六年级数学教案反思简短
六年级数学教案反思简短篇1
教学内容:
课本第57——58页“扇形统计图“。
教学目标:
1、通过实例,认识扇形统计图,了解扇形统计图的特点与作用。
2、能读懂扇形统计图,从中获取有效信息,体会统计图在现实生活中的作用。
3、提高学生的实际应用能力。
教学重点:
认识扇形统计图,了解扇形统计图的特点与作用。
教学难点:
学生的实际应用能力的提高。
教具准备:
课件
教学过程:
一、复习旧知,引入新知
1、电脑课件呈现下表
种 类 摄入量/克 占总摄入量的百分比
油脂类 50
奶类和豆类 450
鱼、禽、肉、蛋等类 600
蔬菜和水果类 900
谷类 1800
2、电脑课件呈现统计图(或以学生的作品亦可)。
3、引入新知。
二、探索交流,获取新知
1、什么样的统计图是扇形统计图呢?
2、了解扇形统计图特点
3、即时练习。
完成课后的“说一说”。
(1)学生观察课文中的扇形统计图,读一凑统计图中的各类信息。
(2)说一说,你有什么体会。
学生说信息,并计算各种成分的百分比
汇报计算结果,订正
学生发言、交流
学生汇报:条形统计图可以清楚地看到每一种食物的摄入量。
观察,说出获得的信息
根据教师引导说出发现
从扇形统计图中能够清楚地看到各类食物的摄入量占总摄入量的百分之几。
观察数据,发现,说出不同,说出自己的看法
进行计算,订正
三、小结本课学习内容
谈话:这张表是小丽一家三口一天各类食物的摄入量,请你运用条形统计图表示表中的数据。说一说,条形统计图有什么特点?
提问:从条形统计图中,可以清楚地看到每一类食物的摄入量,能看出每一类食物的摄人量占总摄入量的百分之几吗?
揭题,板书课题:扇形统计图。
出示课件一边呈现扇形统计图,一边进行简要讲解,使学生了解扇形统计图是用扇形面积的大小(占圆面积的百分之几)来表示各类数量的多少。(占总摄人量的百分之几)
四、巩固升华
完成课后“试一试”。
1、比较各项活动时间,说一说有什么不同。提出数学问题
2、总时间是多少?各项活动时间可以怎么计算?
3、参照题目,画一个扇形统计图表示自己一天的作息时间,并和同学进行交流。
五、全课小结:你今天有什么收获?还有什么不懂的地方?
板书设计:
扇形统计图
能清楚地反映整体与部分的关系。
六年级数学教案反思简短篇2
教学目标
1、使学生理解按比例分配的意义。
2、掌握按比例分配应用题的特征及解题方法。
3、培养学生应用所学知识解决实际问题的能力。
教学重点
掌握按比例分配应用题的特征及解题方法。
教学难点
按比例分配应用题的实际应用。
教学过程
一、复习引入
(一)填空
已知六年级1班男生人数和女生人数的比是3∶2。
1、男生人数是女生人数的()。
2、女生人数是男生人数的(),女生人数和男生人数的比是()。
3、男生人数占全班人数的(),男生人数和全班人数的比是()。
4、全班人数是男生人数的(),全班人数和男生人数的比是()。
5、女生人数占全班人数的(),女生人数和全班人数的比是()。
6、全班人数是女生人数的(),全班人数和女生人数的比是()。
(二)口答应用题
六年级(1)班和二年级(1)班共同承担了面积为100平方米的卫生区保洁任务,平均每个班的保洁区是多少平方米?
1、学生口答:1002=50(平方米)。
2、教师提问
这是一道分配问题,分谁?(100平方米)怎么分?(平均分)
六年级学生和二年级学生承担同样多的卫生区保洁任务,合理吗?
这样分还是平均分吗?
3、谈话引入
在日常生活中,很多分配问题都不是平均分配,那么,你们想知道还可以按照什么分配吗?今天我们继续研究分配问题。(板书:分配)
二、讲授新课
(一)把复习题2增加条件如果按3∶2分配,两个班的保洁区各是多少平方米?
(二)教师提问
1、分谁?(100平方米)
2、怎么分?(按3∶2分)
3、求的是什么?(两个班的保洁区各是多少平方米?)
