数学公开课课件教案
数学公开课课件教案篇1
教学目标
1.理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;
2.能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;
3.三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;
4.通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;
5.本节课通过行程问题说明法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。
教学建议
(一)重点、难点分析
本节教学的重点是依据法则熟练进行运算。难点是法则的理解。
(1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。
(2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。
(3)如果是同号相加,取相同的符号,并把绝对值相加。如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。一个数与0相加,仍得这个数。
(二)知识结构
(三)教法建议
1.对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。
2.法则是规定的,而教材开始部分的行程问题是为了说明加法法则的合理性。
3.应强调加法交换律“a+b=b+a”中字母a、b的任意性。
4.计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。不要盲目动手,应该先仔细观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。
5.可以给出一些类似“两数之和必大于任何一个加数”的判断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。
6.在探讨导出法则的行程问题时,可以尝试发挥多媒体教学的作用。用动画演示人或物体在同一直线上两次运动的过程,让学生更好的理解有理数运算法则。
教学设计示例
(第一课时)
教学目的
1.使学生理解有理数加法的意义,初步掌握有理数加法法则,并能准确地进行运算.
2.通过运算,培养学生的运算能力.
教学重点与难点
重点:熟练应用法则进行加法运算.
难点:法则的理解.
教学过程
(一)复习提问
1.有理数是怎么分类的?
2.有理数的绝对值是怎么定义的?一个有理数的绝对值的几何意义是什么?
3.有理数大小比较是怎么规定的?下列各组数中,哪一个较大?利用数轴说明?
-3与-2;|3|与|-3|;|-3|与0;
-2与|+1|;-|+4|与|-3|.
(二)引入新课
在小学算术中学过了加、减、乘、除四则运算,这些运算是在正有理数和零的范围内的运算.引入负数之后,这些运算法则将是怎样的呢?我们先来学运算.
(三)进行新课 (板书课题)
例1 如图所示,某人从原点0出发,如果第一次走了5米,第二次接着又走了3米,求两次行走后某人在什么地方?
两次行走后距原点0为8米,应该用加法.
为区别向东还是向西走,这里规定向东走为正,向西走为负.这两数相加有以下三种情况:
1.同号两数相加
(1)某人向东走5米,再向东走3米,两次一共走了多少米?
这是求两次行走的路程的和.
5+3=8
用数轴表示如图
从数轴上表明,两次行走后在原点0的东边.离开原点的距离是8米.因此两次一共向东走了8米.
可见,正数加正数,其和仍是正数,和的绝对值等于这两个加数的绝对值的和.
(2)某人向西走5米,再向西走3米,两次一共向东走了多少米?
显然,两次一共向西走了8米
(-5)+(-3)=-8
用数轴表示如图
从数轴上表明,两次行走后在原点0的西边,离开原点的距离是8米.因此两次一共向东走了-8米.
可见,负数加负数,其和仍是负数,和的绝对值也是等于两个加数的绝对值的和.
总之,同号两数相加,取相同的符号,并把绝对值相加.
例如,(-4)+(-5),……同号两数相加
(-4)+(-5)=-( ),…取相同的符号
4+5=9……把绝对值相加
∴ (-4)+(-5)=-9.
口答练习:
(1)举例说明算式7+9的实际意义?
(2)(-20)+(-13)=?
(3)
2.异号两数相加
(1)某人向东走5米,再向西走5米,两次一共向东走了多少米?
由数轴上表明,两次行走后,又回到了原点,两次一共向东走了0米.
5+(-5)=0
可知,互为相反数的两个数相加,和为零.
(2)某人向东走5米,再向西走3米,两次一共向东走了多少米?
由数轴上表明,两次行走后在原点o的东边,离开原点的距离是2米.因此,两次一共向东走了2米.
就是 5+(-3)=2.
(3)某人向东走3米,再向西走5米,两次一共向东走了多少米?
由数轴上表明,两次行走后在原点o的西边,离开原点的距离是2米.因此,两次一共向东走了-2米.
就是 3+(-5)=-2.
请同学们想一想,异号两数相加的法则是怎么规定的?强调和的符号是如何确定的?和的绝对值如何确定?
最后归纳
绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0.
例如(-8)+5……绝对值不相等的异号两数相加
8>5
(-8)+5=-( )……取绝对值较大的加数符号
8-5=3 ……用较大的绝对值减去较小的绝对值
∴(-8)+5=-3.
