怎么写数学公开课教案设计
怎么写数学公开课教案设计篇1
排列
教学目标
(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;
(2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;
(3)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;
教学重点难点
重点是排列的定义、排列数并运用这个公式去解决有关排列数的应用问题。
难点是解有关排列的应用题。
教学过程设计
一、 复习引入
上节课我们学习了两个基本原理,请大家完成以下两题的练习(用投影仪出示):
1.书架上层放着50本不同的社会科学书,下层放着40本不同的自然科学的书.
(1)从中任取1本,有多少种取法?
(2)从中任取社会科学书与自然科学书各1本,有多少种不同的取法?
2.某农场为了考察三个外地优良品种A,B,C,计划在甲、乙、丙、丁、戊共五种类型的土地上分别进行引种试验,问共需安排多少个试验小区?
找一同学谈解答并说明怎样思考的的过程
第1(1)小题从书架上任取1本书,有两类办法,第一类办法是从上层取社会科学书,可以从50本中任取1本,有50种方法;第二类办法是从下层取自然科学书,可以从40本中任取1本,有40种方法.根据加法原理,得到不同的取法种数是50+40=90.第(2)小题从书架上取社会科学、自然科学书各1本(共取出2本),可以分两个步骤完成:第一步取一本社会科学书,第二步取一本自然科学书,根据乘法原理,得到不同的取法种数是: 50×40=2000.
第2题说,共有A,B,C三个优良品种,而每个品种在甲类型土地上实验有三个小区,在乙类型的土地上有三个小区……所以共需3×5=15个实验小区.
二、 讲授新课
学习了两个基本原理之后,现在我们继续学习排列问题,这是我们本节讨论的重点.先从实例入手:
1.北京、上海、广州三个民航站之间的直达航线,需要准备多少种不同飞机票?
由学生设计好方案并回答.
(1)用加法原理设计方案.
首先确定起点站,如果北京是起点站,终点站是上海或广州,需要制2种飞机票,若起点站是上海,终点站是北京或广州,又需制2种飞机票;若起点站是广州,终点站是北京或上海,又需要2种飞机票,共需要2+2+2=6种飞机票.
(2)用乘法原理设计方案.
首先确定起点站,在三个站中,任选一个站为起点站,有3种方法.即北京、上海、广泛任意一个城市为起点站,当选定起点站后,再确定终点站,由于已经选了起点站,终点站只能在其余两个站去选.那么,根据乘法原理,在三个民航站中,每次取两个,按起点站在前、终点站在后的顺序排列不同方法共有3×2=6种.
根据以上分析由学生(板演)写出所有种飞机票
再看一个实例.
在航海中,船舰常以“旗语”相互联系,即利用不同颜色的旗子发送出各种不同的信号.如有红、黄、绿三面不同颜色的旗子,按一定顺序同时升起表示一定的信号,问这样总共可以表示出多少种不同的信号?
找学生谈自己对这个问题的想法.
事实上,红、黄、绿三面旗子按一定顺序的一个排法表示一种信号,所以不同颜色的同时升起可以表示出来的信号种数,也就是红、黄、绿这三面旗子的所有不同顺序的排法总数.
首先,先确定位置的旗子,在红、黄、绿这三面旗子中任取一个,有3种方法;
其次,确定中间位置的旗子,当位置确定之后,中间位置的旗子只能从余下的两面旗中去取,有2种方法.剩下那面旗子,放在最低位置.
根据乘法原理,用红、黄、绿这三面旗子同时升起表示出所有信号种数是:3×2×1=6(种).
根据学生的分析,由另外的同学(板演)写出三面旗子同时升起表示信号的所有情况.(包括每个位置情况)
第三个实例,让全体学生都参加设计,把所有情况(包括每个位置情况)写出来.
由数字1,2,3,4可以组成多少个没有重复数字的三位数?写出这些所有的三位数.
根据乘法原理,从四个不同的数字中,每次取出三个排成三位数的方法共有4×3×2=24(个).
请板演的学生谈谈怎样想的?
第一步,先确定百位上的数字.在1,2,3,4这四个数字中任取一个,有4种取法.
第二步,确定十位上的数字.当百位上的数字确定以后,十位上的数字只能从余下的三个数字去取,有3种方法.
第三步,确定个位上的数字.当百位、十位上的数字都确定以后,个位上的数字只能从余下的两个数字中去取,有2种方法.
根据乘法原理,所以共有4×3×2=24种.