六年级数学教案反思简短篇3
复习内容:第12册P92—93“练习与实践”7—9题。
复习目标:
1.使学生进一步理解商品打折出售的含义,进一步掌握分析数量关系的方法,熟练掌握列方程解答稍复杂的百分数实际问题的方法,理解不同形式的打折问题之间的联系,并能熟练解答。注重知识间的联系与融会贯通。
2.在分析问题、解决问题的活动中,发展学生的数学思考能力,提高用方程表示数量关系的能力,进一步积累解决问题的经验,增强数学应用意识。
3.让学生在学习和游戏中获得成功体验,提高学生的学习兴趣和爱好。
教学准备:课件
课时安排:第二课时
课前设计:
1.出示习题。一种图书打八折后售价是20元,这种图书原价是多少元?
2.学生练习、交流、检验。
3.练习P93第7、8两题。指导学生理解“降价10%”的含义。第8题提醒学生注意:两种衬衫的原价是相同的,但由于打的折扣不同所以现在售价是不同的;所花的108元是两种衬衣现价的和。
4.练习P93第9题。
学生通过自主探索和合作探索发现规律,并运用规律求出所框的4个数。
六年级数学教案反思简短篇4
教学目标:
知识与技能:
1、通过解决实际问题,了解确定位置的方法,能根据方向和距离确定物体的位置。
2、会看简单的路线图,能根据路线图说出行走的方向和路线。
过程与方法:
1、通过解决实际问题,体会确定位置在生活中的应用。
2、探索和发现确定位置的有效方法。
情感态度、价值观:
1、体会到数学知识与实际生活紧密联系,感受到生活中处处有数学。
2、培养学生合作交流的能力以及学习数学的兴趣和自信心。
教学重点:
通过学习了解确定位置的方法,能根据方向和距离确定物体的位置。会看简单的路线图,能根据路线图说出行走的方向和路线。
教学难点:
在学习过程中,发展学生的合情推理能力,使学生能进行有条理的思考,能比较清楚地表达自己的思考过程和结果。
一、情景导入
1、交流例题1中有关台风的消息。
⑴同学们听说过台风吗?你对台风有什么印象?
⑵播放有关台风的消息:目前台风中心位于A市东偏南30°方向、距离A市600km的洋面上,正以20千米/时的速度沿直线向A市移动。
师:听到这侧消息,你有什么感想?
启发学生交流,引导学生关注台风的位置和动态。
2、导入新课
现在台风的确切位置在哪里呢?今天这节课,我们就来学习确定物体位置的知识。
[板书课题:位置与方向(一)]
【设计意图】通过交流台风的相关信息,引导学生关注到确定位置的数学知识,从而激发学生的学习兴趣,为教学的展开作铺垫。
二、探究新知
㈠教学题例1
1、投影出示例题1。
学生观察情境图,交流从图中信息?
(启发学生观察时关注以下几方面的信息:东、南、西、北四个方向在哪里;以哪里为观测点;图中台风中心的个体位置在哪里。)
2、交流确定台风中心具体位置的方法。
⑴让学生尝试说说台风中心的具体位置。
⑵教师结合学生的汇报情况进行引导。
提问:东偏南30°是什么意思?
(东偏南30°表示的是台风中心位置相对于A市所在的方向,也就是台风中心位置与A市的连线和正东方向的夹角是30°,即正东方向往南偏30°。)
⑶小结确定位置的方法。
提问:如果只有一个条件,能够确定台风中心的具体位置吗?
引导学生得出:要确定台风中心的具体位置必须知道两个条件,即物体所在的方向和物体在这个方向上距离观察点的距离,简单地说就是要用“方向+距离”的方法来确定物体所在的具体位置。
3、组织计算。
师:现在我们知道台风中心所在的具体位置了,那台风大约多少小时后到达A市呢?