口答练习
用算式表示:温度由-4℃上升7℃,达到什么温度.
(-4)+7=3(℃)
3.一个数和零相加
(1)某人向东走5米,再向东走0米,两次一共向东走了多少米?
显然,5+0=5.结果向东走了5米.
(2)某人向西走5米,再向东走0米,两次一共向东走了多少米?
容易得出:(-5)+0=-5.结果向东走了-5米,即向西走了5米.
请同学们把(1)、(2)画出图来
由(1),(2)得出:一个数同0相加,仍得这个数.
总结有理数加法的三个法则.学生看书,引导他们看有理数加法运算的三种情况.
有理数加法运算的三种情况:
特例:两个互为相反数相加;
(3)一个数和零相加.
每种运算的法则强调:(1)确定和的符号;(2)确定和的绝对值的方法.
(四)例题分析
例1 计算(-3)+(-9).
分析:这是两个负数相加,属于同号两数相加,和的符号与加数相同(应为负),和的绝对值就是把绝对值相加(应为3+9=12)(强调相同、相加的特征).
解:(-3)+(-9)=-12.
例2
分析:这是异号两数相加,和的符号与绝对值较大的加数的符号相同(应为负),和的绝对值等于较大绝对值减去较小绝对值..(强调“两个较大”“一个较小”)
解:
解题时,先确定和的符号,后计算和的绝对值.
(五)巩固练习
1.计算(口答)
(1)4+9; (2) 4+(-9); (3)-4+9; (4)(-4)+(-9);
(5)4+(-4); (6)9+(-2); (7)(-9)+2; (8)-9+0;
2.计算
(1)5+(-22); (2)(-1.3)+(-8)
(3)(-0.9)+1.5; (4)2.7+(-3.5)
探究活动
题目 (1)在1,2,3,4四个数的前面添加正号或负号,使它们的和为0;
(2)在1,2,3,…,11,12十二个数的前面添加正号或负号,使它们的和为零;
(3)在1,2,3,4,…,99,100一百个数的前面添加正号或负号,使它们的和为0;
(4) 在解决这个问题的过程中,你能总结出一些什么数学规律?
参考答案 我们不妨不妨以第二问为例探讨,比如,在12,11,10,5这四个数的前面添加负号,则这12个数的和是:-12-11-10+9+8+7+6-5+4+3+2+1=2.
现在我们将各数的符号加以调整,考虑到将一个正数变号,其和就要减少这个正数的两倍,因此可得到两个(明显的)解答:
(1)得+1变为-1,有-12-11-10+9+8+7+6-5+4+3+2-1=0; ①
(2)将(+6-5)变为-(6-5),有-12-11-10+9+8+7-6+5+4+3+2+1=0.②
又如,在11,10,8,7,5这五个数的前面添加负号,得
12-11-10-9-8-7+6-5+4+3+2+1=-4,
我们就有多种调整的方法,如将-8与+6变号,有
12-11-10+9+8-7-6-5+4+3+2+1=0. ③
经过几次试验,我们发现了规律:欲使十二个数的和为零,其中正数的和的绝对值与负数的和的绝对值必须相等.但
1+2+3+4+5+6+7+8+9+10+11+12=78
因此我们应该使各正数的和的绝对值与各负数的和的绝对值均为
为了简便起见,我们把①式所表示的一个解答记为(12,11,10,5,1),那么②,③两式所表示的解答就分别记为(12,11,10,6)与(11,10,7,6,5).
同时我们还发现:如果(12,11,10,5,1)是一个解答,那么(9,8,7,6,4,3,2)也必定是一个解答.同样,对应于②,③两式,还分别有另两个解答:(9,8,7,5,4,3,2,1)与(12,9,8,4,3,2,1).这个规律我们不妨叫做对偶律.
此外我们还可发现,由于的三个数12,11,10其和33<39,因此必须再增加一个数6,才有解答(12,11,10,6),也就是说:添加负号的数至少要有四个;反过来,根据对偶律得:添加负号的数最多不超过八个.
掌握了上述几条规律,我们就能够在很短的时间内得到许多解答.最后让我们告诉你,第(2)问的解答个数并非无数多,其总数是124个.