下面由教师提问,学生回答下列问题
(1)以上我们讨论了三个实例,这三个问题有什么共同的地方?
都是从一些研究的对象之中取出某些研究的对象.
(2)取出的这些研究对象又做些什么?
实质上按着顺序排成一排,交换不同的位置就是不同的情况.
(3)请大家看书,第×页、第×行. 我们把被取的对象叫做双元素,如上面问题中的民航站、旗子、数字都是元素.
上面第一个问题就是从3个不同的元素中,任取2个,然后按一定顺序排成一列,求一共有多少种不同的排法,后来又写出所有排法.
第二个问题,就是从3个不同元素中,取出3个,然后按一定顺序排成一列,求一共有多少排法和写出所有排法.
第三个问题呢?
从4个不同的元素中,任取3个,然后按一定的顺序排成一列,求一共有多少种不同的排法,并写出所有的排法.
给出排列定义
请看课本,第×页,第×行.一般地说,从n个不同的元素中,任取m(m≤n)个元素(本章只研究被取出的元素各不相同的情况),按着一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.
下面由教师提问,学生回答下列问题
(1)按着这个定义,结合上面的问题,请同学们谈谈什么是相同的排列?什么是不同的排列?
从排列的定义知道,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序(即元素所在的位置)也必须相同.两个条件中,只要有一个条件不符合,就是不同的排列.
如第一个问题中,北京—广州,上海—广州是两个排列,第三个问题中,213与423也是两个排列.
再如第一个问题中,北京—广州,广州—北京;第二个问题中,红黄绿与红绿黄;第三个问题中231和213虽然元素完全相同,但排列顺序不同,也是两个排列.
(2)还需要搞清楚一个问题,“一个排列”是不是一个数?
生:“一个排列”不应当是一个数,而应当指一件具体的事.如飞机票“北京—广州”是一个排列,“红黄绿”是一种信号,也是一个排列.如果问飞机票有多少种?能表示出多少种信号.只问种数,不用把所有情况罗列出来,才是一个数.前面提到的第三个问题,实质上也是这样的.
三、 课堂练习
大家思考,下面的排列问题怎样解?
有四张卡片,每张分别写着数码1,2,3,4.有四个空箱,分别写着号码1,2,3,4.把卡片放到空箱内,每箱必须并且只能放一张,而且卡片数码与箱子号码必须不一致,问有多少种放法?(用投影仪示出)
分析:这是从四张卡片中取出4张,分别放在四个位置上,只要交换卡片位置,就是不同的放法,是个附有条件的排列问题.
解法是:第一步把数码卡片四张中2,3,4三张任选一个放在第1空箱.
第二步从余下的三张卡片中任选符合条件的一张放在第2空箱.
第三步从余下的两张卡片中任选符合条件的一张放在第3空箱.
第四步把最后符合条件的一张放在第四空箱.具体排法,用下面图表表示:
所以,共有9种放法.
四、作业
课本:P232练习1,2,3,4,5,6,7.
怎么写数学公开课教案设计篇2
活动目标:
1.鼓励幼儿仔细观察,找出规律进行排序。
2.在操作中能探索多种方法交替重复地排序。
3.增强幼儿动手能力和观察比较能力。
活动准备:
1.教具准备:彩色粒珠,印有不同图案的纸条若干。
2.学具准备:几种印章,彩笔,长条白纸,彩色粒珠和彩色珠及绳子若干,彩色纸条,胶水若干。
活动过程:
1.常规活动:问候走线。
线上:五只猴子荡秋千。
2.集体活动。
(1)教师给每组幼儿几个不同图案的印章和长纸条,请幼儿按重复交替的规律印画自己喜欢的图案。
(2)观察自己的彩条图案,说说有什么特点,引导幼儿说出是重复的交替着排列的。
(3)教师小结,这些排序的规律有的是ABABAB......有的是ABCABCABC......有的是AAAAAA......这些排列是有规律的,是重复交替的。
3.操作活动:
幼儿操作学具,用彩色粒珠在桌子上摆串珠,摆好后说说自己是怎么排列的。
4.分组活动:
做彩环,将长条纸两头粘成圈,并按交替重复的规律一环套一环。
5.交流小结,收拾学具。
彩环及幼儿欣赏评价。
怎么写数学公开课教案设计篇3
