教育巴巴 > 教案模板 > 优秀教案 >

六年级数学教案课件

时间: 新华 优秀教案

六年级数学教案课件篇1

教学目标:

1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积。

2、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,能解决一些有关实际生活的问题。

教学重点,难点:

掌握圆柱侧面积和表面积的计算方法。

运用所学的知识解决简单的实际问题。

教学过程:

一、引入新课:

前一节课我们已经认识了一个新朋友——圆柱,谁能说说这位新朋友长什么样子以及有什么特征吗?

1.圆柱是由平面和曲面围成的立体图形。

2.圆柱各部分的名称(两个底面,侧面,高)。

3.把圆柱的侧面沿着它的一条高剪开得到一个长方形,这个长方形的长等于圆柱的底面周长、宽等于圆柱的高。

同学们对圆柱已经知道得这么多了,还想对它作进一步的了解吗?今天我们就一起来研究怎样求圆柱的表面积。

二、探究新知:

以前我们学过正方体、长方体的表面积,观察一个长方体,我们是怎么求这个长方体的表面积的呢?(六个面的面积和就是它的表面积)

同学们想一想我们要求圆柱的表面积,那么圆柱的表面积指的是什么?

教师引导,学生讨论结果:圆柱的侧面积加上两个底面的面积就是圆柱的表面积。

板书:(圆柱的表面积=圆柱的侧面积+两个底面的面积)

1.圆柱的侧面积

(1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。

(2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢?

(学生观察很容易看到这个长方形的面积等于圆柱的侧面积)

(3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高)

2.侧面积练习:练习二第5题

学生审题,回答下面的问题:

这两道题分别已知什么,求什么?

小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。

3. 理解圆柱表面积的含义.

(1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。)

(2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。

公式:圆柱的表面积=圆柱的侧面积+底面积×2

4.尝试练习。

(1)求下面各圆柱的侧面积。

①底面周长2.5分米,高0.6分米。

②底面直径8厘米,高12厘米。

(2)求下面各圆柱的表面积。

①底面积是40平方厘米,侧面积是25平方厘米。

②底面半径是2分米,高是5分米。

5.小结:

在计算圆柱形的表面积时,要根据给定的数据计算各部分的面积。(如:有时候给出的是底面半径,有时是底面直径。)

三、巩固练习。

1.做第14页“做一做”。(求表面积包括哪些部分?)

2. 练习二第6,7题。

四、课后思考。

同学们想一想是不是所有的圆柱在计算表面积时都可以用

公式:圆柱的表面积=圆柱的侧面积+底面积×2来计算呢?

六年级数学教案课件篇2

教学目标:

1、使学生了解表示成正比例的量的图象特征,并能根据图象解决相关简单问题。

2、通过练习,巩固对正比例意义的认识。

3、情感、态度与价值观:初步渗透函数思想。

重点难点:

能根据数量关系式或图象判断两种量是否成正比例。

教学准备:

投影仪。

教学过程:

一、新课讲授

教学第46页内容。

教师出示表格(见书),依据表中的数据描点。(见书)

师:从图中你发现了什么?

生:这些点都在同一条直线上。

看图回答问题

①如果铅笔的数量是7支,那么铅笔的总价是多少?②总价是的铅笔,数量是多少?③铅笔的数量是3支,那么铅笔的总价是多少?描出这一对应的点,它们是否在同一直线上?

你还能提出什么问题?有什么体会?

组织学生分小组汇报,学生汇报时可能会说出

①正比例关系的图象是一条经过原点的直线。

②利用正比例图象不用计算,可以由一个量的值,直接找到对应的另一个量的值。

二、练习讲授

1、基本练习。

(1)投影出示教材第49页第1题。

教师引导学生回顾正比例的意义及判断是否成正比例的方法。学生独立完成练习。

教师要求学生从两个方面说明为什么成正比例。a.电是随着用电量的增加而增加;b.电费与用电量的比值总是相等的。

师生共同订正。

(2)投影出示:一列火车1小时行驶90km,2小时行驶180km,3小时行驶270km,4小时行驶360km,5小时行驶450km,6小时行驶540km,7小时行驶630km,8小时行驶720km……

①出示下表,填表。

一列火车行驶的时间和路程

②填表并思考发现了什么?

