教育巴巴 > 教学设计 >

高三数学教案怎么写

时间: 新华 教学设计

高三数学教案怎么写篇1

高中数学反函数教案

教学目标

1.使学生了解反函数的概念;

2.使学生会求一些简单函数的反函数;

3.培养学生用辩证的观点观察、分析解决问题的能力。

教学重点

1.反函数的概念;

2.反函数的求法。

教学难点

反函数的概念。

教学方法

师生共同讨论

教具装备

幻灯片2张

第一张:反函数的定义、记法、习惯记法。(记作A);

第二张:本课时作业中的预习内容及提纲。

教学过程

(I)讲授新课

(检查预习情况)

师:这节课我们来学习反函数(板书课题)§2.4.1 反函数的概念。

同学们已经进行了预习,对反函数的概念有了初步的了解,谁来复述一下反函数的定义、记法、习惯记法?

生:(略)

(学生回答之后,打出幻灯片A)。

师:反函数的定义着重强调两点:

(1)根据y= f(x)中x与y的关系,用y把x表示出来,得到x=φ(y);

(2)对于y在c中的任一个值,通过x=φ(y),x在A中都有惟一的值和它对应。

师:应该注意习惯记法是由记法改写过来的'。

师:由反函数的定义,同学们考虑一下,怎样的映射确定的函数才有反函数呢?

生:一一映射确定的函数才有反函数。

(学生作答后,教师板书,若学生答不来,教师再予以必要的启示)。

师:在y= f(x)中与y= f -1(y)中的x、y,所表示的量相同。(前者中的x与后者中的x都属于同一个集合,y也是如此),但地位不同(前者x是自变量,y是函数值;后者y是自变量,x是函数值。)

在y= f(x)中与y= f –1(x)中的x都是自变量,y都是函数值,即x、y在两式中所处的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y是后者中的x。)

由此,请同学们谈一下,函数y= f(x)与它的反函数y= f –1(x)两者之间,定义域、值域存在什么关系呢?

生:(学生作答,教师板书)函数的定义域,值域分别是它的反函数的值域、定义域。

师:从反函数的概念可知:函数y= f (x)与y= f –1(x)互为反函数。

从反函数的概念我们还可以知道,求函数的反函数的方法步骤为:

(1)由y= f (x)解出x= f –1(y),即把x用y表示出;

(2)将x= f –1(y)改写成y= f –1(x),即对调x= f –1(y)中的x、y。

(3)指出反函数的定义域。

下面请同学自看例1

(II)课堂练习 课本P68练习1、2、3、4。

(III)课时小结

本节课我们学习了反函数的概念,从中知道了怎样的映射确定的函数才有反函数并求函数的反函数的方法步骤,大家要熟练掌握。

(IV)课后作业

一、课本P69习题2.4 1、2。

二、预习:互为反函数的函数图象间的关系,亲自动手作题中要求作的图象。

板书设计

课题: 求反函数的方法步骤:

定义:(幻灯片)

注意: 小结

一一映射确定的

函数才有反函数

函数与它的反函

数定义域、值域的关系。

高三数学教案怎么写篇2

一.课标要求:

(1)空间向量及其运算

①经历向量及其运算由平面向空间推广的过程;

②了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示;

③掌握空间向量的线性运算及其坐标表示;

④掌握空间向量的数量积及其坐标表示,能运用向量的数量积判断向量的共线与垂直。

(2)空间向量的应用

①理解直线的方向向量与平面的法向量;

②能用向量语言表述线线、线面、面面的垂直、平行关系;

③能用向量方法证明有关线、面位置关系的一些定理(包括三垂线定理);

④能用向量方法解决线线、线面、面面的夹角的计算问题,体会向量方法在研究几何问题中的作用。

二.命题走向

本讲内容主要涉及空间向量的坐标及运算、空间向量的应用。本讲是立体几何的核心内容,高考对本讲的考察形式为:以客观题形式考察空间向量的概念和运算,结合主观题借助空间向量求夹角和距离。

