教育巴巴 > 教学设计 >

九年级数学教案

时间: 新华 教学设计

九年级数学教案篇1

配方法的基本形式

理解间接即通过变形运用开平方法降次解方程,并能熟练应用它解决一些具体问题.

通过复习可直接化成x2=p(p≥0)或(mx+n)2=p(p≥0)的一元二次方程的解法,引入不能直接化成上面两种形式的一元二次方程的解题步骤.

重点

讲清直接降次有困难,如x2+6x-16=0的一元二次方程的解题步骤.

难点

将不可直接降次解方程化为可直接降次解方程的“化为”的转化方法与技巧.

一、复习引入

(学生活动)请同学们解下列方程:

(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4)4x2+16x=-7

老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得

x=±或mx+n=±(p≥0).

如:4x2+16x+16=(2x+4)2,你能把4x2+16x=-7化成(2x+4)2=9吗?

二、探索新知

列出下面问题的方程并回答:

(1)列出的经化简为一般形式的方程与刚才解题的方程有什么不同呢?

(2)能否直接用上面前三个方程的解法呢?

问题:要使一块矩形场地的长比宽多6 m,并且面积为16 m2,求场地的长和宽各是多少?

(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有此特征.

既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:

x2+6x-16=0移项→x2+6x=16

两边加(6/2)2使左边配成x2+2bx+b2的形式→x2+6x+32=16+9

左边写成平方形式→(x+3)2=25降次→x+3=±5即x+3=5或x+3=-5

解一次方程→x1=2,x2=-8

可以验证:x1=2,x2=-8都是方程的根,但场地的宽不能是负值,所以场地的宽为2 m,长为8 m.

像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.

可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.

例1 用配方法解下列关于x的方程:

(1)x2-8x+1=0 (2)x2-2x-21=0

三、巩固练习

教材第9页 练习1,2.(1)(2).

四、课堂小结

本节课应掌握:

左边不含有x的完全平方形式的一元二次方程化为左边是含有x的完全平方形式,右边是非负数,可以直接降次解方程的方程.

五、作业 教材第17页 复习巩固2,3.(1)(2).

九年级数学教案篇2

各位老师,今天我说课的内容是:22.3实际问题与一元二次方程第二课时,下面,我从教材分析、教学目的分析、教法分析、教材处理、教学流程等方面对本课的设计进行简要说明:

一、教材分析:

1、教材所处的地位:此前学生已经学习了应用一元一次方程与二元一次方程组来解决实际问题。本节仍是进一步讨论如何建立和利用一元二次方程模型来解决实际问题,只是在问题中数量关系的复杂程度上又有了新的发展。

2、教学目标要求:

(1)能根据具体问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界的一个有效的数学模型;

(2)能根据具体问题的实际意义,检验结果是否合理;

(3)经历将实际问题抽象为代数问题的过程,探索问题中的数量关系,并能运用一元二次方程对之进行描述;

(4)通过用一元二次方程解决身边的问题,体会数学知识应用的价值,提高学生学习数学的兴趣,了解数学对促进社会进步和发展人类理性精神的作用。

3、教学重点和难点:

重点:列一元二次方程解与面积有关问题的应用题。

难点:发现问题中的等量关系。

二.教法、学法分析:

1、本节课的设计中除了探究3教师参与多一些外,其余时间都坚持以学生为主体,充分发挥学生的主观能动性。教学过程中,教师只注重点、引、激、评,注重学生探究能力的培养。还课堂给学生,让学生去亲身体验知识的产生过程,拓展学生的创造性思维。同时,注意加强对学生的启发和引导,鼓励培养学生们大胆猜想,小心求证的科学研究的思想。

2、本节内容学习的关键所在,是如何寻求、抓准问题中的数量关系,从而准确列出方程来解答。因此课堂上从审题,找到等量关系,列方程等一系列活动都由生生交流,兵教兵从而达到发展学生思维能力和自学能力的目的,发掘学生的创新精神。

三.教学流程分析:

本节课是新授课,根据学生的知识结构,整个课堂教学流程大致可分为:

活动1复习回顾解决课前参与

活动2封面设计问题的探究

活动3草坪规划问题的延伸

活动4课堂回眸

这一流程体现了知识发生、形成和发展的过程,让学生体会到观察、猜想、归纳、验证的思想和数形结合的思想。

活动1复习回顾解决课前参与

由学生展示课前参与题目,集体订正。目的在于回顾常用几何图形的面积公式,并且引出本节学习内容——面积问题。

活动2封面设计问题的探究

通过学生自己独立审题,找寻等量关系,教师引导学生对“正中央矩形与封面长宽比例相同”题意的理解,使学生明白中央矩形长宽比为9:7,从而进一步突破难点:上下边衬与左右边衬比也为9:7,为学生设未知数提供帮助。之后由学生分组完成方程的列法,以及取法。讲解中注重简便设法及解法的指导与评价。

活动3草坪规划问题的延伸

放手给学生处理,以学生合作完成为主。突出利用平移变换为主的解决方式。多由学生分析不同的处理方法。

活动4课堂回眸

本课小结从内容、应用、数学思想方法,获取知识的途径等几个方面展开,既有知识的总结,又有方法的提炼,这样对于学生学知识,用知识是有很大的促进的。方法以学生畅谈收获为主。

作业布置

共3个题目,前两个为必做题,全员均作;最后一个选作题,可供学有余力学生能力提升用。

九年级数学教案篇3

教学目标

知识与技能目标:理解生活中的百分率,掌握求百分率的方法,能正确求出百分率。过程与方法目标:通过自主探究、合作交流,理解常用百分率的含义及计算方法。情感、态度与价值观目标:体会求百分率的用处和必要性,感受百分率源于生活,渗透数学来源于生活并服务于生活的数学思想。

教学重难点

教学重点:理解生活中常见的百分率的含义。

教学难点:正确计算常见的百分率。

教学过程

一、创设情境,探究导入

1、课件出示

看图,回答下面的问题。

(1)图中阴影部分占整个图形的几分之几?用百分数怎样表示?

(2)图中空白部分占阴影部分的几分之几?用百分数怎样表示?

2、百分数的意义

我们班有36%的学生参加了美术兴趣小组。

世界总人口中大约有50%的人口年龄低于25岁。

一瓶农夫果园饮料中果汁含量大约是10%。

我们班学生的近视率是45%。

3、小刚做了10道题,错了2道

做对的题数占总题数的几分之几?

做错的题数占总题数的几分之几?

做对的题数占总题数的百分之几?

做错的题数占总题数的百分之几?

求a是b的百分之几和求a是b的几分之几方法是相同的,都是:a÷b

4、六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的几分之几?六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人,占六年级学生人数的百分之几?

学生独立思考、同桌交流:尝试计算,得出结论。

5、谈话,导入新课

在我们的日常生活中像这样的百分率还有很多,如发芽率、及格率、出米率等,它可以帮助我们解决生活中的一些实际问题。

下面,让我们共同走进百分率,探究它的计算方法(板书:百分率的计算)。

二、学习新知

1、教学例1——在具体情境中认识百分率,探究计算方法

(1)出示例1:六年级有学生160人,已达到《国家体育锻炼标准》(儿童组)的有120人。六年级学生的达标率是多少?

(2)学生读题,分析题意,思考达标率的含义,尝试计算。

(3)指名板演并交流思维过程,集体订正。

(4)教师小结

指导学生明确达标率是百分率的一种,它的含义即“达标人数是测试总人数的百分之几”,与“求一个数是另一个数的几分之几”问题的计算方法相同,因此用“达标人数÷测试总人数”就行;因为百分率是百分数,计算结果应是百分数形式,所以完整的计算方法应是“达标率=达标人数除以测试总人数×100%”。

谈话:《国家学生体质健康标准》要求小学生体质健康达标率不得低于60%,通过计算、比较,说明我们班学生的体质是达到健康标准的,这也是百分率的价值所在。

2、教学例2——掌握百分率计算方法,认识百分率的价值

(1)出示例2:科学课上,五(2)班同学做的种子发芽实验结果如下:

种子名称实验种子总数发芽数发芽率

绿豆8078

花生5046

大蒜2019

(2)学生读题,弄清已知条件和问题,讨论发芽率的含义,尝试计算各种种子的发芽率。(3)指名学生交流发芽率的含义及计算方法,板演算式,集体订正。

(4)比较,认识发芽率在生产实践中的价值。

通过计算我们发现哪种种子的发芽率要高一些?哪种要低一些呢?讲解:发芽率对于农民种田是十分重要的,他们需要根据发芽率的高低,决定种子品种和播种面积。

3、小组合作探究,寻找生活中的百分率,总结百分率计算公式。

(1)谈话,明确合作学习要求:在实际生活中,像命中率、达标率、发芽率等这样的百分率还有很多,请小组四位同学在一起开动脑筋、积极协作,寻找生活中的百分率,写出它的计算方法,比一比哪个小组找得最多。