③教师点拨:随着时间的变化,路程也在变化,我们就说时间和路程是两种相关联的量。(板书:两种相关联的量)

④教师:根据计算你们发现了什么?指出:相对应的两个数的比值固定不变,在数学上叫做一定。

⑤用式子表示它们的关系:路程÷时间=速度(一定)。

教师:上节课,我们学习了成正比例的量,下面我们继续学习和练习。

2、指导练习。

(1)完成教材第49页第2题。

(2)完成教材第49页第3题,先由学生独立做,后由老师抽查。在抽查第(1)小题时,多让不同的学生回答。做第(2)小题时应多让学生们交流。第(3)小题汇报时要求说出,你是怎样估计的,上台在投影仪上展示估计的思维过程。

(3)解决教材49页第4题:①投影出示书中的表格,引导学生观察表中的数据。

②组织学生在小组中合作探究。a.动手画一画,指名汇报图象特点。b.组织学生说一说,相互交流。

提示:判断两种量是否成正比例,先要判断它们是不是相关联的量,再判断它们的比值是否一定。

三、课堂作业

1、根据x和y成正比例关系,填写表中的空格。

2、看图回答问题。

(1)在这一过程中,哪个量没变?

(2)路程和时间有什么关系?

(3)不计算,从图中看出4小时行驶多少千米?

(4)7小时行驶多少千米?

课堂小结:

教师:判断两个相关联的量成正比例的三个要素是什么?

通过这节课的学习,你有什么收获?

课后作业:

完成练习册中本课时的练习。

板书设计:

正比例图像

图像:一条过原点的直线。

六年级数学教案课件篇3

教学内容:

第87页例1、例2,88页课堂活动第1、2题,练习二十二第1~4题。

教学目标:

1.在现实情境中初步认识负数和理解负数的意义,了解负数的产生与作用,感受负数使用带来的方便。

2.会正确地读、写正、负数,知道0既不是正数,也不是负数。

3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的意识。

教学重点:

负数的意义和负数的读法与写法。

教学难点:

理解0既不是正数,也不是负数。

教具准备:

多媒体课件

教学方法:

教师讲授、合作交流

教学过程:

一、复习导入

提出问题:举例说明我们学过了哪些数?

教师小结:为了实际生活的需要,在数物体个数时,1、2、3……出现了自然数,物体一个也没有时用自然数0表示,当测量或计算有时不能得出整数,我们用分数或小数表示。

提出问题:我们学过的数中最小的数是谁?有没有比零还小的数呢?

二、创设情境、学习新知

1.教学例1。

(1)出示:中央电视台天气预报的一个场面,主持人说:“哈尔滨零下6至3摄氏度,重庆6至8摄氏度……”

同学们,你们对情境中的内容一定相当熟悉吧?你能给大家讲讲“哈尔滨零下6至3度”这句话是什么意思吗?

为什么阿姨说的零下6摄氏度,屏幕上打出的字幕就变成了-6℃呢?

这里有零下6℃、零上6℃,都记作6℃行吗?

你有什么简洁的方法来表示他们的不同呢?

教师小结:同学们的想法都很好。现在,国际数学界都是采用符号来区分,我们把比0摄氏度低的温度用带有“-”号的数来表示,例如把零下6℃记作-6℃,读作负6摄氏度;零上6℃记作+6℃,读作正6摄氏度或6摄氏度。

(2)巩固练习。

同学们,你能用刚才我们学过的知识,用恰当的数来表示温度吗?试试看。

学生独立完成第87页下图的练习。

教师巡视,个别辅导,集体订正写得是否正确,并让学生齐读。

2.自主学习例2。(进一步认识正数和负数)

教师:同学们,你们知道吗?世界第一高峰——珠穆朗玛峰从山脚到山顶,气温相差很大,这是和它的海拔高度有关的。最近经国家测绘局公布了珠峰的最新海拔高度。

今天,老师还带来一张珠穆朗玛峰的海拔图,请看。(珠穆朗玛峰的海拔图,教科书第87页的左部分,数字前没有符号)从图上你看懂了些什么?

