教育巴巴 > 教案模板 > 优秀教案 >

小学六年级拓展教案数学

时间: 新华 优秀教案

小学六年级拓展教案数学篇1

一、教学内容分析

本节课是在学生认识了比,理解了比并能用比的知识解释一些简单的生活问题的基础上进行的,又为学生后面学习比的应用打下基础。

二、学生分析

学生对商不变的性质以及分数的基本性质已经熟练的掌握,知识的迁移学生应该很好理解。

三、学习目标(以学生为主语)

1、在实际情境中,体会化简比的必要性,进一步体会比的意义。

2、会运用商不变的性质或分数的基本性质化简比,并能解决一些简单的实际问题。

3、通过教学培养学生的抽象概括能力,渗透转化的数学思想,并使学生认识事物之间都是存在内在联系的。

教学重难点:掌握化简比的方法,会把一个比化成最简单的整数比。

四、教学活动(此环节可以是课堂实录)

1.导入

问题:淘气和笑笑各自调制了一杯蜂密水,请问哪杯水更甜?

过程:互相讨论,发表看法,如何比较。(学生发言老师板书)

小结:比较的结果一样甜,分数可以约分比也可以化简。

2.新授

①引入“最简单整数比”的概念。

最简单的整数比就是比的前项、后项是互质数,像6∶5就是最简单的整数比。

②你还能举一些最简单的整数比的例子吗?如果我们能把比都化成最简单的整数比,就容易计算了!

③出示问题尝试并讨论:

12:80.7:0.82/5:1/4

1.能不能把整数比化简成最简单的整数比?如何化?

2.能不能把分数比化简成最简单的整数比?如何化?

3.能不能把小数比化简成最简单的整数比?如何化?

④交流

1.化简整数比的方法是什么?(先化成分数,再约分成最简分数,最后把最简分数转化成比的形式。)(或利用商不变的性质)

2.怎样把分数比化成最简单的整数比?(先转化成除法,再用最简分数表示结果,最后把最简分数转化成比的形式)

3.如何把小数比化简成最简单的整数比?(先化成整数比,再化简成最简单的整数比)

⑤介绍比的基本性质

3.练习

1、P51页化简下面各比。(独立完成,集体评讲)

2、练习:做书上练一练的第1、2题。

五、教师反思

比与除法、分数之间有如此密切的联系,利用除法中商不变的性质或分数的基本性质来化简比,这样的教学对学生掌握知识来说比较顺利,但在教学过程中要注重细节的指导,还要相信学生能根据以前的知识找到适合的化简方法,充分给予学生更大的空间。

小学六年级拓展教案数学篇2

教学内容:

人教版小学数学教材六年级上册第50~51页内容及相关练习。

教学目标:

1.理解和掌握比的基本性质,并能应用比的基本性质化简比,初步掌握化简比的方法。

2.在自主探索的过程中,沟通比和除法、分数之间的联系,培养观察、比较、推理、概括、合作、交流等数学能力。

3.初步渗透转化的数学思想,并使学生认识知识之间都是存在内在联系的。

教学重点:

理解比的基本性质

教学难点:

正确应用比的基本性质化简比

教学准备:

课件,答题纸,实物投影。

教学过程:

一、复习引入

1.师:同学们先来回忆一下,关于比已经学习了什么知识?

预设:比的意义,比各部分的名称,比与分数以及除法之间的关系等。

2.你能直接说出700÷25的商吗?

(1)你是怎么想的?

(2)依据是什么?

3.你还记得分数的基本性质吗?举例说明。

【设计意图】影响学生学习的一个重要因素就是学生已经知道了什么,于是此环节意在通过复习、回忆让学生沟通比、除法和分数之间的关系,重现商不变性质和分数的基本性质,为类比推出比的基本性质埋下伏笔。同时,还有机渗透了转化的数学思想,使学生感受知识之间存在着紧密的内在联系。

二、新知探究

(一)猜想比的基本性质

1.师:我们知道,比与除法、分数之间存在着极其密切的联系,而除法具有商不变性质,分数有分数的基本性质,联想这两个性质,想一想:在比中又会有怎样的规律或性质?