预测20_年高考对本讲内容的考查将侧重于向量的应用,尤其是求夹角、求距离,教材上淡化了利用空间关系找角、找距离这方面的讲解,加大了向量的应用,因此作为立体几何解答题,用向量法处理角和距离将是主要方法,在复习时应加大这方面的训练力度。

三.要点精讲

1.空间向量的概念

向量:在空间,我们把具有大小和方向的量叫做向量。如位移、速度、力等。

相等向量:长度相等且方向相同的向量叫做相等向量。

表示方法:用有向线段表示,并且同向且等长的有向线段表示同一向量或相等的向量。

说明:①由相等向量的概念可知,一个向量在空间平移到任何位置,仍与原来的向量相等,用同向且等长的有向线段表示;②平面向量仅限于研究同一平面内的平移,而空间向量研究的是空间的平移。

2.向量运算和运算率

加法交换率:

加法结合率:

数乘分配率:

说明:①引导学生利用右图验证加法交换率,然后推广到首尾相接的若干向量之和;②向量加法的平行四边形法则在空间仍成立。

3.平行向量(共线向量):

如果表示空间向量的有向线段所在的直线互相平行或重合,则这些向量叫做共线向量或平行向量。平行于记作∥。

注意:当我们说、共线时,对应的有向线段所在直线可能是同一直线,也可能是平行直线;当我们说、平行时,也具有同样的意义。

共线向量定理:对空间任意两个向量()、,∥的充要条件是存在实数使=

注:⑴上述定理包含两个方面:①性质定理:若∥(0),则有=,其中是唯一确定的实数。②判断定理:若存在唯一实数,使=(0),则有∥(若用此结论判断、所在直线平行,还需(或)上有一点不在(或)上)。

⑵对于确定的和,=表示空间与平行或共线,长度为,当0时与同向,当0时与反向的所有向量。

⑶若直线l∥,,P为l上任一点,O为空间任一点,下面根据上述定理来推导的表达式。

推论:如果l为经过已知点A且平行于已知非零向量的直线,那么对任一点O,点P在直线l上的充要条件是存在实数t,满足等式

①其中向量叫做直线l的方向向量。

在l上取,则①式可化为②

当时,点P是线段AB的中点,则③

①或②叫做空间直线的向量参数表示式,③是线段AB的中点公式。

注意:⑴表示式(﹡)、(﹡﹡)既是表示式①,②的基础,也是常用的直线参数方程的表示形式;⑵推论的用途:解决三点共线问题。⑶结合三角形法则记忆方程。

4.向量与平面平行:

如果表示向量的有向线段所在直线与平面平行或在平面内,我们就说向量平行于平面,记作∥。注意:向量∥与直线a∥的联系与区别。

共面向量:我们把平行于同一平面的向量叫做共面向量。

共面向量定理如果两个向量、不共线,则向量与向量、共面的充要条件是存在实数对x、y,使①

注:与共线向量定理一样,此定理包含性质和判定两个方面。

推论:空间一点P位于平面MAB内的充要条件是存在有序实数对x、y,使

④或对空间任一定点O,有⑤

在平面MAB内,点P对应的实数对(x,y)是唯一的。①式叫做平面MAB的向量表示式。

又∵代入⑤,整理得

⑥由于对于空间任意一点P,只要满足等式④、⑤、⑥之一(它们只是形式不同的同一等式),点P就在平面MAB内;对于平面MAB内的任意一点P,都满足等式④、⑤、⑥,所以等式④、⑤、⑥都是由不共线的两个向量、(或不共线三点M、A、B)确定的空间平面的向量参数方程,也是M、A、B、P四点共面的充要条件。