(2)小组合作,寻找生活中的百分率,探究其含义及其计算方法,写出计算公式,教师巡视了解小组合作情况及结果。

(3)小组代表汇报本组收集的百分率,阐明其含义,在投影仪上展示计算方法,师生共同订正。

(4)罗列不同百分率的计算方法,引导学生发现共同点,总结百分率的计算公式:?率=量?除以总数量×100%

(5)举实例,加深对百分率计算公式的认识,掌握百分率计算方法。

4、某县种子推广站,用300粒玉米种子作发芽试验,结果发芽的种子有288粒。求发芽率。

5、探讨、交流:生活中的百分率哪些可能大于100%?哪些只会等于或小于100%?三、巩固练习

1、填一填

①稻谷的出米率是85%,是指()

的千克数占()的千克数的百

分之八十五。

②甲数是乙数的4/5,乙数是甲数的

()%。

③20÷()=4/8=()︰24=()%

2、选一选:

种一批树,活了100棵,死了1棵,求成活率的正确算式是()。

一根钢管截成2段,第一段长米,第二段占全长的60%,这两段钢管比较()。布置作业

1、小组合作,整理生活中常见的百分率的计算方法,写在数学书第86页上。

2、完成练习二十第2、3、4题。

四、课堂小结

今天你有什么收获?生谈收获。

九年级数学教案篇4

-九年级数学《概率》(第1课时)教学设计

教学目标

1、知识与技能目标

了解必然事件、不可能事件、随机事件的特点。

2、过程与方法目标

经历体验、操作、观察、归纳、总结的过程,发展学生从纷繁复杂的表象中提炼出本质特征并加以抽象概括的能力,并会判断必然事件、不可能事件、随机事件。3、情感与态度目标

学生通过亲身体验,亲自演示,感受数学就在身边,促进学生乐于亲近数学,喜欢数学;教学重难点

重点:随机事件的特点。

难点:判断现实生活中哪些事件是随机事件。教法、学法和辅助手段

情境引人,游戏探索,游戏体验,拓展新知。学

参与活动,发现新知;探究合作,体验新知;抢答活动,巩固新知;听故事,拓展新知。教学辅助手段

红、白球若干,不透明盒子两个,骰子若干。教学过程:

一、创设情境,导入新课:

师:同学们,你们买过彩票吗?中过奖吗?

(学生有的说买过,绝大部分的同学说没有买过,没有中过奖)

可编辑

-师:你们想买彩票吗?想中奖吗?生:想。

师:我们来模拟买彩票中大奖,请你们在纸上写出一个你认为幸运的三位数,老师立即开奖。学生写好后,展示开奖结果。

师:有中奖的吗?请举手,我为中奖的同学准备了奖品。(为个别中了奖的同学发奖品,安慰没有中奖的同学)师:买一注彩票一定能中奖还是可能中奖?生:可能中奖。

师:我们这个游戏中一定要中奖,你能算出至少要买多少注彩票吗?(少数同学在算,很多同学不知道怎样算)

师:让我们一起走进九年级数学(上)《概率初步》的学习,《概率初步》会告诉我们怎样计算。我们今天就学习第一节《随机事件》。请打开教材。(多媒体展示课题)二、探索新知

1、(分组活动)问题1:

5名同学参加讲演比赛,以抽签方式决定每个人的出场顺序,签筒中有5根形状、大小相同的笔签,上面分别标有出场的序号1、2、3、4、5。小军首先抽签,他在看不到笔签上的数字的情况下从签筒中随机(任意)地取一根纸签,请考虑以下问题:(1)小军首先抽到的号共有几种可能?(2)抽到的序号小于6吗?(3)抽到的序号会是0吗?(4)抽到的序号会是1吗?

学生回答书中的问题,并判断以下三事件是什么事件(师点评):

可编辑

-(1)抽到的序号小于6。(2)抽到的序号是0。(3)抽到的序号是1。2、老师在讲台上演示

问题2掷一个质地均匀的正方体骰子,骰子的六个面上分

别刻有1到6的点数,请考虑以下问题:掷一次骰子,在骰子向上的一面上,(1)可能出现哪些点数?(2)出现的点数大于0吗?(3)出现的点数会是7吗?(4)出现的点数会是4吗?