学生独立计算,组织交流。
600÷20=30(小时)
(二)教学例题2
1、投影出示例题2。
提问:在例题1的图中,B市、C市的具体位置应该标在哪里呢?请你在例题1的图中标出B市、C市的具体位置。
2、尝试画图。
⑴学生独立思考怎样标出B市、C市的具体位置。
⑵小组交流作图的方法。
⑶尝试画图。
教师巡视交流,参与部分小组讨论,辅导有困难的学生。
3、组织全班交流。
投影展示学生完成的作品。
组织交流和评议,通过交流明白在图上标出B市、C市位置的方法。
B市:先确定方向,用量角器量出A市的北偏西30°(量角器中心点与A市重合,量角器0刻度线与正北方向重合,往西量出30°);再表示距离,用1cm表示100km,B市距离A市200km,在图上也就是2cm。
C市:先确定方向,直接在图上找到A市的正北方向,再表示距离,用1cm表示100km,C市距离A市300km,在图上也就是3cm。
4、算一算。
台风到达A市后,移动速度变为40千米/时,几小时后到达B市?
200÷40=5(小时)
5、总结画图的基本步骤。
交流:你们认为在确定物体在图上的位置时,应注意什么?怎样确定?
总结:
(1)确定平面图中东、西、南、北的方向。
(2)确定观测点。
(3)根据所给的度数定出所画物体所在的方向。
(4)根据比例尺,定出所画物体与观测点之间的图上距离。
【设计意图】教学过程中应注重学生观察能力的培养,给学生足够的探索时间和空间,体会在图上确定位置的方法,让学生感受到数学源于生活,高于生活,用于生活的价值和魅力。
三、巩固练习
1、教材第20页“做一做”。
这道题物体所在的具体方向和距离都没有直接给出,需要学生自己测量和计算。⑴让学生独立进行测量、计算、填空。
⑵组织交流。
让学生说说是怎样测量方向的,怎样计算距离的。
2、教材第21页“做一做”。
⑴学生独立进行画图。
⑵投影展示,组织评议。
⑶交流画图的方法。
四、课堂小结
今天这节课我们知道要确定物体的位置,关键需要方向和距离两个条件。在平面图上标明物体位置的方法是先确定方向,再以选定的单位长度为基准来确定距离,最后画出物体的具体位置,标出名称。
六年级数学教案反思简短篇5
一、教学内容:
北师大版六年级数学下册第一单元《圆锥的体积》。
二、教学目标:
1、知识技能目标:
通过实验探究,发现圆锥和圆柱体积之间的关系,理解和掌握圆锥体积的计算方法。
使学生会应用公式计算圆锥的体积并解决一些实际问题。
2、思维能力目标:
提高学生实践操作、观察比较、抽象概括的能力,发展空间观念。
3、情感态度目标:
使学生在经历中获得成功的体验,体验数学与生活的联系。
三、教学重点、难点:
重点:使学生初步掌握圆锥体积的计算方法并解决一些实际问题
难点:探索圆锥体积的计算方法和推导过程。
四、教具准备:
1、多媒体课件。
2、等底等高、等底不等高、等高不等底的圆锥和圆柱共六套,沙、米,实验报告单;带有刻度的直尺,绳子等。
五、教学过程:
(一)创设情境,导入新课
投影出示圆锥形小麦堆。
师:看,小麦堆得像小山一样,小麦丰收了。张小虎和爷爷笑得合不拢嘴。这时,爷爷用竹子量了量麦堆的高和底面的直径,出了个难题要考考小虎:你能算出这堆小麦大约有多少立方米吗?
这下可难住了小虎,因为他只学了圆柱的体积计算,圆锥的体积怎么计算还没有学,怎么办?今天我们就一起来探究圆锥体积的计算方法。
【设计意图】通过学习感兴趣的情境,巧妙至疑,激发学生的学习欲望。
(二)互动新授
1、提出问题。
教师:我们已经会计算圆柱的体积,如何计算圆锥的体积呢?
根据学生的各种猜想,教师进一步引导学生思考,我们学过那些图形的体积计算?圆锥的体积与那种图形的体积有关?
进一步观察、比较、猜测。教师举起圆柱、圆锥教具,把圆锥体套在透明的圆柱体里,让学生想想它们的体积之间会有什么关系?
学生可能会猜测:圆柱的体积可能是圆锥的2倍,3倍,4倍或其他。
2、实验探究。
(1)教师布置实验任务。
出示教材例2.