5.空间向量基本定理:如果三个向量、、不共面,那么对空间任一向量,存在一个唯一的有序实数组x,y,z,使

说明:⑴由上述定理知,如果三个向量、、不共面,那么所有空间向量所组成的集合就是,这个集合可看作由向量、、生成的,所以我们把{,,}叫做空间的一个基底,,,都叫做基向量;⑵空间任意三个不共面向量都可以作为空间向量的一个基底;⑶一个基底是指一个向量组,一个基向量是指基底中的某一个向量,二者是相关联的不同的概念;⑷由于可视为与任意非零向量共线。与任意两个非零向量共面,所以,三个向量不共面就隐含着它们都不是。

推论:设O、A、B、C是不共面的四点,则对空间任一点P,都存在唯一的有序实数组,使

6.数量积

(1)夹角:已知两个非零向量、,在空间任取一点O,作,,则角AOB叫做向量与的夹角,记作

说明:⑴规定0,因而=;

⑵如果=,则称与互相垂直,记作

⑶在表示两个向量的夹角时,要使有向线段的起点重合,注意图(3)、(4)中的两个向量的夹角不同,

图(3)中AOB=,

图(4)中AOB=,

从而有==.

(2)向量的模:表示向量的有向线段的长度叫做向量的长度或模。

(3)向量的数量积:叫做向量、的数量积,记作。

即=,

向量:

(4)性质与运算率

⑴。⑴

⑵=0⑵=

⑶⑶

四.典例解析

题型1:空间向量的概念及性质

例1.有以下命题:①如果向量与任何向量不能构成空间向量的一组基底,那么的关系是不共线;②为空间四点,且向量不构成空间的一个基底,那么点一定共面;③已知向量是空间的一个基底,则向量,也是空间的一个基底。其中正确的命题是()

①②①③②③①②③

解析:对于①如果向量与任何向量不能构成空间向量的一组基底,那么的关系一定共线所以①错误。②③正确。

例2.下列命题正确的是()

若与共线,与共线,则与共线;

向量共面就是它们所在的直线共面;

零向量没有确定的方向;

若,则存在唯一的实数使得;

解析:A中向量为零向量时要注意,B中向量的共线、共面与直线的共线、共面不一样,D中需保证不为零向量。

题型2:空间向量的基本运算

例3.如图:在平行六面体中,为与的交点。若,,,则下列向量中与相等的向量是()

例4.已知:且不共面.若∥,求的值.

题型3:空间向量的坐标

例5.(1)已知两个非零向量=(a1,a2,a3),=(b1,b2,b3),它们平行的充要条件是()

A.:=:B.a1b1=a2b2=a3b3

C.a1b1+a2b2+a3b3=0D.存在非零实数k,使=k

(2)已知向量=(2,4,x),=(2,y,2),若=6,,则x+y的值是()

A.-3或1B.3或-1C.-3D.1

(3)下列各组向量共面的是()

A.=(1,2,3),=(3,0,2),=(4,2,5)

B.=(1,0,0),=(0,1,0),=(0,0,1)

C.=(1,1,0),=(1,0,1),=(0,1,1)

D.=(1,1,1),=(1,1,0),=(1,0,1)

解析:(1)D;点拨:由共线向量定线易知;

(2)A点拨:由题知或;

例6.已知空间三点A(-2,0,2),B(-1,1,2),C(-3,0,4)。设=,=,(1)求和的夹角;(2)若向量k+与k-2互相垂直,求k的值.

思维入门指导:本题考查向量夹角公式以及垂直条件的应用,套用公式即可得到所要求的结果.

解:∵A(-2,0,2),B(-1,1,2),C(-3,0,4),=,=,

=(1,1,0),=(-1,0,2).