目标:
1、根据方向标记和序数找到对应的物品,或给指定物品标出方向,用正确的序数表示其位置。
2、建立初步的双向排序的概念。
3、体验游戏的乐趣。
4、喜欢数学活动,乐意参与各种操作游戏,培养思维的逆反性。
5、知道按事物不同的特征进行排序会有不同的结果,初步了解排序的可逆性。
准备:
1、幼儿已对左、右方位比较熟悉。
2、1~10的数字卡,PPT,方向标记,操作单,笔。
过程:
一、复习1~10的顺逆唱数
1、出示1~10的数字卡,复习顺数与逆数。
2、演示PPT画面,引导幼儿观察,在圆圈内填上合适的数字(如图一)。
【活动反思】
一年级小朋友刚从幼儿园升到小学一年级,对任何事物都充满着好奇心,但是又不能管住自己,好动,爱讲话。刚开始接受正规的体育课,很多学生是不能适应的,现在天气还是很热的,有些女生就受不了,喊热,还有同学不想上课假装生病,体质非常差,还有小朋友的习惯没有养成好,下课的时候就想着去玩,去疯逗打闹,上课的时候就要去上厕所,喝水等等这些问题。所以,这些问题都需要改进。下面就我上的向左向右转做一个教学反思。
首先这节课的优点,小孩子那副渴望学习的眼神和对老师教的新知识的好奇,我心里感到很高兴,很多同学能认真听讲并能够跟着老师模仿,之后再自己练习,马上就学到了老师教的动作,大胆的举手要在老师面前展示。我看到学生能够马上学到新东西,我的劳动成果得到了汇报,心里很高兴和感动。也有很多同学刚开始分不清左右,老师下口令之后同学不知道怎么转,之后老师提醒说,拿铅笔的手或者吃饭的手是右手,来,小朋友,把你们的右手举起来,全班现在都基本知道了左右手,很好,听过老师的讲解,和自己的模仿大部分同学能够听到老师的口令,马上反应做出正确的动作。这节课的教学目标基本达到了。
怎么写数学公开课教案设计篇4
圆的方程
教学目标
(1)掌握圆的标准方程,能根据圆心坐标和半径熟练地写出圆的标准方程,也能根据圆的标准方程熟练地写出圆的圆心坐标和半径.
(2)掌握圆的一般方程,了解圆的一般方程的结构特征,熟练掌握圆的标准方程和一般方程之间的互化.
(3)了解参数方程的概念,理解圆的参数方程,能够进行圆的普通方程与参数方程之间的互化,能应用圆的参数方程解决有关的简单问题.
(4)掌握直线和圆的位置关系,会求圆的切线.
(5)进一步理解曲线方程的概念、熟悉求曲线方程的方法.
教学建议
教材分析
(1)知识结构
(2)重点、难点分析
①本节内容教学的重点是圆的标准方程、一般方程、参数方程的推导,根据条件求圆的方程,用圆的方程解决相关问题.
②本节的难点是圆的一般方程的结构特征,以及圆方程的求解和应用.
教法建议
(1)圆是最简单的曲线.这节教材安排在学习了曲线方程概念和求曲线方程之后,学习三大圆锥曲线之前,旨在熟悉曲线和方程的理论,为后继学习做好准备.同时,有关圆的问题,特别是直线与圆的位置关系问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法.因此教学中应加强练习,使学生确实掌握这一单元的知识和方法.
(2)在解决有关圆的问题的过程中多次用到配方法、待定系数法等思想方法,教学中应多总结.
(3)解决有关圆的问题,要经常用到一元二次方程的理论、平面几何知识和前边学过的解析几何的基本知识,教师在教学中要注意多复习、多运用,培养学生运算能力和简化运算过程的意识.
(4)有关圆的内容非常丰富,有很多有价值的问题.建议适当选择一些内容供学生研究.例如由过圆上一点的切线方程引申到切点弦方程就是一个很有价值的问题.类似的还有圆系方程等问题.
教学设计示例
圆的一般方程
教学目标:
(1)掌握圆的一般方程及其特点.
(2)能将圆的一般方程转化为圆的标准方程,从而求出圆心和半径.
(3)能用待定系数法,由已知条件求出圆的一般方程.
(4)通过本节课学习,进一步掌握配方法和待定系数法.
教学重点:(1)用配方法,把圆的一般方程转化成标准方程,求出圆心和半径.
(2)用待定系数法求圆的方程.
教学难点:圆的一般方程特点的研究.
教学用具:计算机.
教学方法:启发引导法,讨论法.