1、学生猜测以上问题的结果,并判断以下三事件是什么事件:(师点评)(1)出现的点数大于0。(2)出现的点数是7。(3)出现的点数是4。三、

抢答游戏,应用新知例1、判断以下事件是什么事件。①

袋中只有5个红球,能摸到红球。②

打开电视机,正在播动画片

袋中有3个红球,2个白球,能摸到白球。

将一小勺白糖放入

水中,并用筷子不断搅拌,白糖溶解。⑤

测量某天的最低气温,结果为-150℃⑥

早晨的太阳一定从东方升起。

可编辑

-⑦

小红今年15岁,她一定在念初三。⑧

任意掷一枚硬币,正面向上。

一个鸡蛋在没有任何防护的情况下,从六层楼的阳台掉下来,砸在水泥地面上,没有摔破。

例2、袋子中装有5个黑球和16个白球,这些球的形状、大小、质地等完全相同,再看不到球的条件下随机从袋中摸出一个球。(1)这个球是白球还是黑球?

(2)如果两种球都有可能被摸出,那么摸出黑球和白球的可能性一样大吗?(3)你能摸出红球吗?四、拓展新知

思考:小明和小刚在玩掷骰子游戏,二人各执一枚骰子。当两枚骰子的点数之和为奇数,小刚得1分,否则小明得1分,这个游戏对双方公平吗?师引导学生进行分析,共同完成本题。五、反思小结,回味新知1、这节课你学到了什么?

2、你体会到了什么?

3、最让你难忘的是什么六、布置作业

作业:教科书习题25.1第1题。教学设计说明(一)设计思想:

本课设计旨在遵循从具体到抽象,从感性到理性的渐进认识规律,以学生感兴趣的摸球游戏

可编辑

-引如课题,以熟悉的抽签和掷骰子游戏引导学生分清必然事件,不可能事件,随机事件,增强了学生的学习兴趣。(二)教学设计特点

1.贴近生活,让学生在体验中感悟学习.2.创设情境,让学生在兴趣中自主学习.3.开放课堂,让学生在活动中探索学习

可编辑

九年级数学教案篇5

[本课知识要点]

会画出这类函数的图象,通过比较,了解这类函数的性质.

[MM及创新思维]

同学们还记得一次函数与的图象的关系吗?

,你能由此推测二次函数与的图象之间的关系吗?

,那么与的图象之间又有何关系?

.

[实践与探索]

例1.在同一直角坐标系中,画出函数与的图象.

解列表.

x…-3-2-10123…

…188202818…

…20104241020…

描点、连线,画出这两个函数的图象,如图26.2.3所示.

回顾与反思当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?

探索观察这两个函数,它们的开口方向、对称轴和顶点坐标有那些是相同的?又有哪些不同?你能由此说出函数与的图象之间的关系吗?

例2.在同一直角坐标系中,画出函数与的图象,并说明,通过怎样的平移,可以由抛物线得到抛物线.

解列表.

x…-3-2-10123…

…-8-3010-3-8…

…-10-5-2-1-2-5-10…

描点、连线,画出这两个函数的图象,如图26.2.4所示.

可以看出,抛物线是由抛物线向下平移两个单位得到的.

回顾与反思抛物线和抛物线分别是由抛物线向上、向下平移一个单位得到的.

探索如果要得到抛物线,应将抛物线作怎样的平移?

例3.一条抛物线的开口方向、对称轴与相同,顶点纵坐标是-2,且抛物线经过点(1,1),求这条抛物线的函数关系式.

解由题意可得,所求函数开口向上,对称轴是y轴,顶点坐标为(0,-2),

因此所求函数关系式可看作,又抛物线经过点(1,1),

所以,,

解得.

故所求函数关系式为.

回顾与反思(a、k是常数,a≠0)的图象的开口方向、对称轴、顶点坐标归纳如下:

开口方向对称轴顶点坐标

[当堂课内练习]

1.在同一直角坐标系中,画出下列二次函数的图象:

,,.

观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置.你能说出抛物线的开口方向及对称轴、顶点的位置吗?

2.抛物线的开口,对称轴是,顶点坐标是,它可以看作是由抛物线向平移个单位得到的.

3.函数,当x时,函数值y随x的增大而减小.当x时,函数取得最值,最值y=.