(1)cos==-,

和的夹角为-。

(2)∵k+=k(1,1,0)+(-1,0,2)=(k-1,k,2),

k-2=(k+2,k,-4),且(k+)(k-2),

(k-1,k,2)(k+2,k,-4)=(k-1)(k+2)+k2-8=2k2+k-10=0。

则k=-或k=2。

点拨:第(2)问在解答时也可以按运算律做。(+)(k-2)=k22-k-22=2k2+k-10=0,解得k=-,或k=2。

题型4:数量积

例7.设、、c是任意的非零平面向量,且相互不共线,则

①()-()=②--③()-()不与垂直

④(3+2)(3-2)=92-42中,是真命题的有()

A.①②B.②③C.③④D.②④

答案:D

解析:①平面向量的数量积不满足结合律.故①假;

②由向量的减法运算可知、、-恰为一个三角形的三条边长,由两边之差小于第三边,故②真;

③因为[()-()]=()-()=0,所以垂直.故③假;

例8.(1)已知向量和的夹角为120,且=2,=5,则(2-)=_____.

(2)设空间两个不同的单位向量=(x1,y1,0),=(x2,y2,0)与向量=(1,1,1)的夹角都等于。(1)求x1+y1和x1y1的值;(2)求,的大小(其中0,。

解析:(1)答案:13;解析:∵(2-)=22-=22-cos120=24-25(-)=13。

(2)解:(1)∵==1,x+y=1,x=y=1.

又∵与的夹角为,=cos==.

又∵=x1+y1,x1+y1=。

另外x+y=(x1+y1)2-2x1y1=1,2x1y1=()2-1=.x1y1=。

(2)cos,==x1x2+y1y2,由(1)知,x1+y1=,x1y1=.x1,y1是方程x2-x+=0的解.

或同理可得或

∵,或

cos,+=+=.

∵0,,,=。

评述:本题考查向量数量积的运算法则。

题型5:空间向量的应用

例9.(1)已知a、b、c为正数,且a+b+c=1,求证:++4。

(2)已知F1=i+2j+3k,F2=-2i+3j-k,F3=3i-4j+5k,若F1,F2,F3共同作用于同一物体上,使物体从点M1(1,-2,1)移到点M2(3,1,2),求物体合力做的功。

解析:(1)设=(,,),=(1,1,1),

则=4,=.

∵,

=++=4.

当==时,即a=b=c=时,取=号。

例10.如图,直三棱柱中,求证:

证明:

五.思维总结

本讲内容主要有空间直角坐标系,空间向量的坐标表示,空间向量的坐标运算,平行向量,垂直向量坐标之间的关系以及中点公式.空间直角坐标系是选取空间任意一点O和一个单位正交基底{i,j,k}建立坐标系,对于O点的选取要既有作图的直观性,而且使各点的坐标,直线的坐标表示简化,要充分利用空间图形中已有的直线的关系和性质;空间向量的坐标运算同平面向量类似,具有类似的运算法则.一个向量在不同空间的表达方式不一样,实质没有改变.因而运算的方法和运算规律结论没变。如向量的数量积ab=abcos在二维、三维都是这样定义的,不同点仅是向量在不同空间具有不同表达形式.空间两向量平行时同平面两向量平行时表达式不一样,但实质是一致的,即对应坐标成比例,且比值为,对于中点公式要熟记。

对本讲内容的考查主要分以下三类:

1.以选择、填空题型考查本章的基本概念和性质

此类题一般难度不大,用以解决有关长度、夹角、垂直、判断多边形形状等问题。

2.向量在空间中的应用

在空间坐标系下,通过向量的坐标的表示,运用计算的方法研究三维空间几何图形的性质。

在复习过程中,抓住源于课本,高于课本的指导方针。本讲考题大多数是课本的变式题,即源于课本。因此,掌握双基、精通课本是本章关键。

高三数学教案怎么写篇3

一次函数的的教案

一、教学目标

1、理解一次函数和正比例函数的概念,以及它们之间的关系。

2、能根据所给条件写出简单的一次函数表达式。

二、能力目标

1、经历一般规律的探索过程、发展学生的抽象思维能力。

2、通过由已知信息写一次函数表达式的过程,发展学生的数学应用能力。

三、情感目标   1、通过函数与变量之间的关系的联系,一次函数与一次方程的联系,发展学生的数学思维。

2、经历利用一次函数解决实际问题的过程,发展学生的数学应用能力。

四、教学重难点   1、一次函数、正比例函数的概念及关系。   2、会根据已知信息写出一次函数的表达式。

五、教学过程

1、新课导入   有关函数问题在我们日常生活中随处可见,如弹簧秤有自然长度,在弹性限度内,随着所挂物体的重量的'增加,弹簧的长度相应的会拉长,那么所挂物体的重量与弹簧的长度之间就存在某种关系,究竟是什么样的关系,请看:   某弹簧的自然长度为 3厘米,在弹性限度内,所挂物体的质量x每增加 1千克、弹簧长度y增加 0.5厘米。