教学过程:
【引入】
前边已经学过了圆的标准方程
把它展开得
任何圆的方程都可以通过展开化成形如
①
的方程
【问题1】
形如①的方程的曲线是否都是圆?
师生共同讨论分析:
如果①表示圆,那么它一定是某个圆的标准方程展开整理得到的.我们把它再写成原来的形式不就可以看出来了吗?运用配方法,得
②
显然②是不是圆方程与 是什么样的数密切相关,具体如下:
(1)当 时,②表示以 为圆心、以 为半径的圆;
(2)当 时,②表示一个点 ;
(3)当 时,②不表示任何曲线.
总结:任意形如①的方程可能表示一个圆,也可能表示一个点,还有可能什么也不表示.
圆的一般方程的定义:
当 时,①表示以 为圆心、以 为半径的圆,
此时①称作圆的一般方程.
即称形如 的方程为圆的一般方程.
【问题2】圆的一般方程的特点,与圆的标准方程的异同.
(1) 和 的系数相同,都不为0.
(2)没有形如 的二次项.
圆的一般方程与一般的二元二次方程
③
相比较,上述(1)、(2)两个条件仅是③表示圆的必要条件,而不是充分条件或充要条件.
圆的一般方程与圆的标准方程各有千秋:
(1)圆的标准方程带有明显的几何的影子,圆心和半径一目了然.
(2)圆的一般方程表现出明显的代数的形式与结构,更适合方程理论的运用.
【实例分析】
例1:下列方程各表示什么图形.
(1) ;
(2) ;
(3) .
学生演算并回答
(1)表示点(0,0);
(2)配方得 ,表示以 为圆心,3为半径的圆;
(3)配方得 ,当 、 同时为0时,表示原点(0,0);当 、 不同时为0时,表示以 为圆心, 为半径的圆.
例2:求过三点 , , 的圆的方程,并求出圆心坐标和半径.
分析:由于学习了圆的标准方程和圆的一般方程,那么本题既可以用标准方程求解,也可以用一般方程求解.
解:设圆的方程为
因为 、 、 三点在圆上,则有
解得: , ,
所求圆的方程为
可化为
圆心为 ,半径为5.
请同学们再用标准方程求解,比较两种解法的区别.
【概括总结】通过学生讨论,师生共同总结:
(1)求圆的方程多用待定系数法.其步骤为:由题意设方程(标准方程或一般方程);根据条件列出关于待定系数的方程组;解方程组求出系数,写出方程.
(2)如何选用圆的标准方程和圆的一般方程.一般地,易求圆心和半径时,选用标准方程;如果给出圆上已知点,可选用一般方程.
下面再看一个问题:
例3: 经过点 作圆 的割线,交圆 于 、 两点,求线段 的中点 的轨迹.
解:圆 的方程可化为 ,其圆心为 ,半径为2.设 是轨迹上任意一点.
∵
∴
即
化简得
点 在曲线上,并且曲线为圆 内部的一段圆弧.
【练习巩固】
(1)方程 表示的曲线是以 为圆心,4为半径的圆.求 、 、 的值.(结果为4,-6,-3)
(2)求经过三点 、 、 的圆的方程.
分析:用圆的一般方程,代入点的坐标,解方程组得圆的方程为 .
(3)课本第79页练习1,2.
【小结】师生共同总结:
(1)圆的一般方程及其特点.
(2)用配方法化圆的一般方程为圆的标准方程,求圆心坐标和半径.
(3)用待定系数法求圆的方程.
【作业】课本第82页5,6,7,8.
怎么写数学公开课教案设计篇5
教学通过与学生的实际生活相结合,进一步的增加学生对于利息和成数的认识,课堂以学生和老师的互动结合,加深学生对利息成数的认识。
教学内容:“整理和复习”第1—5题,练习三的第1—6题。
教学目的:使学生对利息、成数等概念有进—步的了解。能够比较熟练地解答有关利息、成数的应用题,将百分数应用于实际生活。
教具准备:幻灯片。
教学过程 :
一、等概念
1.做“整理和复习”第1题。
请一名学生读题。另请两名学生加以回答,教师补充完整。
提问:“同学们准备用自己的存款做些什么事情呢?”让学生自由讨论,教师及时表扬那些准备用自己存款做些有意义的事情的学生,适时进行勤俭节约的教育。
2.做“整理和复习”第2题。
请一名学生读题。
提问:“什么叫本金、利息、利率?利息的意义是什么?”
“利息是怎样计算的?”