数学公开课课件教案篇2
活动目标:
1.喜欢参与数学操作活动,能用实践操作的方式解决数学问题。
2.学习掌握6的组成与分解。
3.发展动手观察力、操作能力,掌握简单的实验记录方法。
4.乐意与同伴合作游戏,体验游戏的愉悦。
活动重难点:
1.学习掌握6的组成与分解。
活动准备:
1.六条小鱼的图卡和鱼缸。
2.幼儿操作的小鱼图片。
活动过程:
一、导入活动
幼儿看图卡,向幼儿交代帮小鱼找家的任务。提问:小河的水被污染了,爸爸救了六条鱼回来,请小朋友分到两个鱼缸里。想一想可以怎样分?(幼儿讨论尝试)
二、幼儿操作
(一)教师:小朋友请你们数一数自己有几条小鱼?
(二)引导幼儿用小鱼图片分出不同的方法,试一试共有几种不同的分法。
(三)教师巡回指导。
(四)教师对个别有困难的小组进行指导和帮助。
(五)教师鼓励幼儿说出自己的分法,并进行记录。
例如:
6可以分成1和5,1和5可以组成6。
6可以分成2和4,2和4可以组成6。
6可以分成3和3,3和3可以组成6。
6可以分成4和2,4和2可以组成6。
6可以分成5和1,5和1可以组成6。
三、巩固练习6的分解组合
(一)朗读分合式。
(二)游戏《猜拳》、《对数》
四、延伸活动
家长可以和孩子在家一起玩“分糖果”或“分筷子”的游戏巩固复习6的分解组合。
教学反思
幼儿通过此次活动能热心的帮助小松鼠们分新房,通过自主尝试探索的方式得出不同答案,对6的分解组成有了深刻的了解,但对数字排列的有序性仍不是太明确,需要继续加强。教师在活动中引导孩子不断发现6的不同分配方法,应让孩子多在自主活动中发现不同方法,今后的教学活动中应更放开孩子,让孩子自己探索发现问题,并得以解决。
数学公开课课件教案篇3
活动目的:
1、初步理解序数的含义,能用序数词正确表示10以内物体排列的次序。
2、感知上下、左右、前后等不同方位,以及从不同的方向积极探索周围环境中物体所处的位置。
3、了解数字在日常生活中的应用,初步理解数字与人们生活的关系。
4、体会数学的生活化,体验数学游戏的乐趣。
活动过程:
1、教师出示火车车厢,引导幼儿观察:
(1)火车有几节车厢,邀请小动物坐上火车。
(2)从前后不同的方位说一说:小动物坐第几节车厢?
2、幼儿操作:按教师指令的要求,邀请小动物坐火车郊游。
3、游戏:开火车:听指令,请乘客下车。
4、幼儿跑组活动:
(1)小树排队:提供5棵高矮不一的小树排队,并用数字卡片标上序号。
(2)串珠子:提供5粒不同颜色的珠子,幼儿串好珠子后记录珠子的序号。
(3)送小动物住新房:根据卡片的要求,把动物送回家。
活动过程:
1、出示“动物旅馆”的挂图,提问:
(1)动物旅馆有几层,每层有几个房间?
(2)小兔、小猫、小狗分别住在第几层的第几间?(从不同的方向判断动物所在的位置)
2、游戏:猜一猜,它住哪里?
规则:按教师的指令把动物准确送回家。
3、幼儿跑组活动:
(1)找座位:幼儿两两玩找座位游戏,甲幼儿拿电影票,由乙幼儿随意抽出一张,并把电影票插入座位中。再由甲幼儿检查是否正确,游戏交换进行。
(2)跳格子:5个幼儿共同玩,比一比谁跳得最远,并说一说“我跳的是第几行的第几格?”
(1)练一练:提供10以内粗细、宽窄不同的物体,幼儿按顺序排列并放上相应的数字卡片。
(4)看谁飞得远:提供纸飞机,幼儿站在同一起点线上飞,飞机落地后,说“我的飞机落在第几行的第几格?”
活动反思:
本活动的主要目标是认识1-10的序数,学习确定物体在序列中的位置和掌握序数词,会用第几准确地表示物体在序列中的位置,考虑到序列是多样的,序列的方向不是固定的,教学中,我进行一些序数变化方式,如:
1.辨认排列形式不同的“序列”如:横直排的,纵向排的,
2.从不同的方向确认序数,如:从左到右是第几?从右到左是第几?从上到下上第几?从下到上是第几?