①从准备好的圆柱、圆锥体容器中找出等底、等高的圆柱和圆锥体容器来。
②用倒水的方法量一量等底、等高的圆柱体积和圆锥体积之间的关系。
布置实验要求:各组根据需要选用实验用具,小组成员分工合作,轮流操作,做好实验数据的收集整理。(每组发一张实验记录单)
一号圆锥二号圆锥三号圆锥
次数
与圆柱是否等底、等高
(2)开展实验探究。
①找出等底、等高的圆柱和圆锥形容器。
②实验研究。
教师巡视指导。
学生一边实验,一边收集整理数据,完成实验记录单。
(3)分析数据,作出判断。
①各组说说各种实验结果。
②观察分析数据,你发现了什么?
(发现大多数情况下,圆柱能装下三个圆锥的水,也有两次或四次等不同的结果)
③进一步观察分析,什么情况下圆柱刚好能装下三个圆锥的水?
(各组互相观察各组的圆柱圆锥,发现只要是等底等高,圆柱的体积都是圆锥体积的3倍,也就是说在等底等高的情况下,圆柱体积是圆锥体积的3倍。)
④是不是所有符合等底等高条件的圆柱、圆锥都具备这样的关系呢?(教师用标准教具装水实验一次)
(4)总结结论
结论1:圆锥的体积V等于和它等底等高圆柱体积的三分之一。
结论2:圆柱的体积V等于和它等底等高的圆锥体积的3倍。
3、启发引导推导公式
师:对于同学们得出的结论,你能否用数学公式来表示呢?
生:因为圆柱的体积计算公式V=sh;所以我们可以用1/3sh表示圆锥的体积。
师:其他同学呢?你们认为这个同学的方法可以吗?
生:可以。
师:那我们就用1/3sh表示圆锥的体积。
计算公式:V=1/3sh
师:(1)这里Sh表示什么?为什么要乘1/3?
(2)要求圆锥体积需要知道哪两个条件?
学生回答,师做总结
4、简单应用尝试解答
例1:(课件出示教材情景图)在打谷场上,有一个近似于圆锥的小麦堆,底面半径是2米,高是1.5米。你能计算出小麦堆的体积吗?
(学生独立列式计算全班交流)
(三)巩固练习,运用拓展
1、试一试
一个圆锥形零件,它的底面直径是10厘米,高是3厘米,这个零件的体积是多少立方厘米?
2、练一练
计算下面各圆锥的体积:
3、实践性练习
师:请你们将做实验时装在圆柱容器里的水换成沙(或米)试一试,看结论是否一样。然后把它倒出,堆成一个圆锥形沙(米)堆,小组合作测量计算它的体积。
4、开放性练习
一段圆柱形钢材,底面直径10厘米,高是15厘米,把它加工成一个圆锥零件。根据以上条件信息,你想提出什么问题?能得出哪些数学结论?(可小组讨论)
(四)整理归纳,回顾体验
1、上了这些课,你有什么收获?(互说中系统整理)
2、用什么方法获取的?你认为哪组表现最棒?
3、通过这节课的.学习,你有什么新的想法?还有什么问题?
【设计意图】通过组织学生对圆锥体积计算方法进行猜测、验证、交流,从而发现圆锥体积的计算方法。整个探究过程充分体现了学生的主体地位,调动了学生的学习积极性。在解决问题的过程中感受到数学知识的价值。
六、板书设计:
圆锥的体积
圆锥的体积等于和它等底等高的圆柱体积的1/3。
六年级数学教案反思简短篇6
第一课时总复习——分数乘、除法
教学内容:教材第118页总复习第1——5题。
教学目标:
1.理解分数乘、除法的意义、倒数的意义,分数乘除法的关系,掌握分数乘、除的计算方法,能正确地进行分数乘除法的计算。
2.掌握比的意义,理解比与分数、除法的关系,比的基本性质,会求比值和化简比。
3.掌握解决分数乘除法问题的思路,能熟练地分析数量关系,正确地解决分数除法问题。
教学重点:概念和计算方法。
教学难点:掌握解决分数乘,除法问题的思路和方法。
教学过程:
一、分步复习活动准备
将学生课前就本节复习内容提出的知识性问题和难点问题分类整理,制成问题卡,交由3位学生主持复习。
师:同学们,经历了将近一个学期的学习,大家都有不同程度的收获,为了帮大家更好地复习整理本节知识,我们请3位同学分别主持复习。现在请第一位主持人出场。
二、复习分数乘除法的知识
1.主持人持知识问题卡提出问题,分别指名回答。
分数乘法的意义是什么?与整数乘法相同吗?
