教育巴巴 > 教案模板 > 优秀教案 >

五年级教案上册数学

时间: 新华 优秀教案

五年级教案上册数学篇1

公开课教学活动前,在全体数学教研成员的指导下设计了大班数学活动《神奇的魔法机器》,并确定了本次活动的目标:发现并对比事物的大小、数量、形状的变化。目标确立后,做好一系列的活动准备,我们利用孩子身边喜欢的动画角色“叮当猫”送的魔法机器导入活动。

在活动中,集体观察和讨论,在有趣的魔法咒语“叮当法术变变变,按我的指令变”,再加上PPT的形象化,孩子们很顺利地都能比变化前后的不同,请了好几个孩子都能回答正确。孩子们能够很快判断出魔法机器所具备的魔法,即能够变出大小、形状、数量不同的东西。如:小变大(大小变化),圆变方(形状变化)、少变多(数量变化)。以至于活动很顺利地达成目标,但对于大班的孩子来说,虽然活动具有趣味性,但还是需要具备一些挑战性。

所以最后一个操作环节时,我提供了难易不同的操作纸,请孩子根据难易不同自主选择任务并独立操作,孩子们居然都能够完成,还能一一说出指令和结果。

由此看来,孩子们的挑战难度有待提高,如:在讲解过程中不必将大小、形状、数量三个特征全部讲解清楚,应该留给孩子想象思考的空间;提供的操作纸应该分小组发放,让孩子可以走动式的选择;一颗星为简易操作,以大小或形状为一种指令,两颗星以大小、形状、数量并存为一种指令,三颗星即以两台魔法机器结合,提供两种或两种以上指令,由孩子正向或逆向思维思考操作。这样就给与了孩子想象和挑战的机会。活动也不会显得毫无挑战性。

五年级教案上册数学篇2

设计说明

本课时的教学是在学生已有的知识经验基础上进行的,学习起来并不难,教学时应注意突出以下两点:

1、把新知融入到有趣的情境中,激发学生的学习兴趣。

在课堂教学中创设情境,把问题隐藏在情境中,制造悬念,激发学生的探究欲望和学习兴趣。本设计由学生喜欢的孙悟空导入,有效地激发了学生的学习热情。在设计练习时,将“做一做”的题目融入到游戏之中,既激发了学生的学习兴趣,又达到了巩固强化的目的。

2、以人为本,彰显学生的主体地位,让学生积极主动地参与知识的建构,提升学生的数学素养。

在学习的过程中让学生学会自主探究,即学生能学会的,老师决不代替。本设计把学生放在了学习的主体地位,让学生主动探究出最简分数的意义。学习约分时,放手让学生思考怎样把不是最简分数的分数化成最简分数,让学生说出不同的思路和方法,体现了解决问题策略的多样化。

设计意图:

在自学的过程中,学生及时反馈,教师予以指导,特别在学习约分的两种方法时,让学生在头脑中感受每一步的过程,形成知识表象。

课前准备

教师准备PPT课件长方形纸

教学过程

(1)复习巩固,情境导入,激发兴趣

1、求下面每组数的公因数。

42和5015和58和2118和12

2、大家都看过《西游记》,里面都有哪些人物?谁最厉害?大家都知道孙悟空有72变,特别神奇,你们想不想也学一招?好,这节课我们就来“变分数”。

(2)认识约分

1、尝试“变分数”。

课件出示教材65页例4:把化成分子和分母比较小且分数大小不变的分数。

让学生了解“变化”的要求:

①这个分数要与的大小相等。

②这个分数的分子、分母要比的分子、分母小。

2、了解约分的概念。

①所变出的分数与原分数有什么关系?

②像这样,把一个分数化成和它相等,但分子和分母都比较小的分数,叫做约分。

③请学生说一说所变的分数是怎样得来的。

观察后发现分数的大小不变,但分子、分母都比原来分数的分子、分母小。

3、认识最简分数。

①约分后的分子、分母能否再变小了?为什么?

②小结:像这样,分子和分母只有公因数1的分数,叫做最简分数。

4、说出几个最简分数,强化最简分数的概念。

(3)合作交流,总结方法

1、讨论:你能根据我们化简的过程找到约分的方法吗?