让几名学生回答.然后将本金、利息、利率的概念用幻灯显示,请学生齐读一遍。板书利息的计算公式:利息=本金×利率×时间;
3.做“整理和复习”第4题。
请一名学生读题:另请两名学生分别对两个问题加以回答。
4.做练习三的第3、4题。
把全体学生分或两组.一组做第3题,另一组做第4题,答案直接写在课堂练习
本上:教师巡视.及时纠正学生中间出现的错误。最后进行集体订正。
二、复习有关利息、成数的应用题
1.做“整理和复习”第3题:
请一名学生读题。
提问:“要求利息,必须知道哪些数据?”(引导学生在题中找出本金、利率、时间 各是多少。)
“计算利息的公式是什么?”(引导学生看黑板上的公式。)。
让一名学生到黑板前做,其余学生做在练习本上。教师一边巡视,一边及时纠正学生中出现的错误。最后集体订正。
2.做练习三的第1题。
请一名学生读题。教师无需用任何提示,直接让学生计算利息。教师行间巡视,然后集体订正:
小结:我们国家还有许多贫困地区的儿童因为家庭困难而失学,许多小朋友都像小英一样把零用钱节省下来存入银行,既支援了国家建设,又可以把利息捐献给“希望工程”。我们也应该向他们学习,平时勤俭节约,不乱花钱,为贫困地区的儿童献一份爱心。
3.做练习三的第2题。
请一名学生读题。
教师说明:购买建设债券是支援国家建设的另一种方式,和储蓄在实质上是一样的。只是债券的利率一般高于定期储蓄。
抽取两名学生到黑板前做,其余学生做在课堂练习本上。教师巡视,等全体学生做完以后,集体订正。尤其要提醒学生注意题目要求的是“到期时一共能取出多少元?”所以在求出利息以后,不要忘记把本金加上。
4.做“整理和复习”第5题。
请一名学生读题。
提问:“一成五是多少?”
“这道题里单位‘1’是谁?”
“可以用什么方法计算?哪种方法更简便?”(方程解法和算术解法)
分别请两名学生回答这两个问题。
请两名学生到黑板前做,分别用方程解法和算术解法进行解答,其余学生做在课堂练习本上。教师边巡视,边纠正学生出现的错误。最后进行集体订正。
5.做练习三的第5题。
请一名学生到黑板前做,其余学生做在课堂练习本上。教师巡视,集体订正.
三、作业
练习三的第6题。
怎么写数学公开课教案设计篇6
活动目标
1、复习巩固对人民币元、角的认识,进行点数并记录。
2、知道人民币可以在市场上流通用于购买物品,学习简单的使用方法,练习50以内的加减。
3、培养幼儿思维的灵活性及社会交往能力。
4、让幼儿学习简单的数学题目。
5、引导幼儿积极与材料互动,体验数学活动的乐趣。
活动准备
1、课件
2、不同面值的人民币
活动过程
一、观察画面,认识、区分人民币。
1、取出钱币,请幼儿说一说画面上的钱币分别是多少。
2、引导幼儿仔细观察各种钱币上的图片,比较这些钱币的不同。
可根据钱币的明显特征,如数字、文字、图片色彩等加深记忆。
二、进行“装钱包”游戏,巩固对人民币的认识。
按照老师的指令将不同面值的钱币放到钱包里,
三、换钱游戏“我们一样多”,学习钱币等值兑换。
1、教师拿出一张五元钱,幼儿利用角币任意组合,与五元等值。
鼓励幼儿说出自己的组合方法,最后教师帮助幼儿归纳五元钱的不同兑换方法,展示在黑板上。
2、逐步引导幼儿进行10、20、50的兑换。
四、情境游戏“买水果、买玩具”,练习购物。
怎么写数学公开课教案设计篇7
1、知识与技能:
(1)认识刻度尺,初步认识长度单位厘米cm,借助实物初步建立1厘米的长度观念。
(2)初步学会用刻度尺测量物体的长度,并通过估测,形成初步的估测意识。
2、过程与方法:
经历统一长度单位的过程,体会统一长度单位的必要性。
3、情感态度和价值观:
在测量活动中,体验合作学习的乐趣,养成做事严谨、认真的习惯。
教学重点:掌握1厘米的长度单位,用厘米尺测量物体长度
教学难点:用度尺测量物体长度的正确方法
教学工具:
课件、数学课文、铅笔等
教学过程:
1、情景导入
提出问题。
教师:同学们,比一比这两本书,哪本长,哪本短呢?两本书到底有多长,有多短呢?大家想不想知道?今天我们这几课就学习这个问题。
2、探究新知
学习第2页例1。
提出问题:
a、同学们,你们知道我们的课桌有多长吗?小组讨论。
b、交流汇报:刚才同学们想了很多方法,大多用铅笔、铅笔盒、课本做为工作测量。下面每4个人为一组和老师一起用手测量课桌的长度。
c、动手操作,合作完成。
汇报:相同的课桌为什么测量的结果不同呢?学生的五拃长,老师的三拃长。
因为选用的是不同的手,结果一定会是不同的。
归纳:要想得到相同的答案,应选用同样的物品作为标准进行测量。
学习第3页例2
a、请同学们拿出自己的直尺,看看上面都有什么?