引导学生交流:珠穆朗玛峰比海平面高8844.43米。

我们再来看x疆的吐鲁番盆地的海拔图。(吐鲁番盆地的海拔情况,教科书第87页的右部分,数字前没有符号)你又能从图上看懂些什么呢?

引导学生交流:吐鲁番盆地比海平面低155米。

教师小结:珠穆朗玛峰比海平面高,吐鲁番盆地比海平面低。大家再想想:你能用一种简单的方法来记录一下这两个地方的海拔高度吗?

学生交流:珠穆朗玛峰的海拔可以记作:+8844.43米或8844.43米。吐鲁番盆地的海拔可以记作:-155米。(板书)

教师追问:你是怎么想到用这种方法来记录的呢?

最后教师将数字改动成:海拔+8844.43米或8844.43米;海拔-155米。

教师小结:以海平面为界线,+8844.43米或8844.43米这样的数表示比海平面高8844.43米;-155米这样的数表示比海平低155米。

(2)巩固练习:教科书第88页试一试。

3.小组讨论,归纳正数和负数。

教师:通过刚才的学习,我们收集到了一些数据,(显示)我们可以用这些数来表示零上温度和零下温度,还可以表示海平面以上的高度和海平面以下的高度。那么,你们观察一下这些数,它们一样吗?它们可以怎样分类呢?

提出疑问:0到底归于哪一类?(如有学生提出更好)引导学生争论,各自发表意见。

小结:(结合图)我们从温度计上观察,以0℃为界限线,0℃以上的温度用正几表示,0℃以下的温度用负几表示。同样,以海平面为界线,高于海平面的高度我们用正几来表示,低于海平面我们用负几表示。0就像一条分界线,把正数和负数分开了,它谁都不属于。但对于正数和负数来说,它却必不可少。我们把像+6、3、+8844.43等这样的数叫做正数;像-6、-155等这样的数我们叫做负数;而0既不是正数,也不是负数。(板书)

通常正号可以省略不写。负号可以省略不写吗?为什么?

最后,让学生看书勾划,并思考两个“……”还代表那些数?(让学生对正负数的理解更全面和深刻)

三、运用新知,课堂作业

1.课堂活动第1题。让学生先自己读读,并举例说说是什么意思?全班订正后,同桌间自选5个互相说说。

2.课堂活动第2题。同桌先讨论,然后反馈。

四、小结

同学们,今天我们认识了负数。你有什么收获?

五、课堂作业

练习二十二第1、4题。

家庭作业:练习二十二第2、3题。

板书设计:

负数的初步认识

正数:20、22、14、 +8844.43…

0:既不是正数也不是负数

负数:-2、-30、-10、-15、-155…

六年级数学教案课件篇4

教学目标:

1、在实际情境中,体会化简比的必要性,进一步体会比的意义。

2、会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。

教学重难点:

1、运用商不变的性质或分数的基本性质化简比。

2、解决一些简单的实际问题。

学习目标:

1、理解比的意义,感受比与除法、分数之间的关系,体会化简比的必要性。

2、学会化简比的方法。

教学准备:

ppt课件

教学过程:

一、导入

(一)导情趣(抢答式复习)

1、60÷10=600÷()=()÷1=0.6÷()

说一说:解答这两道题你用的是什么知识?

(除法中商不变的性质和分数的基本性质)

除法中商不变的性质是什么?分数的基本性质又是什么?

2、比与除法、分数有什么关系?

(用字母表示:a:b=a÷b=a/b)

(二)导目标

除法中有商不变的性质,分数中有分数的基本性质,那么比有什么性质呢?今天我们就一起来研究——比的化简。(板书:比的化简)

下面请同学们一起来看一看本节课的学习目标。(课件出示目标)

学习目标:

1、理解比的意义,感受比与除法、分数之间的关系。

2、体会化简比的必要性,学会化简比的方法。

二、分组自学目标1

(出示情景图)

淘气调制了一杯蜂蜜水,用了40毫升蜂蜜、360毫升的水。笑笑也调制了一杯蜂蜜水,用了2小杯蜂蜜、18小杯水。同学们想一想哪杯水更甜?