3.确认同种类物体的序列,哪个物体排第几?
4.在变化的情景中确认序数,如确定了序列中物体的序数后,变换序列中的物体,再认一认变换后的物体排第几?这样做既有利于形成序数的概念,也有利于发展幼儿思维的灵活性。整个活动,幼儿自始至终保持了浓厚的兴趣,教师与他们共同参与,起到了导向辅助的作用。本节课教具准备充分,游戏性、趣味性强,课堂气氛活跃,充分激发了幼儿学习积极性。
数学公开课课件教案篇4
一、教学目标设计
通过实例理解充分条件、必要条件的意义。
能够在简单的问题情境中判断条件的充分性、必要性。
二、教学重点及难点
充分条件、必要条件的判断;
充分条件、必要条件的判断方法。
三、教学流程设计
四、教学过程设计
一、概念引入
早在战国时期,《墨经》中就有这样一段话有之则必然,无之则未必不然,是为大故无之则必不然,有之则未必然,是为小故。
今天,在日常生活中,常听人说:这充分说明,没有这个必要等,在数学中,也讲充分和必要,这节课,我们就来学习教材第一章第五节充分条件与必要条件。
二、概念形成
1、 首先请同学们判断下列命题的真假
(1)若两三角形全等,则两三角形的面积相等。
(2)若三角形有两个内角相等,则这个三角形是等腰三角形。
(3)若某个整数能够被4整除,则这个整数必是偶数。
(4) 若ab=0,则a=0。
解答:命题(2)、(3)、(4)为真。命题(4)为假;
2、请同学用推断符号写出上述命题。
解答:(1)两三角形全等 两三角形的面积相等。
(2) 三角形有两个内角相等 三角形是等腰三角形。
(3) 某个整数能够被4整除则这个整数必是偶数;
(4)ab=0 a=0。
3、充分条件与必要条件
继续结合上述实例说明什么是充分条件、什么是必要条件。
若某个整数能够被4整除则这个整数必是偶数中,我们称某个整数能够被4整除是这个整数必是偶数的充分条件,可以解释为:只要某个整数能够被4整除成立,这个整数必是偶数就一定成立;而称这个整数必是偶数是某个整数能够被4整除的必要条件,可以解释成如果某个整数能够被4整除 成立,就必须要这个整数必是偶数成立
充分条件:一般地,用、分别表示两件事,如果这件事成立,可以推出这件事也成立,即,那么叫做的充分条件。[说明]:①可以解释为:为了使成立,具备条件就足够了。②可进一步解释为:有它即行,无它也未必不行。③结合实例解释为: x = 0 是 xy = 0 的充分条件,xy = 0不一定要 x = 0。)
必要条件:如果,那么叫做的必要条件。
[说明]:①可以解释为若,则叫做的必要条件,是的充分条件。②无它不行,有它也不一定行③结合实例解释为:如 xy = 0是 x = 0的必要条件,若xy0,则一定有 x若xy = 0也不一定有 x = 0。
回答上述问题(1)、(2)中的条件关系。
(1)中:两三角形全等是两三角形的面积相等的充分条件;两三角形的面积相等是两三角形全等的必要条件。
(2)中:三角形有两个内角相等是三角形是等腰三角形的充分条件;三角形是等腰三角形是三角形有两个内角相等的必要条件。
4、拓广引申
把命题:若某个整数能够被4整除,则这个整数必是偶数中的条件与结论分别记作与,那么,原命题与逆命题的真假同与之间有什么关系呢?