[本课课外作业]

A组

1.已知函数,,.

(1)分别画出它们的图象;

(2)说出各个图象的开口方向、对称轴、顶点坐标;

(3)试说出函数的图象的开口方向、对称轴、顶点坐标.

2.不画图象,说出函数的开口方向、对称轴和顶点坐标,并说明它是由函数通过怎样的平移得到的.

3.若二次函数的图象经过点(-2,10),求a的值.这个函数有还是最小值?是多少?

B组

4.在同一直角坐标系中与的图象的大致位置是()

5.已知二次函数,当k为何值时,此二次函数以y轴为对称轴?写出其函数关系式.

[本课学习体会]

九年级数学教案篇6

教学内容

1.(a≥0)是一个非负数;

2.()2=a(a≥0).

教学目标

理解(a≥0)是一个非负数和()2=a(a≥0),并利用它们进行计算和化简.

通过复习二次根式的概念,用逻辑推理的方法推出(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出()2=a(a≥0);最后运用结论严谨解题.

教学重难点关键

1.重点:(a≥0)是一个非负数;()2=a(a≥0)及其运用.

2.难点、关键:用分类思想的方法导出(a≥0)是一个非负数;用探究的方法导出()2=a(a≥0).

教学过程

一、复习引入

(学生活动)口答

1.什么叫二次根式?

2.当a≥0时,叫什么?当a<0时,有意义吗?

老师点评(略).

二、探究新知

议一议:(学生分组讨论,提问解答)

(a≥0)是一个什么数呢?

老师点评:根据学生讨论和上面的练习,我们可以得出

(a≥0)是一个非负数.

做一做:根据算术平方根的意义填空:

()2=_______;()2=_______;()2=______;()2=_______;

()2=______;()2=_______;()2=_______.

老师点评:是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4.

同理可得:()2=2,()2=9,()2=3,()2=,()2=,()2=0,所以

()2=a(a≥0)

例1计算

1.()22.(3)23.()24.()2

分析:我们可以直接利用()2=a(a≥0)的结论解题.

解:()2=,(3)2=32•()2=32•5=45,

()2=,()2=.

三、巩固练习

计算下列各式的值:

()2()2()2()2(4)2

四、应用拓展

例2计算

1.()2(x≥0)2.()23.()2

4.()2

分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;

(4)4x2-12x+9=(2x)2-2•2x•3+32=(2x-3)2≥0.

所以上面的4题都可以运用()2=a(a≥0)的重要结论解题.

解:(1)因为x≥0,所以x+1>0

()2=x+1

(2)∵a2≥0,∴()2=a2

(3)∵a2+2a+1=(a+1)2

又∵(a+1)2≥0,∴a2+2a+1≥0,∴=a2+2a+1

(4)∵4x2-12x+9=(2x)2-2•2x•3+32=(2x-3)2

又∵(2x-3)2≥0

∴4x2-12x+9≥0,∴()2=4x2-12x+9

例3在实数范围内分解下列因式:

(1)x2-3(2)x4-4(3)2x2-3

分析:(略)

五、归纳小结

本节课应掌握:

1.(a≥0)是一个非负数;

2.()2=a(a≥0);反之:a=()2(a≥0).

六、布置作业

1.教材P8复习巩固2.(1)、(2)P97.

2.选用课时作业设计.

3.课后作业:《同步训练》

九年级数学教案篇7

教学目标

(一)教学知识点

1.经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系.

2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根.

3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.

(二)能力训练要求

1.经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神.

2.通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想.

3.通过学生共同观察和讨论,培养大家的合作交流意识.

(三)情感与价值观要求

1.经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.

2.具有初步的创新精神和实践能力.

教学重点

1.体会方程与函数之间的联系.

2.理解何时方程有两个不等的实根,两个相等的实数和没有实根.

3.理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标.

教学难点

1.探索方程与函数之间的联系的过程.

2.理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系.

教学方法

讨论探索法.

教具准备

投影片二张

第一张:(记作§2.8.1A)

第二张:(记作§2.8.1B)

教学过程

Ⅰ.创设问题情境,引入新课

[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系.当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解.

现在我们学习了一元二次方程ax2+bx+c=0(a≠0)和二次函数y=ax2+bx+c(a≠0),它们之间是否也存在一定的关系呢?本节课我们将探索有关问题.