预设:比的基本性质。

2.学生纷纷猜想比的基本性质。

预设:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

3.根据学生的猜想教师板书:比的前项和后项同时乘或除以相同的数(0除外),比值不变。

【设计意图】比的基本性质这一内容的学习非常适合培养学生的类比推理能力,学生在掌握商不变性质和分数的基本性质的基础上,很自然地就能联想到比的基本性质,这不仅激发了学生的学习兴趣,同时也很好地培养了学生的语言表达能力。

(二)验证比的基本性质

师:正如大家想的,比和除法、分数一样,也具有属于它自己的规律性质,那么是否和大家猜想的“比的前项和后项同时乘或除以相同的数(0除外),比值不变”一样呢?这需要我们通过研究证明。接下来,请大家分成四人小组合作学习,共同研究并验证之前的猜想是否正确。

1.教师说明合作要求。

(1)独立完成:写出一个比,并用自己喜欢的方法进行验证。

(2)小组讨论学习。

①每个同学分别向组内同学展示自己的研究成果,并依次交流(其他同学表明是否赞同此同学的结论)。

②如果有不同的观点,则举例说明,然后由组内同学再次进行讨论研究。

③选派一个同学代表小组进行发言。

2.集体交流(要求小组发言代表结合具体的例子在展台上进行讲解)。

预设:根据比与除法、分数的关系进行验证;根据比值验证。

3.全班验证。

16:20=(16○□):(20○□)。

4.完善归纳,概括出比的基本性质。

上题中○内可以怎样填?□内可以填任意数吗?为什么?

(1)学生发表自己的见解并说明理由,教师完善板书。

(2)学生打开书本读一读比的基本性质,教师板书课题。(比的基本性质)

5.质疑辨析,深化认识。

【设计意图】基于猜想的学习必定需要来自学生的自主探究进行验证,而合作探究又是一种良好的学习方式,但合作学习不能流于形式。合作学习首先要让学生独立思考,让学生产生自己的想法,然后再进行合作交流,这样可以促使每个学生经历自主探究的学习过程,交流过程中不仅培养了学生的推理概括能力,同时也真正内化了来自猜想的“比的基本性质”,从而大大提高了合作学习的实效性。

三、比的基本性质的应用

师:同学们,你们还记得我们学习分数的基本性质的用途吗?什么是最简分数?

今天我们发现的比的基本性质也有一个非常重要的用途──可以化简比,进而得到一个最简整数比。

(一)理解最简整数比的含义。

1.引导学生自学最简整数比的相关知识。

预设:前项、后项互质的整数比称为最简整数比。

2.从下列各比中找出最简整数比,并简述理由。

3:4;18:12;19:10;;0.75:2。

(二)初步应用。

1.化简前项、后项都是整数的比。(课件出示教材第50页例1)

学生独立尝试,化简后交流。

(1)15:10=(15÷5):(10÷5)=3:2;

(2)180:120=(180÷□):(120÷□)=():()。

预设:除以公因数和逐步除以公因数两种方法,但重点强调除以公因数的方法。

2.化简前项、后项出现分数、小数的比。(课件出示)

师:对于前项、后项是整数的比,我们只要除以它们的公因数就可以了,但是像:和0.75:2,

这两个比不是最简整数比,你们能自己找到化简的方法吗?四人小组讨论研究,找到化简的方法。

学生研究写出具体过程,总结方法,并选代表展示汇报。教师对不同方法进行比较,引导学生掌握一般方法。

预设:含有分数和小数的比都要先化成整数比,再进行化简。有分数的先乘分母的最小公倍数;有小数的先把小数化成整数之后,再进行化简。

3.归纳小结:同学们通过自己的努力探索,总结出了将各类比化为最简整数比的方法。化简时,如果比的前项和后项都是整数,可以同时除以它们的公因数;遇到小数时先转化成整数,再进行化简;遇到分数时,可以同时乘分母的最小公倍数。

4.方法补充,区分化简比和求比值。

还可以用什么方法化简比?(求比值)

化简比和求比值有什么不同?

预设:化简比的最后结果是一个比,求比值的最后结果是一个数。

5.尝试练习。

把下面各比化成最简单的整数比(出示教材第51页“做一做”)。

32:16;48:40;0.15:0.3;

【设计意图】新课程标准提出教学中应该充分体现“以学生发展为本”的教学理念,充分发挥学生的主体作用,使学生成为学习的主人。因此在运用比的基本性质化简比的教学过程中,通过自学、独立探究、小组合作等方式,为学生创造一个积极的数学活动的机会,鼓励学生自主探究,找到化简比的方法。