关系可分为四类:
(1)充分不必要条件,即,而
(2)必要不充分条件,即,而
(3)既充分又必要条件,即,又有
(4)既不充分也不必要条件,即,又有。
三、典型例题(概念运用)
例1:(1)已知四边形ABCD是凸四边形,那么AC=BD是四边形ABCD是矩形的什么条件?为什么?(课本例题p22例4)
(2) 是 的什么条件。
(3)a+b是1,b什么条件。
解:(1)AC=BD是四边形ABCD是矩形的必要不充分条件。
(2)充分不必要条件。
(3)必要不充分条件。
[说明]①如果把命题条件与结论分别记作与,则既要对进行判断,又要对进行判断。②要否定条件的充分性、必要性,则只需举一反例即可。
例2:判断下列电路图中p与q的充要关系。其中p:开关闭合;q:
灯亮。(补充例题)
[说明]①图中含有两个开关时,p表示其中一个闭合,另一个情况不确定。②加强学科之间的横向沟通,通过图示,深化概念认识。
例3、探讨下列生活中名言名句的充要关系。(补充例题)
(1)头发长,见识短。 (2)骄兵必败。
(3)有志者事竟成。 (4)春回大地,万物复苏。
(5)不入虎穴、焉得虎子 (6)四肢发达,头脑简单
[说明]通过本例,充分调动学生生活经验,使得抽象概念形象化。从而激发学生学习热情。
四、巩固练习
1、课本P/22练习1。5(1)
2:填表(补充)
p q p是q的
什么条件 q是p的
什么条件
两个角相等 两个角是对顶角
内错角相等 两直线平行
四边形对角线相等 四边形是平行边形
a=b ac=bc
[说明]通过练习,及时巩固所学新知,反馈教学效果。
五、课堂小结
1、本节课主要研究的内容:
推断符号,
充分条件的意义 命题充分性、必要性的判断。
必要条件的意义
2、 充分条件、必要条件判别步骤:
① 认清条件和结论。
② 考察p q和q p的真假。
3、充分条件、必要条件判别技巧:
① 可先简化命题。
② 否定一个命题只要举出一个反例即可。
③ 将命题转化为等价的逆否命题后再判断。
六、课后作业
书面作业:课本P/24习题1。51,2,3。
五、教学设计说明
1、充分条件、必要条件以及下节课中充要条件与集合的概念一样涉及到数学的各个分支,用推出关系的形式给出它的定义,对高一学生只要求知道它的意义,并能判断简单的充分条件与必要条件。
2、由于充要条件与命题的真假、命题的条件与结论的相互关系紧密相关,为此,教学时可以从判断命题的真假入手,来分析命题的条件对于结论来说,是否充分,从而引入充分条件的概念,进而引入必要条件的概念。
3、教材中对充分条件、必要条件的定义没有作过多的解释说明,为了让学生能理解定义的合理性,在教学过程中,教师可以从一些熟悉的命题的条件与结论之间的关系来认识充分条件的概念,从互为逆否命题的等价性来引出必要条件的概念。
4、由于这节课概念性、理论性较强,一般的教学使学生感到枯燥乏味,为此,激发学生的学习兴趣是关键。教学中始终要注意以学生为主,结合相关学科及学生生活经验让学生在自我思考、相互交流中去给概念下定义,去体会概念的本质属性。
数学公开课课件教案篇5
活动目的:
1、喜欢参与测量活动,乐意运用自然测量的知识来解决所碰到的问题。
2、自主选择工具,测量物体的长短,初步认识测量工具与测量结果之间的关系,并且初步学习正确测量的方法。
3、在动手动脑的活动中激发幼儿的探究精神,发展幼儿观察、比较和判断的能力。
4、了解数字在日常生活中的应用,初步理解数字与人们生活的关系。
5、知道按事物不同的特征进行排序会有不同的结果,初步了解排序的可逆性。
活动准备:
1、长短不一的测量工具、粉笔
2、故事图片
3、记录纸、笔
活动过程:
(一)创设问题情景
以故事的方式引入,提出问题:蓝猫和淘气的争论如何测量小汽车的车顶长度?
幼儿讨论
(二)幼儿尝试活动
幼儿自选工具测量某一物体
引导幼儿比较观察测量的结果,并与同伴对比,有什么发现?
(三)讨论
1、比较测量的结果
引导幼儿寻找测量结果与工具的关系
2、讨论测量的方法
找准起点;沿边线测量,不要偏离边线;首尾相连
3、小结:使用测量工具的长短不一样,那么得到的结果也不一样。
(四)幼儿自主测量
1、提出测量的要求:选择一种工具,量时找准起点,用笔画个记号,沿边线测量,首位相连。
2、幼儿操作。
3、讨论与总结:
(1)你用什么工具测量的?结果是多少?
(2)谁也是用这个工具的?结果一样吗?
(3)你还测了什么?结果怎样?有人测的和他一样吗?你的结果呢?