九年级数学教案篇8

教学目标

1、通过观察、类比,使学生理解和掌握比的基本性质,并会运用这个性质把比化成最简单的整数比。

2、通过学习,培养学生观察、类比的能力,渗透转化的数学思想方法,培养学生思维的灵活性。

3、通过教学,使学生学会与人合作的意识,并能与他人互相交流思维的过程和结果。

教学重难点

教学重点:理解比的基本性质,掌握化简比的方法。

教学难点:化简比与求比值的不同。

教学过程

一、创设情境,生成问题

师:同学们,昨天我们刚刚学习了有关比的意义,谁能说说

1、什么叫比?

2、比与除法和分数有什么关系?

(生自由发言)我们以前还学过了分数的基本性质和除法中的商不变性质,还记得吗?谁来说一说?

课前准备:

同桌互相说一说:

1.除法中商不变的性质是什么?你能举例说明吗?

2.举例说明分数的基本性质。

二、探索交流,解决问题

1、猜测比的基本性质

除法有“商不变性质”,分数也有“分数的基本性质”,根据比与除法和分数的关系,同学们猜想看看,比有没有基本性质?如果有,这条基本性质的内容是什么?(学生猜测,并相互补充)

2、验证猜测:学生以四人小组为单位,讨论研究。

汇报(预设):

①6÷8=(6×2)÷(8×2)=12÷16

6:8=(6×2)∶(8×2)=12:16

6:8=(6÷2)∶(8÷2)=3:4

6÷8=(6÷2)÷(8÷2)=3÷4

②0.4:0.5=0.4÷0.5=0.8

0.4×5=20.5×5=2.5

2:2.5=2÷2.5=0.8

③(3/4)÷(5/4)=(3/4)×(4/5)=3/5=0.6

3/4×(2/3)=1/24/5×(2/3)=5/6

1/2:(5/6)=1/2×(5/6)=0.6

……

小组派代表说明验证过程,其他同学补充说明。

结论:比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。(板书课题)

问:为什么0除外?(生自由回答)

这句话中你觉得哪些字比较重要?

相同的数可以是什么数?

不可以是什么数?

说一说:比的基本性质与商不变性质和分数的基本性质有什么联系和区别?

3、比的性质的应用

①最简整数比

师:我们在学习分数的基本性质时,利用它化简分数,约分,通分,其实我们学习比的基本性质也可以用来化简比,把比化成最简整数比,知道什么是最简整数比吗?(生自由发言)

结论:最简整数比就是比的前项和后项都是整数,而且比的前项和后项的公因数是1,这就是最简整数比。

讨论:

怎样理解“最简单的整数比”这个概念?

小组里议一议。

师小结:必须是一个比;前项、后项必须是整数,不能是分数或小数;前项与后项互质。

②教学例1:化成最简整数比

课件出示例题,

写出这两面联合国旗的长和宽的比,并化成最简单的整数比。

课件出示例题的两面旗的图,

这两个比有什么关系呢?仔细观察,这两个比的前项,后项是怎么变化的,存在着怎样一个变化规律呢?

生独立解决,小组交流汇报方法。

15∶10

15:10=(15÷5):(10÷5)=3:2

想:5是15和10的什么数?为什么要除以5?

180:120=(15÷___):(10÷___)=3:2

想:除以什么呢?

这两个比的什么变了,什么没有变?

把下面的比化成最简单的整数比。

0.75:21/6:2/9

三、巩固应用,内化提高

1、看谁的眼睛看得准?(根据比的基本性质判断下面各题)

2、把下面各比化成最简单的整数比。

应用这个性质可以把一个比化成最简单的整数比?

(1).需要怎样做才能化成最简单的整数比?

(2).这样做到底有什么根据?

3、归纳化简比的方法:

(1)整数比

——比的前后项都除以它们的最大公约数→最简比。

(2)小数比

——比的前后项都扩大相同的倍数→整数比→最简比。

(3)分数比

——比的前后项都乘它们分母的最小公倍数→整数比→最简比。

四、课堂小结

通过今天的学习,你又学习了哪些知识?什么是比的基本性质?应用比的基本性质如何把整数比、分数比、小数比化成最简单的整数比?

五、课后延伸:

有一个两位数,十位上的数和个位上的数的比是2:3。十位上的数加上2,就和个位上的数相等。这个两位数是多少?

板书设计:

比的基本性质

比的前项和后项同时乘或除以相同的数(0除外),比值不变,这叫做比的基本性质。

52849