灯开关,却都像笑笑一样无奈地走回自己的座位。你知道第11个同学按过开关后,“开关”是打开的还是关闭了?
(二)自主探究,发现规律。
1、学生独立思考后进行汇报交流。
方法:用文字列举出开、关的情况
开、关;开、关;开、关;开、关;开、关;开、关……
让学生数数,直观地发现第11个人按过开关后,开关是打开的。
2、增加人次,深入探究。
如果是第47个同学或第60个同学进去,用列举的方法判断“开关”的开、关情况还方便吗?你还能想出什么好方法?
3、第二次汇报交流。
投影下表:
用列表的方法启发学生总结规律并作答:当人数是1、3、5、7……的时候,开关处于开启状态,而当人数是2、4、6、8……的时候,开关处于关闭状态。即,进来的是奇数个同学时,开关被打开;进来的是偶数个同学时,开关被关闭。因为47是奇数,开关被打开;108是偶数,开关被关闭。
(三)巩固应用。
1、看书学习并解决小船的靠岸问题。
2、解决杯子上下翻转,杯口的朝向问题。
3、举例说说数的奇偶性还能解决哪些生活问题?
(四)活动小结。
当一个事物只有两种(运动或变化)状态时,运动奇数次后,状态与初始状态相反,运动偶数次时,状态与初始状态相同。
活动2:探索奇、偶数相加的规律。
(一)有奖游戏。
1、出示分别装有奇数卡片和偶数卡片的两个盒子。宣布游戏规则:从自己喜欢的盒子里任意抽取两张卡片,如果卡片上两个数的和为奇数,你就可以领取一份奖品。
2、游戏开始。部分学生按规则抽取卡片,并将卡片上两个数相加的算式及得数写在黑板上。上来的同学无一人获奖。
3、引发思考。
师:是你们运气不好,还是其中隐藏着什么秘密?想一想:如果继续抽下去,你们有获奖的可能吗?
4、发现规律。
学生观察黑板上的算式,很快发现其中的“秘密”:两个奇数相加和是偶数;两个偶数相加和也是偶数。如此抽取卡片,永远无法获奖。
5、举例验证。
6、修改游戏规则。
(1)师:现在同学们已经发现了不能获奖的原因了,那么,你能不能修改游戏规则,保证你们能够获奖呢?
(新规则:在两个盒子里各抽出一张卡片,两张卡片上数的和是奇数可获奖。)
(2)请学生按修改后的规则试抽几次,并发奖以资鼓励。
(3)举例验证:奇数+偶数=奇数
(二)总结奇、偶数相加的规律。
奇数+奇数=偶数、偶数+偶数=偶数、奇数+偶数=奇数。
(三)应用规律解决问题。
1、不计算,判断下列算式的结果是奇数还是偶数。
10389+2004 11387+131 268+1024
2、把5颗糖(全部)分给两个小朋友,能否使每个小朋友都分到偶数颗糖?奇数颗呢?结果是什么?
全课小结:说说这节课有什么收获?
五年级数学的教案篇7
教学目标:
1、经历知识的形成过程,理解约分的含义。
2、探索并掌握约分的方法,能正确地进行约分。
3、经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
教学重点:
理解约分的含义。
教学难点:
能正确地进行约分。
教学准备:
卡纸、彩笔。
教学活动:
一、创设情境,导入新课。
师:“美味蛋糕店”的师傅招收学员时考了这样一道题目:请你在最快的时间里切出一块蛋糕的8/24,要求切得比较均匀。今天老师也想拿这道题目考考你们,看看哪些同学们能被选上。
二、实践操作,探究新知。
1.引导发现,明确概念。
师:请同学们拿出一张卡纸。表示出这张卡纸的8/24,想一想怎样做?
(学生动手操作,展示成果并解说)
师:从上面这些学生的发言中你能得到什么结论?
让生通过用分数表示阴影部分找出一组相等的分数:
8/24=4/12=2/6=1/3
教师根据学生汇报,有选择地板书。
师:现在请同学们观察黑板上的三个式子,你发现了什么?引导学生回答出:
(1)它们的分子和分母都同时除以了一个相同的数,所以这些分数的大小都不变。
(2)是同时除以它们的公因数。
师:说得非常准确,这里的除数都是什么数?
生:分子和分母的公因数。
引导学生归纳出:像这样,把一个分数的分子、分母同时除以公因数,分数的值不变,这个过程叫作约分。
师:还有什么发现?
引导学生说出:约分后这些分数的分子和分母都越来越小,但分数值都相等。最后一个式子的得数是1/3不能“再往下除了”。
师肯定:准确地说1/3不能再约分了。谁知道,为什么不能“再约分了”?
引生答出:因为1和3没有公因数。所以不能“再约分了”。
总结并揭示:像1/3这样的分数,当分子和分母没有公因数的分数,我们把它叫做最简分数。约分的最后结果应该是:最简分数。
师:谁能举个例子来说明,什么是最简分数?
生:(举例说明)。
2.探索约分的方法。
请两个同学来介绍一下约分的过程。
师:谁能完整的说一说约分的方法和应注意的问题。
3.师:通过上面的学习我们知道了,要在最快的时间里切出一个蛋糕的8/24,其实也就是切出这块蛋糕的1/3,这样也就顺利地完成了题目要求!
三、课堂练习,巩固应用。
教材第48页“练一练”。
(1)学生试做。(2)集体交流。
四、畅谈收获,全课总结。
通过本课的学习,你有什么收获?
教学反思:
1.创设了生动有趣的情境,调动了学生的学习积极性,激发了学生强烈的求知欲。
2.在学习约分之前,学生已经探索了分数的基本性质,学习了求最大公因数的方法,因此合理的知识迁移,较好地帮助了学生理解“约分”的含义,使知识深入浅出,便于学生理解和掌握。
3.为学生提供了充分探究和发现的时间与空间,从约分含义的理解到约分方法的学习,教学的重点和难点都是在学生的发现、探究、交流中解决,使课堂充满了活力。