(五)延伸活动
1、讨论:还有什么也可以当测量的工具?
2、我们身体的那些部位也可以当测量工具?
3、幼儿游戏:跳远。
活动反思:
由于选择的教学内容——《自然测量》活动是幼儿较感兴趣的一项数学活动内容,也是一项操作性很强的活动;而且,我为幼儿也准备充分的材料,能做到人手一份。所以,幼儿在活动中主动性及积极性都很强,探索活动中个个都表现地很投入,许多平时比较不爱动手的孩子在此次活动中也显得活跃多了。幼儿通过多次的自由探索活动,已能掌握比较准确的测量方法了;幼儿在测量中,各项能力也得到了发展,特别是动手能力及探索能力。
第一环节
适宜行为:在第一个环节中,让幼儿进行探索性测量,并根据自己的测量经验进行讨论,让幼儿把自己的做法和想法说出来,起到了互相学习,互相借鉴的作用,而且个别幼儿的演示、教师的示范讲解,使幼儿对正确的测量方法有了初步地了解。
不足之处:
1、幼儿人数较多,而空间有限,选择椅子的高度来测量,让孩子的视线受阻,活动不方便。
2、在我示范正确的测量方法时,选择了和幼儿一样的测量对象——椅子,由于空间受阻,因此做在后面及旁边的幼儿观察地比较不清楚。
问题:
1、如何选择幼儿的探索对象、教师应发出怎样的指令很重要,而我在此环节中欠缺充分的考虑。
2、教师是否必须选择和幼儿同等的测量对象进行示范讲解呢?怎样选择才能更好地考虑到每个孩子的视线呢?
对策:
1、可以让孩子们选择椅子靠背的边作为对象进行测量,这样既能让幼儿的活动空间不会太窄,又有利于幼儿的探索。
2、值得思考:是否可以在黑板上画一条直线线段,通过比较清晰的方法来进行示范讲解?
第二个环节
适宜行为:我充分考虑本班幼儿的实际操作特点,采用一放一收、再放再收的方式进行教学,幼儿均能遵守规则,并且学习效果较好;老师组织也比较轻松。
不足之处:我设计的小环节比较多,投放的材料也多,幼儿什么都想试一试,操作时间显得不够充分。
问题:
1、各个小环节的设计均为了一个目标——继续学习多种自然测量的方法,在活动中发现不同的测量对象适合用不同的测量用具。因此,是否可以把第一个小环节和第二个小环节结合起来,让幼儿操作起来时间显得更充足呢?
2、难度会太大了吗?因为幼儿要掌握正确的测量方法并不容易,更何况要幼儿初步感受了测量方法后,马上就步入第二个目标——尝试让孩子们自己发现不同的测量对象适合用不同的测量用具,测量工具的选择和测量对象是有关系的,进程是否会太快?
对策:
1、考虑将这个教学内容分成三个课时,把此次的目标、重点放在“学习多种自然测量的方法”上。第二个大环节,就改为让幼儿通过自由探索、操作,继续学习、巩固正确的测量方法。当然,我们可以在活动中,有意识地引导幼儿对有圆边的物体进行测量,学习不同的测量方法。
2、把“尝试让孩子们自己发现不同的测量对象适合用不同的测量用具,测量工具的选择和测量对象是有关系的”这一个目标放在第二个课时来进行。这样,幼儿学习起来不会那么辛苦,操作的时间也更宽松,又能更有效地突破重难点。
整体感受:设计活动环节,既要根据幼儿的活动特点来设计好环节,又要很充分地考虑各个环节的目的性和可行性,还要考虑好各个小细节的处理。自身的业务水平也是相当重要的,问题的设置、随机的观察、引导语的把握均是需要进一步的培养。
数学公开课课件教案篇6
教学目标:
1、知识与技能:联系生活实际,引导学生认识一些常见的百分率,理解这些百分率的含义,并通过自主探究,掌握求百分率的一般方法,会正确地求生活中常见的百分率,依据分数与百分数应用题的内在联系,培养学生的迁移类推能力和数学的应用意识。
2、过程与方法:引导学生经历探索、发现、交流等丰富多彩的数学活动过程,自主建构知识,归纳出求百分率的方法。
3、数学思考:使学生学会从数学的角度去认识世界,逐步形成“数学的思维”习惯。
4、情感、态度与价值观:让学生体会百分率的用处及必要性,感受百分率来源于生活,体验百分率的应用价值。
教学重点:
理解百分率的含义,掌握求百分率的方法。
教学难点:
探究百分率的含义。
教学用具:
PPT课件
教学过程:
一、复习导入(8分)
1、出示口算题,1分钟,并校正题目。
2、小结学生所提问题,并指名口头列式。
3、将问题中的“几分之几”改为“百分之几”,引学生分析、解答。
4、小结:算法相同,但计算结果的表示方法不同。
5、说明:我们把做对题目占总题数的百分之几叫做正确率;那么做错的题目占总题数的百分之几叫做错误率。这些统称为百分率。导入新课,揭示目标。
6、口算比赛:(1分钟)(见课件)
7、根据口算情况,提出数学问题。
(做对的题目占总题数的几分之几?做错的题目占总题数的几分之几?)