(1)计算所挂物体的质量分别为 1千克、 2千克、 3千克、 4千克、 5千克时弹簧的长度,

(2)你能写出x与y之间的关系式吗?

分析:当不挂物体时,弹簧长度为 3厘米,当挂 1千克物体时,增加 0.5厘米,总长度为 3.5厘米,当增加 1千克物体,即所挂物体为 2千克时,弹簧又增加 0.5厘米,总共增加 1厘米,由此可见,所挂物体每增加 1千克,弹簧就伸长 0.5厘米,所挂物体为x千克,弹簧就伸长0.5x厘米,则弹簧总长为原长加伸长的长度,即y=3+0.5x。

2、做一做   某辆汽车油箱中原有汽油 100升,汽车每行驶 50千克耗油 9升。你能写出x与y之间的关系吗?(y=1000.18x或y=100 x)   接着看下面这些函数,你能说出这些函数有什么共同的特点吗?上面的几个函数关系式,都是左边是因变量,右边是含自变量的代数式,并且自变量和因变量的指数都是一次。

3、一次函数,正比例函数的概念   若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

4、例题讲解   例1:下列函数中,y是x的一次函数的是( )   ①y=x6;②y= ;③y= ;④y=7x   A、①②③ B、①③④ C、①②③④ D、②③④   分析:这道题考查的是一次函数的概念,特别要强调一次函数自变量与因变量的指数都是1,因而②不是一次函数,答案为B

高三数学教案怎么写篇4

一、教材结构与内容简析

1、本节内容在全书及章节的地位:

《向量》出现在高中数学第一册(下)第五章第1节。本节内容是传统意义上《平面解析几何》的基础部分,因此,在《数学》这门学科中,占据极其重要的地位。

2、数学思想方法分析:

(1)从“向量可以用有向线段来表示”所反映出的“数”与“形”之间的转化,就可以看到《数学》本身的“量化”与“物化”。

(2)从建构手段角度分析,在教材所提供的材料中,可以看到“数形结合”思想。

二、教学目标

根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

1、基础知识目标:掌握“向量”的概念及其表示方法,能利用它们解决相关的问题。

2、能力训练目标:逐步培养学生观察、分析、综合和类比能力,会准确地阐述自己的思路和观点,着重培养学生的认知和元认知能力。

3、创新素质目标:引导学生从日常生活中挖掘数学内容,培养学生的发现意识和整合能力;《向量》的教学旨在培养学生的“知识重组”意识和“数形结合”能力。

4、个性品质目标:培养学生勇于探索,善于发现,独立意识以及不断超越自我的创新品质。

三、教学重点、难点、关键

重点:向量概念的引入。

难点:“数”与“形”完美结合。

关键:本节课通过“数形结合”,着重培养和发展学生的认知和变通能力。

四、教材处理

建构就是认知结构的组建,其过程一般是先把知识点按照逻辑线索和内在联系,串成知识线,再由若干条知识线形成知识面,最后由知识面按照其内容、性质、作用、因果等关系组成综合的知识体。本课时为何提出“数形结合”呢,应该说,这一处理方法正是基于此理论的体现。其次,本节课处理过程力求达到解决如下问题:知识是如何产生的?如何发展?又如何从实际问题抽象成为数学问题,并赋予抽象的数学符号和表达式,如何反映生活中客观事物之间简单的和谐关系。