2、小结。

教师板书约分时一般采用的两种方法:

①逐步约分法。

如约分时,依次用12,18的公因数2和3去除,最后约分成。

②一次约分法。

如约分时,如果能很快看出12和18的最大公因数,也可以直接用最大公因数6去除,一次约分成。

3、小结:我们既可以用分子、分母的公因数去除,一步一步地来约分;也可以用最大公因数去除,直接一次约分。

五年级教案上册数学篇3

教学目标:

1.通过学生的动手操作,借助图形语言,理解分数乘法的意义和分数乘以分数的算理,掌握计算方法,并能熟练地进行计算;

2.让学生经历猜想、验证等过程,体验数学研究的方法;

3.培养逻辑推理能力,渗透一定的数学思维方法。

教学重难点:

学生能够熟练的计算出分数乘以分数的结果。

教学过程:

一、创设情境激趣揭题

1.出示我国古代哲学著作的情景。

2.出示复习题

3×2/54/5×2

二、扶放结合探究新知

1.画图引导学生理解1/2___1/2的算例。

2.出示3/4___1/4引导学生验证上面的计算方法,岩石推理过程。

3.出示2/3___1/5,5/6___2/3写出计算过程,

小结计算方法:

分子乘分子,分母乘分母。

三、反馈矫正落实双基

1.出示教材第8页试一试1-3题。

2.引导学生发现规律。

四、小结评价布置预习

1.引导学生进行课堂小结。

2.布置预习:教材10-11页练习一。

板书设计:

意义:

求一个数的几分之几是多少?

计算法则:

分子乘分子作分子,分母乘分母作分母。

五年级教案上册数学篇4

目标

通过总复习中最后几道题的综合复习,检查学生综合运用知识。解决问题的能力。

复习内容和过程

教学札记

一、复习解方程

1、完成教材第134页”期末复习“第28题。

(1)独立完成。

(2)集体订正,说说解方程的依据。

2、解下列方程

x--=x++=

二.复习长方体和正方体

1、完成课本第134页”期末复习“第29题。

(1)独立完成

(2)集体订正,说说你是怎样想的。

2、练一练:

一块长方形铁皮,长28厘米,宽22厘米,在这块铁皮的四个角各剪去一个边长为2厘米的正方形,然后折成一个无盖的长方体铁盒,这个铁盒的容积是多少立方厘米?

三、复习分数的加法和减法

1、完成教材第123页期末复习第30题。

(1)独立完成

(2)集体订正,说说的解题思路,如有错解,则分析错误原因。

2、练一练:

修路队第一天修路4/5千米,比第二天多修了2/15千米,两天一共修路多少千米?

四、作业:

教材第134页期末复习第31题。

五年级教案上册数学篇5

对于大班的幼儿来说可能也会有难度,而对于中班的幼儿来说可能更难。但它既然出现在了幼儿园中班的教材里,就说明这个年龄段的幼儿还是能够理解的,因而在今天的活动中我决定选择《我的邻居朋友》这一课,为了上好这一课让幼儿能够学会这一知识,我做了精心的设计和准备,活动一结束就发现许多的问题。为了提高自己的教学水平特对此次活动作以反思:

一、借助故事,激发幼儿学数学的兴趣

本次数学公开课教学活动我尝试打破传统教学的模式,把幼儿数学活动与故事进行了有机的结合,在设计的过程中,我充分结合幼儿对动物的喜爱之情,让幼儿在轻松地在故事情节中自然将问题解决,为幼儿提供了主动探索的机会。

二、调整教学顺序,分解知识难点

在阅读教材的过程中,我发现教材中对学习相邻数的安排是先认识比本数多1的数,再认识比"本数"少1的数,最后总结出比本数多1或少1的数是它的相邻数。我觉得这种教学不利于幼儿掌握相邻数这一知识,本课的重点应该是先学会找相邻数,然后再认识相邻属于本数的关系,幼儿接受起来也就更加容易。

三、游戏化的教学过程,促进幼儿对知识的掌握

虽然因个体差异有的幼儿不能脱口而出某一数字的相邻数,但一定会用一节课中的学习方法,然后慢慢找出答案一堂课下来我收获颇多,给我感受最深的是作为一名幼儿教师更要勤于动脑思考选择好教学方法。在数学教学中教师应注意语言的严谨性和规范性,在组织教学活动的过程中,教师的倾听和应变能力也显得尤为重要。让幼儿真正意义上做到"玩中学,学中乐",从而达到教学效果。