指名回答,教师总结,
数字小格大格厘米。
尺子上的线有长有短,我们叫它刻度线。
0在最左端,尺子上的0表示起点。
b、我们身边有哪些物品是1厘米?
拿出课前准备好的图钉、田字格本,小组合作,共同操作。
学习第3页例3
a、发一张课前准好的彩纸,请同学们先估量一下它的长度,然后动手操作量一量。
b、请一名同学上前操作,看看是否正确,然后同学评议。
教师:一定要把彩纸的左端对准直尺上的刻度0,然后看右端在哪个数字上,就是几厘米。
3、课堂练习
学完测量的方法和注意的事项,让学生试着测量准备好的铅笔等物体。
教师提出要求:
a、正确准确的测量自己准备好的物体(铅笔、橡皮、小刀等)
b、先独立测量后小组交流
c、小组合作探究。师巡视指导,引导学生注意直尺要水平放,物体的左端要对准直尺上的“0”刻度。
4、巩固提升
用直尺测量自己的数学课文的短边。为了照顾理解能力差点的孩子,巩固提升也是由易到难的安排。
课件出示两种测量方法,让学生判断哪种是正确的,这样的练习目的也是为了让学生更好更准确的掌握测量的方法。
课后小结:
a、提问:
这节课你学到了什么?
b、教师总结
1、厘米是最小的长度单位,在里面尺上,每相邻两个数之间是1厘米。
2、用厘米作单位测量物体时,要把直尺的“0”刻度对准物体的左端,再看物体的右端对着刻度几,就是几厘米。
怎么写数学公开课教案设计篇8
直线的方程
教学目标
(1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程.
(2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程.
(3)掌握直线方程各种形式之间的互化.
(4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力.
(5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点.
(6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法.
教学建议
1.教材分析
(1)知识结构
由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式.
(2)重点、难点分析
①本节的重点是直线方程的点斜式、两点式、一般式,以及根据具体条件求出直线的方程.
解析几何有两项根本性的任务:一个是求曲线的方程;另一个就是用方程研究曲线.本节内容就是求直线的方程,因此是非常重要的内容,它对以后学习用方程讨论直线起着直接的作用,同时也对曲线方程的学习起着重要的作用.
直线的点斜式方程是平面解析几何中所求出的第一个方程,是后面几种特殊形式的源头.学生对点斜式学习的效果将直接影响后继知识的学习.
②本节的难点是直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程的关系证明.
2.教法建议
(1)教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显.教学中各部分知识之间过渡要自然流畅,不生硬.
(2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习“曲线方程”打下基础.
直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证.教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点
(3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解.
(4)教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件.两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率.因此,直线方程的两点式和点斜式在直线方程的几种形式中占有很重要的地位,而已知两点可以求得斜率,所以点斜式又可推出两点式(斜截式和截距式仅是它们的特例),因此点斜式最重要.教学中应突出点斜式、两点式和一般式三个教学高潮.
求直线方程需要两个独立的条件,要依不同的几何条件选用不同形式的方程.根据两个条件运用待定系数法和方程思想求直线方程.
(5)注意正确理解截距的概念,截距不是距离,截距是直线(也是曲线)与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数(或非负实数).
(6)本节中有不少与函数、不等式、三角函数有关的问题,是函数、不等式、三角与直线的重要知识交汇点之一,教学中要适当选择一些有关的问题指导学生练习,培养学生的综合能力.
(7)直线方程的理论在其他学科和生产生活实际中有大量的应用.教学中注意联系实际和其它学科,教师要注意引导,增强学生用数学的意识和能力.
(8)本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能更好地掌握,而不是仅停留在观念上.