五、教学模式

教学过程是教师活动和学生活动的十分复杂的动态性总体,是教师和全体学生积极参与下,进行集体认识的过程。教为主导,学为主体,又互为客体。启动学生自主性学习,启发引导学生实践数学思维的过程,自得知识,自觅规律,自悟原理,主动发展思维和能力。

六、学习方法

1、让学生在认知过程中,着重掌握元认知过程。

2、使学生把独立思考与多向交流相结合。

高三数学教案怎么写篇5

集合的含义与表示

一.教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,

一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合

论及其所反映的数学思想,在越来越广泛的领域种得到应用。

二.目标分析:

教学重点.难点

重点:集合的含义与表示方法.难点:表示法的恰当选择.

教学目标

l.知识与技能

(1)通过实例,了解集合的含义,体会元素与集合的属于关系;

(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;

(4)会用集合语言表示有关数学对象;

2.过程与方法

(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.

(2)让学生归纳整理本节所学知识.

3.情感.态度与价值观

使学生感受到学习集合的必要性,增强学习的积极性.

三.教法分析

1.教学方法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2.教学手段:在教学中使用投影仪来辅助教学.

四.过程分析

(一)创设情景,揭示课题

1.教师首先提出问题:(1)介绍自己的家庭、原来就读的学校、现在的班级。

(2)问题:像“家庭”、“学校”、“班级”等,有什么共同特征?

引导学生互相交流.与此同时,教师对学生的活动给予评价.

2.活动:(1)列举生活中的集合的例子;(2)分析、概括各实例的共同特征

由此引出这节要学的内容。

设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫

(二)研探新知,建构概念

1.教师利用多媒体设备向学生投影出下面7个实例:

(1)1—20以内的所有质数;(2)我国古代的四大发明;

(3)所有的安理会常任理事国;(4)所有的正方形;

(5)海南省在20__年9月之前建成的所有立交桥;

(6)到一个角的两边距离相等的所有的点;

(7)国兴中学20__年9月入学的高一学生的全体.

2.教师组织学生分组讨论:这7个实例的共同特征是什么?

3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.

4.教师指出:集合常用大写字母A,B,C,D,?表示,元素常用小写字母a,b,c,d?表示.

设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神

(三)质疑答辩,发展思维

1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.

2.教师组织引导学生思考以下问题:

判断以下元素的全体是否组成集合,并说明理由:

(1)大于3小于11的偶数;(2)我国的小河流.让学生充分发表自己的建解.

3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.

4.教师提出问题,让学生思考

b是(1)如果用A表示高—(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,

高一(4)班的一位同学,那么a,b与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.

如果a是集合A的元素,就说a属于集合A,记作a?A.

如果a不是集合A的元素,就说a不属于集合A,记作a?A.

(2)如果用A表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A的关系分别是什么?请用数学符号分别表示.

(3)让学生完成教材第6页练习第1题.

5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A组第1题.

6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:

(1)要表示一个集合共有几种方式?

(2)试比较自然语言.列举法和描述法在表示集合时,各自的特点?适用的对象是什么?

(3)如何根据问题选择适当的集合表示法?

使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。

(四)巩固深化,反馈矫正

教师投影学习:

(1)用自然语言描述集合{1,3,5,7,9};(2)用例举法表示集合A?{x?N1?x?8}

(3)试选择适当的方法表示下列集合:教材第6页练习第2题.

设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象

(五)归纳小结,布置作业

小结:在师生互动中,让学生了解或体会下例问题:

1.本节课我们学习了哪些知识内容?2.你认为学习集合有什么意义?

3.选择集合的表示法时应注意些什么?

设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。

作业:1.课后书面作业:第13页习题1.1A组第4题.

2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种

呢?如何表示?请同学们通过预习教材.