8、尝试解答修改后的问题。
9、比较:“求一个数是另一个数的几分之几”与“求一个数是另一个数的百分之几”的问题在解法上有什么相同点和不同点?
10、举一些生活中的百分率,明确目标,进入新课的学习:(1)知道达标率、发芽率、合格率等百分率的含义。(2)学习求百分率的方法,会解决求百分率的问题。
二、设问导读(9分)
1、说明达标率的含义。
2、板书达标率的计算公式,并说明除法为什么写成分数的形式?
3、组织学生以4人小组讨论。
4、巡回指导书写格式。阅读例题,思考下面的问题
(1)什么叫做达标率?
(2)怎样计算达标率?
(3)思考:公式中为什么要“×100%”呢?
(4)尝试计算例1的达标率。
三、质疑探究(5分)
1、在展示台上展示学生写出的百分率计算公式。
2、要求学生认真计算,并对学生进行思想教育。
1、生活中还有哪些百分率?它们的含义是什么?怎样求这些百分率?
2、求例1(2)中的发芽率。
四、巩固练习(14分)
1、指名口答,组织集体评议,再次引学生巩固百分率的含义。
2、对每一道题都要让学生分析、理解透彻,并找出错误原因。
3、出示问题,指导学生书写格式,并强调
4、解决问题要注意:看清求什么率?找出对应的量。
5、引学生比较、发现:这些百分率和100%比较,大小怎样?哪些百分率可能超过100%?
6、引学生观察、发现:出勤率+缺勤率=1.
五、加强巩固
1、说说下面百分率各表示什么意思。(1颗星)
(1)学校栽了200棵树苗,成活率是90%。
(2)六(1)班同学的近视率达14%。
(3)海水的出盐率是20%。
2、判断。(2颗星)
(1)学校上学期种的105棵树苗现在全部成活,这批树苗的成活率为105%。( )
(2)六年级共有54名学生,今天全部到校,今天六年级学生的出勤率为54%。( )
(3)把25克盐放入100克水中,盐水的含盐率为25%。
(4)一批零件的合格率为85%,那么这批零件的不合格率一定是15%。 5、工厂加工了105个零件,合格率达100%,则这批零件有100个合格。
3、解决问题(3颗星)
(1)我班有27名同学,上学期期末测试中,有24人优秀,那么我们班成绩的优秀率是多少?27名同学全部合格,合格率是多少?
(2)六(1)班今天有48人到校,有2人缺席,求出勤率。
(3)要求,以2人小组互查,每人练习一道题,口头列式。1、王大爷在荒山上植树,一共植了125棵,有115棵成活。这批树的成活率约是多少?
(4)王师傅加工的300个零件中有298个合格,合格率是多少?
课堂总结:
(1分)突出“关键点”。谈谈本节课的收获。
数学公开课课件教案篇7
一、活动目标
1、理解5以内的减法。
2、通过故事,认识“-”的意义。
二、活动准备
1、提前把卵生动物的图片放入玩具蛋壳中。
2、《狮子和蛋》幼儿用书。
3、白纸
三、活动过程
1、出示玩具蛋壳,请幼儿猜猜哪种卵生动物会从蛋里走出为。
2、出示幼儿用书,请幼儿看图讲故事。
第一组图:
池塘力,鸭妈妈生了两个蛋,有1只小鸭子出生了,池塘边还有多少个蛋?