分数除法的意义是什么?与整数除法相同吗?
分数乘法的计算法则是怎样的?
什么叫倒数?怎样求一个数的倒数?
分数除法的计算方法是怎样的?
2.主持人持难点问题卡提出问题,指名回答。
分数乘、除法的关系是怎样的?
分数除法的计算具体要注意几点?
0有倒数吗?为什么?1呢?
3.教师组织学生活动
计算。
3/4×2/5= 2/3×5/6= 7/9×18= 3/10÷3/4= 5/9÷5/6=
21÷7/9= 3/10÷2/5= 5/9÷2/3= 6/11÷5/12=
4.复习比的知识
第二位主持人提出问题,学生回答。
知识性问题:
什么叫比?比的各部分名称是怎样的?举例说明?
怎样求比值?
比与分数、除法有什么联系?
比的基本性质是什么?怎样化简比?
难点问题:
为什么比的后项不能为0?
求比值与化简比有什么区别?
练习:
3÷4=()/()=()/12=():32=12:()
说出下面每个比的前项、后项,并求出比值。2:5 0.6÷0.3 4/7
把下面各比化成最简整数比.8:12 0.25:0.45 1/4:1/8
(5)复习解决问题的解题思路和方法。
第三位主持人上场。
怎样解决分数乘除法问题呢?
主持人点4名同学板演教材第118页第3、4、5题。
对4名学生做的情况进行评议。
对比观察第3题第(1)(2)小题。
数量关系式是:原价×1/5=现价
第(1)小题已知原价求现价,用乘法计算。第(2)小题已知现价求原价,用除法计算或用方程解。
学生归纳分数乘除法问题的规律。
单位“1”的量已知,求一个数的几分之几是多少,用乘法计算;
单位“1”的量未知,已知一个数的几分之几是多少,求这个数,用除法计算。
验证第4、5题。
第4题,把地球总面积看作单位“1”,求单位“1”的量用除法计算。
第5题,先出示学生画的线段图。观察线段图结合理解:火车的速度已知,第1个单位“1”的量是火车的速度,求小汽车的速度用乘法计算,第二个单位“1”的量是喷气式飞机的速度,是未知的,要用除法计算。
主持人归纳:区分分数乘、除法问题,判断把谁看作单位“1”以及是已知还是未知,这是非常关键的一步,此外还应借助线段图分析数量关系,真正掌握知识。
师:归纳得真好。今天三位主持人在场上还有很多精彩表现,请同学们评一评。
三、应用练习
(1)完成练习二十七第5题。
(2)完成练习二十七第10、11题。
(3)完成练习二十七第7、8题,学生做后汇报思路和方法。
四、课堂小结
通过这节课的复习活动,你的学习有什么新的收获?
第二课时总复习——百分数
教学内容:教材第119页总复习第6、7题。
教学目标:
1.理解百分数意义,掌握百分数和分数、小数的互化方法。
2.熟练运用百分数知识解决百分数问题,理解百分数问题的结构特征,归纳百分数问题的解题思路和方法。
3.培养学生解决问题的能力。体验百分数知识与日常生活的密切联系,培养学生应用知识的意识。
教学重点:运用百分数知识解决实际问题。
教学难点:归纳知识,形成体系。
教学过程:
一、创设情境导入
师:同学们,百分数在我们的生活中无处不有,只要我们留心它,发现它就在我们身边。
1.投影出示下面一段文字:
湖南汩罗义务教育阶段学生流失率低得令人咋舌。10年前初中是2.5%,小学是0.02%,现在小学连续10年的入学率,巩固率均为100%,初中流失率始终控制0.2%,近三年的数字是0.18%,0.17%和0.15%.
2.学生阅读文字,感知其中百分数。
3.从上面一段文字中你能发现什么?