五.板书分析

高三数学教案怎么写篇6

一、复习内容

平面向量的概念及运算法则

二、复习重点

向量的概念及运算法则的运用及其用向量知识,实现几何与代数之间的等价转化。

三、具体教学过程

1.学生准备课前预习回家做作业。其具体步骤是:相应知识的系统梳理;典型例题的摘录;搜集平时作业,测验作业中存在的典型错误;提出针性训练的练习题;准备思考题,以及家庭作业。学生的准备可以从中选择一项,学有余力的同学可以多选。

2.学生可以分为出题组、答题组和归纳组(每组3~4人),三个小组又可构成一个大的探究组,各小组的角色在其过程中可以互换;教师从旁引导,控制教学节奏,并有机、适时地对有争议的问题或引起认知冲突的部分作相应的释疑,最后选出具有代表性的题目和表达最完整的归纳展示给学生。

出题组:在教师的引导下,确立出题意图后,可以自编或在课本、资料中寻找适当的例题。

答题组:迅速给出题目答案或解题思路步骤(由学生自己讲解),同时确立该题所考察的知识点和方法,并互相讨论解题过程中的易错点和容易忽视的问题。

归纳组:对照相应的问题,归纳出解决问题的关键和方法及其需要注意的事项。并以书面的形式给出,可充分利用投影的方式展示给学生。

3.教学中教师按上述环节顺序,让每一环节准备相同内容,学生自己选择一人担任主讲,其余同学组成评议组,主讲讲解完后,由评议组补充、完善或评价、矫正……。

4.教师控制教学节奏,并有机、适时地对有争议的问题或引起认知冲突的部分作相应的释疑。

5.在学生自己完成这一复习环节后,师生共同完成教师的精选题例题的讲解,同样采用启发讨论式,尽可能地让学生自己完成问题的解答。

6.课尾教师进行点评、归纳、小结(由学生自己完成),并评选本课“主讲明星”与“评议”。

四、案例分析及其反思

1.让学生走上讲台,既为学生提供展示才华的舞台,满足其表现欲,尝试成功感,又让学生亲历知识掌握的构建过程。

2.由于要自己完成课前的准备作业和讲解内容,迫使学生进行章节的全面复习,对知识进行系统整理,这一复习环节,却真正达到了学生自觉地学习,使学生由被动学习转化为主动学习,提高学习效率。

3.组织这样的课堂教学流程,培养了学生口才、组织能力、逻辑思维能力、应变能力、心理承受能力等等,促使学生的个性达到良性的发展。

4.由于改变了课堂的传统座位排法,学生得到了互相帮助的机会,学习较差的学生能直接得到学有余力的同学的帮助和指导,更容易掌握和理解所学的知识,调动兴趣,提高了学习能力。互帮互学为学生营造了一个轻松、愉快的学习氛围。打破教师出题,学生解答的单调教学模式。通过学生自己变式,充分体现学生的主体性,使他们对一类问题有根本性地掌握,起到以点带面的效果。通过以组题的形式让学生通过有目的的联想,探索习题之间的内在联系,明确问题产生的背景,领会问题的实质,进而找到相应的解题策略,培养学生的思维的灵活性和广阔性,进一步完善、深化学生的认知结构。

5.教学模式恰当,引人入胜

“探究讨论式”是一种常用的教学方法。然而,本课探索“向量的应用”却颇有难度,尤其是几何与代数之间的问题转化。为了突破这一难点,首先复习旧知识,预备铺垫,接着设计简单的几何图形中的代数求值问题。教师在思想方法上的点拔,思维层次上的递进,让学生分享自己成果的乐趣,体现了“学生是数学学习的主人,教师是数学学习的组织者、引领者与合作者。”的教学理念。整个教学设计,思路清楚,层次转换自然,点拨及时,自然流畅,引人入胜。