1、导学法

估一估、想一想、算一算

2、小组互相讨论,发表看法。

40:3602:18

3、质疑问难

直接比较他们俩谁调制的蜂蜜水更甜还是有困难的,那么你能不能联系比与除法和分数的关系,来想办法解决呢?小组讨论一下,该如何来计算并比较呢?

4、各组自学,交流汇报。

你们运用了什么好方法?都学会了什么?

学生边汇报,老师边板书。

40:360=40/360=1/9=1:9

2:18=2/18=1/9=1:9

5、小结:比较的结果一样甜,由此可见,比的化简对我们解决生活中的实际问题是有很大帮助的,从中我们也体会到了化简比是有必要的。那么到底什么样的比才是最简单的整数比呢?我们来看大屏幕。

6、导入“最简单整数比”的概念。

比的前项与后项只有公因数1,这样的整数比就是最简整数比。也就是说,

最简单的整数比就是比的前项、后项是互质数,像6∶5就是最简单的整数比。

你能列举出几个最简整数比吗?(指名回答)

7、同学们,你们想知道这些最简单的整数比是用什么方法化简得到的吗?下面我们就来学习第二个目标。(出示目标)

三、分组自学目标2

1、出示问题:化简比

24:420.7:0.82/5:1/4

2、导学法

学法指导:

每组任选一题、分析比的类型、个人独立解答、交流解题依据、组内总结方法

3、各小组自学,交流讨论。

4、汇报交流

你们组是用什么方法学习的?是怎样学的?都学会了什么?

(指名板书计算过程)

5、指导总结化简比的方法

(1)化简整数比的方法是什么?(先化成分数,再约分成最简分数,最后把最简分数转化成比的形式。)(或利用商不变的性质)

(2)怎样把分数比化成最简单的整数比?(先转化成除法,再用最简分数表示结果,最后把最简分数转化成比的形式)

(3)如何把小数比化简成最简单的整数比?(先化成整数比,再化简成最简单的整数比)

6、智力大比拼:总结比的基本性质

你能根据商不变的性质和分数的基本性质概括出比的基本性质吗?

比的前项和后项同时乘或除以相同的数(0除外),比值不变。

利用比的基本性质也可以化简比:

14:21=(14÷7):(21÷7)=2:3

7、老师小结:看来,化简比的方法不,不过都有一个共同目标:化简成最简单的整数比;那么化简比与求比值有什么区别呢?(课件)

四、练习(课件)

1、化简比:

15:210.12:0.42/3:1/21:2/3

2、连一连

3、判断

4、写出各杯中糖与水的质量比。

5、解决问题

五、回顾学习目标,进行本课总结

回顾这节课,你有什么收获?利用所学的比,你能解决生活中什么样的问题?

小结:生活中有很多问题需要通过化简比来解决,因此我们必须学会根据比与除法、分数之间的关系,利用商不变的性质或分数的基本性质来化简比。

板书:

比的化简

a:b=a÷b=a/b

40:36=40/360=1/9=1:9

2:18=2/18=1/9=1:9

六年级数学教案课件篇5

教学内容:

课本第97页例7,“试一试”和“练一练”,练习十六第1—3题。

教学目标:

1、使学生初步认识纳税和税率,理解和掌握应纳税额的计算方法。

2、初步培养学生的纳税意识,继续感知数学就在身边,提高知识的应用能力。

3、培养和解决简单的实际问题的能力,体会生活中处处有数学。

教学重点:

掌握百分数在实际生活中的应用。

教学难点:

渗透生活即数学的教学思想。

课前准备:

课件

教学过程:

一、认识、了解纳税

教师介绍:纳税是根据国家税法的规定,按照一定的比率把集体或个人收入的一部分缴纳给国家,用于发展经济、国防、科学、文化、卫生、教育和社会福利事业,以不断提高人民的物质和文化生活水平,保卫国家安全。因此,任何集体和个人,都有依法纳税的义务。

税收是国家财政收入的主要来源之一。税收的种类主要有增值税、消费税、营业税和所得税等几种。

提问:你知道生活中到税务部门纳税的事吗?那么究竟什么是纳税,纳税额应该怎样计算?今天我们就来学习纳税的有关知识。

二、教学新课

1、教学例7。

出示例7:星光书店八月份的营业额是60万元。如果按营业额的5%缴纳营业税,这个书店八月份应缴纳营业税多少万元?