四、巩固练习

(一)基础练习

1.教材第53页第4题。

把下列各比化成后项是100的比。

(1)学校种植树苗,成活的棵数与种植总棵数的比是49:50。

(2)要配制一种药水,药剂的质量与药水总质量的比是0.12:1。

(3)某企业去年实际产值与计划产值的比是275万:250万。

2.教材第53页第6题。

(二)拓展练习(PPT课件出示)

学生口答完成。

1.2:3这个比中,前项增加12,要使比值不变,后项应该增加()。

2.六(1)班男生人数是女生人数的1.2倍,男生、女生人数的比是(),男生和全班人数的比是(),女生和全班人数的比是()

【设计意图】练习的设计要紧紧围绕教学的重难点,同时练习的编排应体现从易到难的层次性。第1题是针对比的基本性质的基础练习,同时也为后续百分数的学习埋下伏笔。第2题训练单位不同的两个数量的比的化简方法,培养学生的审题能力。拓展练习不仅发展学生思维的灵活性、培养学生的创造能力,而且很好地巩固了本节课的知识,同时这类题型也是分数应用题、比例应用题的基础训练,也为以后分数应用题和比例应用题的学习打下扎实的基础。

五、课堂小结

这节课你有什么收获?还有什么疑问?

小学六年级拓展教案数学篇3

教学内容:

教科书第50、51页的内容,做一做,练习十一第4-6题。

教学目标:

1、掌握比的基本性质,能根据比的基本性质化简比。

2、联系商不变的性质和分数的基本性质迁移到比的基本性质。

教学重点:

理解比的基本性质。

教学难点:

能应用比的基本性质化简比。

教学过程:

一、激趣定标

1、20÷5=(20×10)÷(×)=()

2、

想一想:什么叫商不变的规律?什么叫分数的基本性质?

3、我们学过了商不变的规律,分数的基本性质,联系比和除法、分数的关系,想一想:在比中有什么样的规律呢?这节课我们就来研究这方面的问题。

二、自学互动,适时点拨

【活动一】比的基本性质

学习方式:小组合作、汇报交流

学习任务

1、启发诱导,发现问题:6:8和12:16这两个比不同,可是它们的比值却相同,这里面有什么规律呢?。

6:8=6÷8=6/8=3/412:16=12÷16=12/16=3/4

2、观察比较,发现规律。

(1)利用比和除法的关系来研究比中的规律。(商不变的规律)

(2)利用比和分数的关系来研究比中的规律。

3、归纳总结,概括规律。

(1)总结:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。

(2)追问:这里“相同的数”为什么要强调0除外呢?

【活动二】化简比

学习方式:尝试训练、汇报交流

学习任务

1、认识最简单的整数比。

(1)提问:谁知道什么样的比可以称作是最简单的整数比?

(2)归纳:最简单的整数比要满足两个条件,一是比的前项和后项都是整数,二是比的前项和后项的公因数只有1。

(3)指出几个最简单的整数比。

2、运用性质,掌握化简比的方法。

(1)分别写出这两面联合国国旗长和宽的比。

(2)思考:这两个比是最简单的整数比吗?为什么?(前项和后项除了公因数1还有其他的公因数。)

(3)尝试化简。

(4)汇报交流:只要把比的前、后项除以它们的公因数。

(5)想一想:这两个比化简后结果相同,说明了什么?(这两面旗的大小不同,形状相同。

(6)出示例题,组织交流

①乘分母的最小公倍数:1/6:2/9=(1/6×18):(2/9×18)=3:4

②前后项先化成整数,再化简:0.75:2=(0.75×100):(2×100)=75:200=3:8

③用分数除法的方法计算:1/6÷2/9=1/6×2/9=3/4

(7)小结:如果一个比的前、后项是分数的,就把前后项同时乘分母的最小公倍数;如果一个比的前、后项是小数的,先把它们都化成整数,再化简。

三、达标测评

1.完成课本第51页的“做一做”,集体订正。

2、完成课本第52页练习十一的第2、4、5、6题。

四、课堂小结

这节课我们学习了什么?你有什么收获?