五年级教案上册数学篇6

教学目标

1.理解众数的含义,学会求一组数据的众数,理解众数在统计学上的意义。

2.根据数据的具体情况,选择适当的统计量表示数据的不同特征。

3.进一步提高学生的统计技能,增强学生的统计意识。

教学重难点

教学重点:认识众数,理解众数的意义及作用。

教学难点:众数和中位数平均数的相互区别,在具体情境中如何选择恰当的统计量表示一组数据的一般水平。

教学过程

(一)复习旧知

1、回忆平均数及中位数的求法,指生回答。

2、求下列这组数据的平均数和中位数。生独立完成后课件出示。

(二)完成例1

1.出示例题:

五(2)班要选10名同学组队参加集体舞比赛.下面是20名候选队员的身高情况.(单位:米)

1.321.331.441.451.461.461.471.471.481.481.491.501.511.521.521.521.521.521.521.52

师:提出集体舞的要求:身高接近,跳出的舞才更整齐。你认为参赛队员的身高是多少比较合适?

2.学生小组合作选择10名队员。

3.根据学生汇报,师课件随机演示选择结果。

平均数=(1.32+1.33+1.44+1.45+1.46+1.46+1.47+1.47

+1.48+1.48+1.49+1.50+1.51+1.52+1.52+1.52

+1.52+1.52+1.52+1.52)÷20

=29.5÷20

=1.475

中位数=(1.48+1.49)÷2

=2.97÷2

=1.485

接近1.485m的同学人数太少,不适合大多数同学的

身高。最高的与最矮的相差6cm。

这组数据的中位数是1.485,身高接近1.485m的比较合适。

身高是1.52m的人最多,1.52m左右的比较合适。最高的与最矮的相差3cm。

1.52出现的次数最多,最能应这组同学的身高情况.

4.小结:以众数1.52为标准选择队员身高会比较均匀。

师:(小结)集体舞一般要求队员身高差不多,这组数据中1.52出现的次数最多,所以1.52是这组数据的众数。所以以众数1.52为标准选出来的队员身高会很均称,组成的舞蹈队形也会很整齐很美观!

5.师生共同归纳众数概念。

师揭示众数的概念

一组数据中出现次数最多的数据,是这组数据的众数。众数能够反映一组数据的集中情况。

6、做一做,

7、小练习:

学校举办英语百词听写竞赛,五(1)班和五(2)班参赛选手的成绩如下:

求这次英语百词听写竞赛中学生得分的众数.

三个数据存在的数量和意义:

比较三个统计量:

(三)学习众数的特征

师出示练习题:

1、五(1)班21名男生1分钟仰卧起坐成绩如下(单位:次):

1923262928323435413331

25273136372431292630

(1)这组数据的中位数和众数各是多少?

(2)如果成绩在31~37为良好,有多少人的成绩在良好及良好以上?

2、一个射击队要从两名运动员中选拔一名参加比赛。在选拔赛上两人各打了10发子弹,成绩如下:

甲:9.5109.39.59.69.59.49.59.29.5

乙:109108.39.89.5109.88.79.9

(1)甲、乙成绩的平均数、众数分别是多少?

(2)你认为谁去参加比赛更合适?为什么?

生先独立思考,再全班交流。

师:在找三组数据的众数的过程中,你发现了什么?

生:在一组数据中,众数可能不止一个,也可能没有众数。

师小结:在一组数据中,众数有一个,也有多个,甚至没有。同时众数也反应了一组数据的集中情况。

2、三个数据存在的数量和意义

(四)综合练习

你去商场买过衣服吗?你知道休闲类服装型号的“均码”是什么意思吗?均码一般是根据人的平均身高、胸围等数据确定的统一商品型号,与多数人的型号接近。所以,均码里蕴涵着平均数和众数的原理。

(五)联系情境,应用众数

销售衣服问题。

师:小明很喜欢做社会调查。他到一家服装店调查后,给我们带来了这样的一则信息:服装店销售了20件T恤,尺寸如下:(单位:cm)4239384041414239404141414140414041404041

师:从表格中,你发现了什么?如果你是这家服装店的经理,你会怎样进货?

生:讨论交流,发表自己想法。

师:(小结)从中可以看出,在衣服的尺码组成的一组数据中,41cm是这组数据的众数,也就是41cm衣服销售量最大。所以,可以多进一些41cm的衣服。商品的销售里面也要用到众数的知识,由此看来,生活中还真少不了众数啊!

(五)拓展延伸(“生活中的数学”)均码问题。

师:同学们去商场买过衣服吗?如果你去买过会发现,商场里很多休闲的服饰,它的型号都是均码的。我们一起来看一下。

师:课后请同学们调查和了解一下:什么是“均码”?

(六)全课小结

教师:同学们,今天我们上了这节课你收获了什么?

54750