从上面的百分数中中以看出汩罗义务教育实施情况非常理想;运用百分数很能够直观;百分数在实际应用中表示两个量之间的关系,一个量是另一个量的百分之几。
二、复习百分率的知识
1.师:看来,百分数的作用还真不小。你能理解上文中百分率的意思吗?
学生尝试理解流失率、入学率、巩固率的意思,教师指正。
2.复习已学过的一些百分率的计算公式。
3.学习理解烘干率和含水率。
完成教材第119页总复习第6题。
学生自学理解烘干率和含水率的意思,然后说一说,议一议。
烘干率=烘干后的重量/烘前的重量×100%
含水率=(烘前的重量-烘干后的重量)/烘前的质量×100%
学生试求烘干率和含水率,然后集体订正。
三、复习百分数的一般应用题。
1.求一个数比另一个数多(或少)百分之几。
2.求一个数多(或少)百分之几的数是多少
师;我们已经学习了运用百分数知识解决百分数的一般问题。现在大家回顾已学知识,把你掌握的方法告诉小组的成员。
分组讨论,交流分析问题的思路和解决问题的方法。
小组汇报。可能有以下几种:
解决百分数的问题可以依照解决分数问题的方法。
在分析问题时,可以先画线段图加深理解,判断单位“1”的量是已知还是未知,找对应关系,写数量关系式。
根据百分数题型结构特征确定解法。
多(少)的数/另一个数=一个数比另一个数多(少)百分之几
一个数×(1+几%)=比一个数多(或少)百分之几的数。
综合问题结合实际来解答。
四、应用练习
1.完成总复习第7题
学生试做,指名板演。
方法一:(2622—2476)÷2476=146÷2476≈5.9%
方法二:2622/2476-1≈1.059-1≈5.9%
引导学生比较两种思路方法。
2.完成练习二十七第13题。
学生独立完成,然后说说各自的思路.
3.完成练习二十七第14、15题。
教师:九折是什么意思?
利息怎样计算?本息又是什么意思?
学生独立完成。
学生在班上交流。
五、课堂小结
通过这次学习活动,你有什么新的收获?
板书设计:
百分数——一个数是另一个数的百分之几
(1)百分率=()/()×100%
(2)一个数比另一个数多(少)百分之几
多(少)的数/另一个数多(少)百分之几
(3)比一个数多(少)百分之几的数是多少?
一个数×(1+N%)=比一个数多(少)百分之几的数
(4)售价×几折=实付钱数
收入×税率=应纳税额
利息=本金×利率×时间
六年级数学教案反思简短篇7
教学方案:
教学环节教学预设
一、问题情境
1.教师拿出自己的钥匙,并引出密码锁。分别说一说在什么地方或物品见过密码锁,见过几个数字的密码锁。
师:同学们,看老师手里拿的是什么?
生:钥匙。
师:对,这些都是用来开锁的钥匙。现实生活中,还有一种锁是不用钥匙的,你们知道是什么锁吗?
生:密码锁
师:谁知道什么地方或物品上经常用密码锁?
学生可能说出:保险柜、保险箱、旅行箱,等等。
师:看来同学们知道的不少,那谁来说一说你在什么东西上见过几个数字的密码锁
学生可能会说:
●我在旅行箱上见过三位数的密码锁。
●我在保险柜上见过六位数的密码锁。
●有的保险柜上的密码锁是8个数字。
2.提出兔博士的问题,师生交流。师:那谁知道旅行箱上为什么用密码锁,而不是钥匙锁呢?
学生可能会说:
●不怕丢钥匙。
●能够保密,别人不知道密码开不了,也不能仿制。
……
师:还有一个非常重要的原因是,用一定个数的数字组成密码,可以有许多变化,也就是可以组成许多密码,即使你知道了密码锁是几个数字,也很难判断是哪个密码。今天,我们就来研究一下数字密码锁的秘密。
板书:数字密码锁
二、探索密码锁
1.提出探索由两个数字组成多少个密码的问题,让学生分别写出0打头和1打头组成的密码。
师:现在,我们先来研究一下最简单的情况。假如数字锁的密码是由两个数字组成的,同学们想一想,用0、1、2、3、4、5、6、7、8、9这十个数字可以组成多少个密码?自己在本上写一写。用0打头时可以组成几个密码?