小学六年级拓展教案数学篇4

教学内容:

教科书第十二册P.110整理与反思以及P.110111练习与实践13题。

教学目标:

1、用上、下、前、后、左、右描述物体的位置;

2、用东、南、西、北描述物体的方向;

3、用数对表示物体的具体位置;

4、比例尺的知识

教学目标:

1、使学生通过复习,比较系统地综合地运用各种描述的方法描述并确定物体的位置,体会用不同的方法确定位置的特点和作用;能综合地运用比例尺的知识确定物体之间的图上距离或实际距离。

2、在复习中训练并培养学生的方向感和空间观念、综合运用所学知识解决实际问题的能力以及识图、作图的能力。

3、在复习中让学生感受数学与生活的关系,利用数学自身的魅力发展学生对数学积极的情感,激发学生学习数学的积极性。

重点难点:

1、能根据文字描述在图上正确找出指定位置

2、能用数学语言准确描述图形中指定的位置。

教具学具:

教学光盘

教法写学法:

可以先复习确定物体位置的方法。比如,教师可以提问,我们已经学过哪几种确定物体位置的方法,由学生说出一种是用数对,一种是用方向和距离,由此引出东、南、西、北和东北、西北、东南、西南八个方向的复习。

然后出示课本上的街区平面图,可以先让学生说说街区图的内容,特别是比例尺1∶10000表示图上1cm相当于实际距离多少米。然后由学生自己提出问题,请同学看图回答。以提问从阳光小区到邮局怎样走为例,如果学生回答:出小区穿过马路向左拐弯,到四季路再向右拐弯;沿着和平路向西,到四季路向北都应认可。当说出行进距离时,学生之间有时会出现较大误差。由此可以让学生看课本第106页下面街区图的局部放大图,看看该示意图是怎样量的,使学生明确通常是量目标位置所在的点到路的中轴线的距离。有了这个统一的约定,一般可要求六年级学生将图上距离的测量误差控制在2mm之内。

复习时,也可以先讨论课本上两个少先队员的对话内容,再请学生提出问题。还可以在学生说出街区图的内容时,由回答比例尺1∶10000表示图上1cm相当于实际距离多少米的提问,引出图上测量的问题。让学生看课本第106页下面街区图的局部放大图,搞清楚该怎样量,然后再看着第106页上面的街区图,提出问题,或讨论课本上两个少先队员对话中的问题。

小学六年级拓展教案数学篇5

教学内容:

P7“回顾与整理”、“练习与应用”第1—4题

教学目标:

1、通过“回顾与整理”使学生逐步掌握一些整理知识的方法,养成对所学知识分阶段进行整理的习惯。

2、使学生进一步掌握有关方程的解法,体会到列方程解决实际问题的基本思考方法,加深对列方程解决实际问题的理解,激发学生进一步信息方程、应用方程的兴趣。

教学资源:小黑板

教学过程:

一、揭示课题

本单元,我们主要学习了有关列方程解决实际问题的知识。今天我们要将这些知识进行整理一下。

二、回顾与整理

1、出示小组讨论题:

(1)像3.4_+1.8=8.6、5_-_=24这样的方程各应怎样解?

(2)在列方程解决实际问题时,可以怎样找数量之间的相等关系?举例说明。

2、让学生围绕这两个问题进行独立思考。

3、把各自思考的情况在小小组内进行交流。

4、全班交流。

讨论题(1)可以让学生说说首先要将这样的方程作怎样的变形,并提醒学生解方程时要养成检验的习惯。

讨论题(2)可以引导学生举例说说本单元学会了用方程解决哪些实际问题,并结合所举例子说明解决每一类问题的基本思路。

三、练习与应用

1、解方程

180+6_=33027_+31_=145_-0.8_=10

2.2_-1=1015_÷2=604_+_=3.15

(1)让学生独立完成,指名板演。

(2)集体交流时要关注学生解这些方程的准确率,并及时引导学生总结解每一类方程的基本方法,反思解这些方程时可能遇到的问题。

2、解决实际问题

(1)南京长江大桥的铁路桥长6772米,公路桥长4589米。它的铁路桥比武汉长江大桥铁路桥的5倍多197米,公路桥比武汉长江大桥公路桥的3倍少421米。

①武汉长江大桥铁路桥长多少米?

②武汉长江大桥公路桥长多少米?

__让学生认真审题,独立思考后找出相关数量之间的相等关系说一说。师随机板书:

武汉长江大桥铁路桥的长度×5+197=南京长江大桥铁路桥的长度

武汉长江大桥公路桥的长度×3-421=南京长江大桥公路桥的长度

__问:在列方程时应该怎样表示题中的两个未知数量?

(2)练习与应用第3题

__先让学生看图后说说了解到了哪些信息。

__问:这棵树苗从80厘米长到104厘米,经过了几个月?你怎么知道的?

__问:你能说说题中数量之间的相等关系吗?

(学生如有困难,教师可以画线段图帮助学生理清数量关系)

随机板书:

小树原有的高度+6个月长的高度=小树现在的高度

(3)学校印制画册一共用去1740元,其中制版费300元,其余的是印刷费。每本画册的印刷费是3.6元,学校印制了多少本画册?