第二组图:鸟妈妈筑了个窝,生了3个蛋,有两个蛋孵化小鸟,窝里还有多少个蛋?
第三组图:鳄妈妈在沙滩上生了5个蛋,5个蛋中有3个孵化小鳄,沙滩上还有多少个蛋?
第四组图:鸡妈妈生了4个蛋,有1只小鸡先出生了,还有多少个蛋?
第五组图:
不知谁在草丛里生了3个蛋,3个都孵化出小宝宝,叶片还有多少个蛋?
3、认识“-”减号,每次讲完一促故事,老师引导幼儿在白板上写算式,找出答案。并请幼儿说说“-”表示什么?
4、幼儿两人一组,师给每组幼儿5个玩具蛋壳,请他们轮流用玩具蛋壳讲述有关动物宝宝出生的故事,并在纸上写下5以内减法算式。
5、师与幼儿一起检查算式是否正确。
数学公开课课件教案篇8
教学通过与学生的实际生活相结合,进一步的增加学生对于利息和成数的认识,课堂以学生和老师的互动结合,加深学生对利息成数的认识。
教学内容:“整理和复习”第1—5题,练习三的第1—6题。
教学目的:使学生对利息、成数等概念有进—步的了解。能够比较熟练地解答有关利息、成数的应用题,将百分数应用于实际生活。
教具准备:幻灯片。
教学过程 :
一、等概念
1.做“整理和复习”第1题。
请一名学生读题。另请两名学生加以回答,教师补充完整。
提问:“同学们准备用自己的存款做些什么事情呢?”让学生自由讨论,教师及时表扬那些准备用自己存款做些有意义的事情的学生,适时进行勤俭节约的教育。
2.做“整理和复习”第2题。
请一名学生读题。
提问:“什么叫本金、利息、利率?利息的意义是什么?”
“利息是怎样计算的?”
让几名学生回答.然后将本金、利息、利率的概念用幻灯显示,请学生齐读一遍。板书利息的计算公式:利息=本金×利率×时间;
3.做“整理和复习”第4题。
请一名学生读题:另请两名学生分别对两个问题加以回答。
4.做练习三的第3、4题。
把全体学生分或两组.一组做第3题,另一组做第4题,答案直接写在课堂练习
本上:教师巡视.及时纠正学生中间出现的错误。最后进行集体订正。
二、复习有关利息、成数的应用题
1.做“整理和复习”第3题:
请一名学生读题。
提问:“要求利息,必须知道哪些数据?”(引导学生在题中找出本金、利率、时间 各是多少。)
“计算利息的公式是什么?”(引导学生看黑板上的公式。)。
让一名学生到黑板前做,其余学生做在练习本上。教师一边巡视,一边及时纠正学生中出现的错误。最后集体订正。
2.做练习三的第1题。
请一名学生读题。教师无需用任何提示,直接让学生计算利息。教师行间巡视,然后集体订正:
小结:我们国家还有许多贫困地区的儿童因为家庭困难而失学,许多小朋友都像小英一样把零用钱节省下来存入银行,既支援了国家建设,又可以把利息捐献给“希望工程”。我们也应该向他们学习,平时勤俭节约,不乱花钱,为贫困地区的儿童献一份爱心。
3.做练习三的第2题。
请一名学生读题。
教师说明:购买建设债券是支援国家建设的另一种方式,和储蓄在实质上是一样的。只是债券的利率一般高于定期储蓄。
抽取两名学生到黑板前做,其余学生做在课堂练习本上。教师巡视,等全体学生做完以后,集体订正。尤其要提醒学生注意题目要求的是“到期时一共能取出多少元?”所以在求出利息以后,不要忘记把本金加上。
4.做“整理和复习”第5题。
请一名学生读题。
提问:“一成五是多少?”
“这道题里单位‘1’是谁?”
“可以用什么方法计算?哪种方法更简便?”(方程解法和算术解法)
分别请两名学生回答这两个问题。
请两名学生到黑板前做,分别用方程解法和算术解法进行解答,其余学生做在课堂练习本上。教师边巡视,边纠正学生出现的错误。最后进行集体订正。
5.做练习三的第5题。
请一名学生到黑板前做,其余学生做在课堂练习本上。教师巡视,集体订正.
三、作业
练习三的第6题。