学生写密码,然后交流,得出:
用0打头,得到的10个密码是00、01、02、03、04、05、06、07、08、09
板书:0打头——10个
师:再用1打头,写一写可以组成几个密码?
学生写完后交流,得出:
用1打头,得到的10个密码是10、11、12、13、14、15、16、17、18、19
板书:1打头——10个
师:想一想,用2打头,可以组成几个密码?
生:10个。
2.分别提出:用3、4、5、6、7、8、9打头各能组成多少个?一共能组成多少个?在学生讨论的同时,得出:10×10=100(个)师:分别用3、4、5、6、7、8、9打头呢?
生:分别可以组成10个
师:一共10个数字,每一个数字打头都能组成10个密码,那一共可以组成多少个密码呢?
生:一共可以组成100个。
教师板书:10×10=100(个)
3.教师谈话并告诉学生用三个数字组成1000个密码,鼓励学生合作进行推算。师:刚才,我们通过写出几组密码,推算得出:用0到9的10个数字组成两个数字的密码,可以组成100个,那你们想知道,用这10个数字组成三个数字的密码,能组成多少个吗?
教师板书:10×10×10=1000(个)
师:可以组成1000个,你们知道是怎么推算出这个结果吗?同学合作,试着推算一下。
学生先自己推算,教师巡视,个别指导。
4.交流学生推算的方法,说明结果的准确性。给学生充分交流不同想法的机会。师:谁来汇报一下,你们是怎样推算的?
学生可能有以下说法:
●组成密码的数字都可以是0、1、2、3、4、5、6、7、8、9的十个数字。如果第一位数字是0,第二位数字是0,第三位数字是0、1、2、3、4、5、6、7、8、9,即:000、001、002、003、…009共10个密码。
如果第一位数字是0,第二位数字是1,第三位数字是0、1、2、3、4、5、6、7、8、9,即:010、011、012、013、…019共10个密码;……,所以第一位数字是0的密码共有10×10=100(个)
同样第一位数字是1,也有100个,第一位数字是2,也有100个,…第一位数字是9,也有100个,所以由三个数字组成的密码共有10×10×10=1000(个)
●用0、1、2、3、4、5、6、7、、8、9可以组成100个两个数字的密码,在每个密码后面再加一个数字,都能组成10个密码,所以一共可以组成100×10=1000(个)
●用0、1、2、3、4、5、6、7、8、9十个数字中任一个数打头,后面都能组成(10×10)个两个数字的密码,所以一共可以组成10×10×10=1000(个)
只要学生能够大胆说出自己的推理过程,无论正确与否,教师首先给以鼓励,然后教师参与交流。
5.简单说明1000个密码与密码箱的关系,然后,让学生计算偷偷打开一个三个数字的密码箱需要多少时间。算完后交流。师:同学们用不同方法推算出了由三个数字组成的密码有1000个。大家知道,一个密码箱只有一个密码,也就是说,一个三个数字的密码锁只是这1000个密码中的一个。所以知道密码的人,很容易就打开了,不知道密码的人,要想偷打开箱子,可就难了,你们知道难在哪吗?
生:他得一个一个地试。
师:对,要一个一个地去试,这样就有可能要试1000次才能打开。请同学们算一算,如果每试一个密码要10秒钟,试1000次需要多长时间。
学生算完后,交流计算结果。
1000×10÷60÷60≈2.7(时)
6.告诉学生六个数字组成的密码有1000000个,让学生计算打开这样一个密码锁需要多少天。师:不知道密码,要想打开一个由三个数字组成的密码锁,就要花近3个小时的时间。重要的文件箱,都是由六个数字组成的密码锁,这样的密码有1000000个(板书:1000000个),不知道密码的人,想打开箱子所花的时间会更多。请同学们算一算,如果试一次的时间仍然是10秒,那么打开一个六位密码锁要用多少天呢?