指名学生读题后全班学生再次读题。

提问:题里的营业额的5%缴纳营业税,实际上就是求什么?怎样列式计算?

学生尝试练习。

学生可能有下面两种方法:

方法1:引导学生将百分数化成分数来计算。

方法2:引导学生将百分数化成小数来计算。

集体订正,教师板书算式。说说这题你是根据什么来列式的?

强调:求应纳税额实际上就是求一个数的百分之几是多少,也就是把应该纳税部分的总收入乘以税率百分之几,就求出了应纳税额

2、做“试一试”。

提问:这道题先求什么?再求什么?

生:先求5000元的20%是多少?再求实际获得的奖金。

学生板演与齐练同时进行,集体订正。

3、完成练一练后全班交流。

三、反馈练习

只列式不计算。

1、一家运输公司10月份的营业额是260000元,如果按营业额的3%缴纳营业税,10月份应缴纳营业税多少万元?

2、李华买了一辆12万元的汽车,按规定买汽车要缴10%的购置税。他买的这辆汽车一共要付多少元?

3、一个城市中的饭店除了要按营业额的5%缴纳营业税以外,还要按营业税的7%缴纳城市维护建设税。如果一个饭店平均每个月的营业额是14万元,那么每年应交这两种税共多少元?

四、课堂总结

提问:通过本节课的学习你学会了什么内容?认识到什么?如果没有纳税,国家就筹集不到必要的资金为大家办事。因此,我国宪法规定每个集体和公民都有依法纳税的义务。希望同学们长大了争当纳税先锋,为祖国的繁荣贡献力量!

五、布置作业

练习十六第1—3题。

六年级数学教案课件篇6

教学内容:

义务教育课程标准实验教科书(北师大版)数学六年级上册第一单元《圆的认识(一)》,在课本的2——5页。

教学目标:

知识与技能:结合生活实际,通过观察、操作等活动认识圆,并认识到“同一个圆中半径都相等、直径都相等”,体会圆的特征及圆心和半径的作用,会用圆规画圆。

过程与方法:结合生活实际,通过观察、操作、想象等活动,认识圆及圆的一些特征,发展学生的空间观念。

情感态度价值观:结合具体的情境,体验数学与日常生活密切相关,能用圆的知识来解释生活中的简单现象。

教学重点:

在观察和操作中体会圆的特征,知道直径和半径的概念。

教学难点:

用圆规画圆。

课前准备:

课件

教学过程:

一、创设情景感知圆

师:我本想让大家做一个套圈游戏,但对于大家站在什么位置参与游戏更公平,老师一直没有想好,请大家帮我参谋一下。(课件出示三种游戏方式,触控笔画出同学与小旗标志之间的距离。)

导入:为什么圆会有这么大的优点呢?让我们一起来探寻圆的奥秘吧!

板书课题:圆的认识

学生对于三种游戏方式进行评价,并说原因。

二、互动探究认识圆

1.欣赏图形。

(课件出示生活中的圆,同时用触控笔“抽”出圆形)

师:圆和以前学过的图形有什么不同呢?(出示以前学过的图形)

(出示一个椭圆和一个凹凸不平的圆)问:这是圆吗?为什么?

2.尝试画圆。

(1)(实物投影仪出示学生画出的失败作品和成功作品)师:猜一猜,为什么有些圆会“咧着嘴”呢?

(2)(实物投影仪)老师示范画圆。

3.认识圆各部分的名称。

老师在白板上用圆规、直尺等工具演示画圆、圆心、半径、直径及用字母表示的方式。

4.探究圆的特征。

(1)画:在刚才自己画的较成功的一个圆中继续画3条半径、3条直径。

想:a.在同一个圆里可以画多少条半径,多少条直径?b.在同一个圆里半径的长度都相等吗?直径呢?怎么发现的?