__学生读题后,教师先结合图书的印刷过程向学生介绍“制版费”和“每册印刷费”的含义,从而帮助学生理解:印制画册用去的总钱数是由两个部分组成的。一部分是制版费,另一部分是印刷费,也就是每本印刷费与本数的乘积。

__再让学生独立解答,指名板演。

__交流时让学生结合所列的方程说说自己的思考过程。

三、总结:通过今天的整理与练习,你又有哪些收获?还有什么疑惑?

四、作业:P7“练习与应用”第2、3题。

小学六年级拓展教案数学篇6

一、教学内容

信息的误导

二、教学目标

1、会综合应用学过的统计知识,能从统计图中准确提取统计信息,能正确解释统计结果。

2、能根据统计图提供的信息,做出正确的判断或简单预测。

三、具体编排

1、例1。

例1说明从信息表达比较模糊的统计图中无法得到准确客观的结论。

教学时,引导学生分析图中“其他”部分的具体含义,使学生明确:“其他”占彩电市场份额的47%,其中可能包含有比A牌更畅销的彩电。从而使学生认识到:制作统计图时,一定要客观准确地反映信息;在分析统计图时,不要被数据模糊的统计图误导。

2、例2。

例2说明利用统计图进行统计分析时,不能仅仅关注统计图的外在表象,还应了解统计图所包含的具体的统计信息,才能避免做出错误的判断。

教学时,可先呈现这两幅统计图,让学生说说:“A、B两人绘制的是同一个公司员工的月薪统计图,为什么看起来不一样呢?”引导学生分析原因并认识到:在运用统计图进行比较和判断时,一定要注意统一标准,才不致发生误判。

四、教学建议

1、注重知识的前后联系,培养学生综合分析能力。

应引导学生在复习旧知的基础上重点进行综合分析,从而使学生学会从统计图中准确提取统计信息,能对统计结果做出正确解释,并能根据统计结果作出准确的判断、预测。

2、把握好教学要求。

本单元教学时应注意向学生阐明以下两点:

(1)统计图在表述统计结果时具有直观、形象的特点,故统计活动中常用统计图来描述统计信息,展示统计结果。

(2)不要被统计图表面的信息迷惑、误导,要保证所得结论的真实性和客观性。实际教学时可先让学生观察统计图,谈谈直观感受和看法,再引导学生分析统计图表达和包含的数据信息,得出正确结论。

小学六年级拓展教案数学篇7

教学目标

1.使学生理解正、反比例的意义,能够初步判断两种相关联的量是否成比例,成什么比例.

2.通过观察、比较、归纳,提高学生综合概括推理的能力.

3.渗透辩证唯物主义的观点,进行运用变化观点的启蒙教育.

教学重难点

理解正反比例的意义,掌握正反比例的变化的规律.

教学过程

一、导入新课

(一)昨天老师买了一些苹果,吃了一部分,你能想到什么?

(二)教师提问

1.你为什么马上能想到还剩多少呢?

2.是不是因为吃了的和剩下的是两种相关联的量?

教师板书:两种相关联的量

(三)教师谈话

在实际生活中两种相关的量是很多的,例如总价和单价是两种相关联的量,总价和

数量也是两种相关联的量.你还能举出一些例子吗?

二、新授教学

(一)成正比例的量

例1.一列火车行驶的时间和所行的路程如下表:

时间(时):路程(千米)

1:90

2:180

3:270

4:360

5:450

6:540

7:630

8:720

1.写出路程和时间的比并计算比值.

(1)2表示什么?180呢?比值呢?

(2)这个比值表示什么意义?

(3)360比5可以吗?为什么?

2.思考

(1)180千米对应的时间是多少?4小时对应的路程又是多少?

(2)在这一组题中上边的一列数表示什么?下边一列数表示什么?所求出的比值呢?

教师板书:时间、路程、速度

(3)速度是怎样得到的?

教师板书:

(4)路程比时间得到了速度,速度也就是比值,比值相当于除法中的什么?

(5)在这组题中谁与谁是两种相关联的量?它们是如何相关联的?举例说明变化规律.

3.小结:有什么规律?

53659