学生汇报计算结果。
1000000×10÷60≈16666(分),
16666÷60≈277(时),
277÷24≈11(天)
师:可见,数字密码锁具有很强的安全性,因为打开一个不知道密码的锁会用很长时间,因此就增加了密码锁的安全性。所以人们常把贵重物品或重要文件,放在安全可靠的密码箱中,防止泄密或丢失。
三、汽车牌照问题
1.让学生自己读书并解答。交流时,说一说是怎样推算的。
师:刚才我们研究的数字密码问题,实际上是运用了我们数学上数的组成的知识请同学们打开书79页,看汽车牌照问题。试着计算可增加多少个车牌号?
学生试算,教师巡视。
师:谁来说一说你是怎样想的?怎样计算的?
生:由四个数字组成的数码有10×10×10×10=10000(个),在这些数码前面增加一个字母,就可以增加1万个。
四、电话号码问题
提出电话号码问题,鼓励学生合作解决。交流时,给学生发表不同意见的机会。
师:随着人们生活水平的提高,不仅私人汽车发展得很快,全球的电话拥有量更以空前的速度增长着。请同学们解决一下书中79页电话号码增位问题。这个问题较难,试一试!可以同桌商量。
同桌讨论,试做。
师:谁来说一说你是怎样做的?结果是多少?
学生汇报情况,教师参与。
学生可能会出现以下结果:
●由五个数字组成的数码有10×10×10×10×10=100000(个),把10万个数码每个后面增加一个数字,可增加10个数码。所以,一共可以增加100万个,即:10000×10=1000000(个)
●电话号码没有0打头的,所以要去掉0打头的,所以,五位数的电话号码有10×10×10×10×9=90000(个),变成六位后是10×10×10×10×10×9=900000(个),增加了810000个。
六年级数学教案反思简短篇8
教学目标:
1、通过教学,使学生在理解分数除法意义及掌握分数乘法应用题
题思路的基础上,掌握已知一个数的几分之几是多少求这个数的稍复杂分数除法应用题的解题思路和方法,能比较熟练地解答一些简单的实际问题。
2、通过教学,培养并提高学生的分析、判断、探索能力及初步的逻辑思维能力。
教学重点:
弄清单位“1”的量,会分析题中的数量关系。
教学难点:分析题中的数量关系。
教具准备:多媒体课件
教学过程:
一、旧知铺垫(课件出示)
小红家买来一袋大米,重40千克,吃了,还剩多少千克?
1、指定一学生口述题目的条件和问题,其他学生画出线段图。
2、学生独立解答。
3、集体订正。提问学生说一说两种方法解题的过程。
4、小结:解答分数应用题的关键是找准单位“1”,如果单位“1”的具体数量是已知的,要求单位“1”的几分之几是多少,就可以根据分数乘法的意义,直接用乘法计算。
二、新知探究
1、教学补充例题:小红家买来一袋大米,吃了,还剩15千克。买来大米多少千克?
(1)吃了是什么意思?应该把哪个数量看作单位“1”?
(2)引导学生理解题意,画出线段图。
(3)引导学生根据线段图,分析数量关系式:
买来大米的重量-吃了的重量=剩下的重量
(4)指名列出方程。
解:设买来大米X千克。
x-x=15
2、教学例2
(1)出示例题,理解题意。
(2)比航模组多是什么意思?引导学生说出:是把航模组的人数看作单位“1”,美术组少的人数占航模组的
(3)学生试画出线段图。
(4)根据线段图,结合题中的分率句,列出数量关系式:
航模小组人数+美术小组比航模小组多的人数=美术小组人数
(5)根据等量关系式解答问题。
(6)解:设航模小组有χ人。
χ+χ=25
(1+)χ=25
χ=25÷
χ=20
答:航模小组有20人。
三、课堂小结
1、今天我们学习的这两道应用题,它们有什么共同点?(今天我们学习的这两道应用题,题里的单位“1”都是未知的数量,都可以列方程来解,这样顺着题意列出方程思考起来比较方便。)
2、用方程解答稍复杂的分数应用题的关键是什么?(关键是找准单位“1”,再按照题意找出数量间的相等关系列出方程)
四、当堂测评
练习十第4、12、14题。
学生独立完成,教师巡回指点,有困难的学生及时请教优秀学生,做到“一帮一、兵强兵”。