6.体现先进理念,合作探索

建构主义认为:学生的学习不是被动的接受,而是一种主动的学习,一种知识的重组或重新建构的过程。因此,学习方式的转变,对学生的学习至关重要,也是二期课改成败的要害。本课注重学生学习方式的转变,教者适时点拨,发现问题,培养探索精神。从轻易混淆的性质入手,让学生发现问题,出现迷惑,接着,对向量平行充要条件的研究,培养了学生思维的深刻性,通过概念的辨析,使学生对向量有了更深的理解,此时推出综合应用题,过渡自然,符合认知规律。同学探究,思维得到进一步的升华,攻克难点,培养了合作精神。通过展示研究成果,让学生感到爱好盎然而布满探索求知的愿望,学生的主体地位得到了淋漓尽致的发挥。体验成功的喜悦,分享快乐,提高了学习的积极性。

熟知,课堂教学“以教师为主导,以学生为主体”这句话好说难做。如何落在实处,本课做了有益的尝试。案例的设计,具有时代气息,以问题为先导,直接引导学生进入思考的境界。教案的设计说明,体现了教者“以学生发展为本的教学理念”。

《数学课程标准》指出:“教师应激发学生的积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探索和合作交流的过程中真正理解和掌握基本的数学知识与技能……”。这就是一次很好的机会,教师要鼓励、引导学生敢于质疑、敢于实践,培养学生主动探究问题的能力,转变学生学习方式,即变单一的传授方式为学生自主体验、探究等学习方式。

复习课上都有一个突出的矛盾,那就是时间太紧,既要处理足量的题目,又要充分展示学生的思维过程,二者似乎是很难兼顾。教师可采用“焦点访谈”法较好地解决这个问题,如:例2和例2的变式1的探究,因题目是“入口宽,上手易”,但在连续探究的过程中,在两种方法会得出两个相反的答案这一点上搁浅受阻(这一点被称为“焦点”,其余的则被称为“外围”)。这里教师不必在外围处花精力去进行浅表性的启发诱导,好钢要用在刀刃上,而要在焦点处发动学生探寻突破口,通过交流“访谈”,集中学生的智慧,让学生的思维在关键处闪光,能力在要害处增长,弱点在隐蔽处暴露,意志在细微处磨砺。

高三数学教案怎么写篇7

一、教材分析

1、教材内容

本节课是苏教版第二章《函数概念和基本初等函数Ⅰ》2、1、3函数简单性质的第一课时,该课时主要学习增函数、减函数的定义,以及应用__解决一些简单问题、

2、教材所处地位、作用

函数的性质是研究函数的基石,函数的单调性是首先研究的一个性质、通过对本节课的学习,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题、通过上述活动,加深对函数本质的认识、函数的单调性既是学生学过的函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性的基础、此外在比较数的大小、函数的定性分析以及相关的数学综合问题中也有广泛的应用,它是整个高中数学中起着承上启下作用的核心知识之一、从方法__的角度分析,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法、

3、教学目标

(1)知识与技能:使学生理解函数单调性的概念,掌握判别函数单调性的方法;

(2)过程与方法:从实际生活问题出发,引导学生自主探索函数单调性的概念,应用图象和单调性的__解决函数单调性问题,让学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力

(3)情感态度价值观:让学生体验数学的科学功能、符号功能和工具功能,培养学生直觉观察、探索发现、科学论证的良好的数学思维品质

4、重点与难点

教学重点:

(1)函数单调性的概念;

(2)运用函数单调性的定义判断一些函数的单调性

教学难点:

(1)函数单调性的知识形成;

(2)利用函数图象、单调性的定义判断和证明函数的单调性

二、教法分析与学法指导

本节课是一节较为抽象的数学概念课,因此,教法上要注意:

1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主体参与的积极性

2、在运用__解题的过程中,紧扣定义中的关键语句,通过学生的主体参与,逐个完成对各个难点的突破,以获得各类问题的解决

3、在鼓励学生主体参与的同时,不可忽视教师的主导作用、具体体现在设问、讲评和规范书写等方面,要教会学生清晰的思维、严谨的推理,并成功地完成书面表达

4、采用投影仪、多媒体等现代教学手段,增大教学容量和直观性

在学法上:

1、让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、研究问题和解决问题的能力

2、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的一个飞跃

54521