(2)画:a.以点A为圆心画两个大小不同的圆;b.在另外一个地方画两个半径都是2厘米的圆。

想:圆的位置与什么有关系?圆的大小与什么有关系?

5.首尾呼应

师:在刚上课的套圈游戏中,小旗标志在圆的什么位置?每个同学站在圆的什么位置?小旗标志与同学之间的距离是什么?能解释为什么设计成圆形的队形比较公平吗?

三、巩固练习拓展圆:(闯关练习)

(第一关用白板遮盖的方式逐一呈现练习题,在学生回答出结果时,用触控笔及时给出结果。第二关演示圆形、正方形、椭圆滚动过程及中心点留下的痕迹。)

四、史料再现升华圆

(调用电子白板上的“科技素材”)

五、全课总结理知识

通过这节课的学习,你有什么收获?

感受圆的历史。

六、课后思考;

如果要在操场上画一个很大的圆,你有什么方法吗?

谈收获。

板书设计:

圆心O位置

半径r圆的大小

直径d

六年级数学教案课件篇7

一、创设情境,再现知识

谈话:同学们,上节课我们一起回顾了用字母表示数,体会了用字母表示数的优点。这节课老师又给同学们带来了一位老朋友,请看他是谁?(师板书X)看到老朋友,你想到了关于它的哪些知识?

学生可能回答以下几个方面(方程、解方程、方程的解、列方程解应用题、等式、等式性质等知识)(师板书相关概念)

这节课让我们和老朋友“x”一起回顾方程的有关知识,好吗?

【设计意图】引导学生由字母x回忆起方程的有关知识点,更容易引起学生对已学知识的回顾整理。把知识拟人化更符合学生的心理特点,能充分调动学生参与学习探究的兴趣和欲望。

二、梳理归网,学习内化

1.回顾知识,自主梳理

①自己回顾每个概念的意义,同位交流。

②等式与方程有什么关系?方程的解与解方程又有什么不同?你能举例说明或画图表示吗?(小组合作,整理在练习本上)

【设计意图】让学生通过自我回顾,忆起方程中各个概念的意义和联系,在举例中进一步区分等式与方程、方程的解与解方程等易混概念。

2.交流展示,引导建构

①全班交流整理结果(展台展示,师及时点拨纠正存在问题)

②哪些是方程?哪些是等式?

6x+8=118x-5x=15×0.230a+5b7x-6<3655x=(2.4+a)÷2.4=50.5×□+72÷18=81÷8=0.1252.5X-7=13

③你会解这些方程吗?解方程的根据是什么?(等式性质)

选择几个解一解。(展台展示交流)

如何判断方程解的是否正确?在解方程时要注意一些什么?

④复习简易方程的解法、步骤及检验方法、书写格式。

【设计意图】在交流中使学生明确:判断一个式子是不是方程,要把握两点,第一含有未知数,第二必须是等式。方程的解是未知数的数值,解方程是求这个数值的过程。

3.提炼方法,认知内化

(1)列方程解应用题可以帮助我们很容易的解决许多实际问题,怎样列方程解答应用题?关键是什么?(找等量关系,设未知数,列方程)

【设计意图】结合具体的题目,让学生分别用方程与算术法解答,通过对比分析两种解答方法的基本思路及特点,体会两种思路的区别,能选择合适的方法解答。

三、综合应用,整体提高

1.判断下面各题,哪些适合用算术方法解,哪些适合列方程解,为什么

①一个三角形的面积是45平方厘米,底是12厘米,高多少厘米?

②在学校组织的数学竞赛中,六年级得一等奖的有56人,得二等奖的人数比一等奖的人数的2倍还多8人,得二等奖的有多少人?(如果知道二等奖的人数,求一等奖的人数用哪种方法合适?)

2.我是“精选细算“小英才

课本101页5—8题(学生独立做,集体订正)

3.智力冲浪

课本101页9—11题(这是含有两个未知量的题目,教师重点引导学生用一个未知数表示两个未知量。)

【设计意图】练习时,让学生思考用方程还是算术法解答,通过对比分析选择合适的方法解答,感受方程解题的优越性。

四、总结提升,知情共融。

这节课我们整理和复习方程的有关知识,谁来说一说有哪些收获?

53660