教育巴巴 > 教案模板 > 优秀教案 >

初二数学教案电子版

时间: 新华 优秀教案

初二数学教案电子版篇1

1.通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0),分清二次项及其系数、一次项及其系数与常数项等概念.

2.了解一元二次方程的解的概念,会检验一个数是不是一元二次方程的解.

重点

通过类比一元一次方程,了解一元二次方程的概念及一般式ax2+bx+c=0(a≠0)和一元二次方程的解等概念,并能用这些概念解决简单问题.

难点

一元二次方程及其二次项系数、一次项系数和常数项的识别.

活动1复习旧知

1.什么是方程?你能举一个方程的例子吗?

2.下列哪些方程是一元一次方程?并给出一元一次方程的概念和一般形式.

(1)2x-1(2)mx+n=0(3)1x+1=0(4)x2=1

3.下列哪个实数是方程2x-1=3的解?并给出方程的解的概念.

A.0B.1C.2D.3

活动2探究新知

根据题意列方程.

1.教材第2页问题1.

提出问题:

(1)正方形的大小由什么量决定?本题应该设哪个量为未知数?

(2)本题中有什么数量关系?能利用这个数量关系列方程吗?怎么列方程?

(3)这个方程能整理为比较简单的形式吗?请说出整理之后的方程.

2.教材第2页问题2.

提出问题:

(1)本题中有哪些量?由这些量可以得到什么?

(2)比赛队伍的数量与比赛的场次有什么关系?如果有5个队参赛,每个队比赛几场?一共有20场比赛吗?如果不是20场比赛,那么究竟比赛多少场?

(3)如果有x个队参赛,一共比赛多少场呢?

3.一个数比另一个数大3,且两个数之积为0,求这两个数.

提出问题:

本题需要设两个未知数吗?如果可以设一个未知数,那么方程应该怎么列?

4.一个正方形的面积的2倍等于25,这个正方形的边长是多少?

活动3归纳概念

提出问题:

(1)上述方程与一元一次方程有什么相同点和不同点?

(2)类比一元一次方程,我们可以给这一类方程取一个什么名字?

(3)归纳一元二次方程的概念.

1.一元二次方程:只含有________个未知数,并且未知数的次数是________,这样的________方程,叫做一元二次方程.

2.一元二次方程的一般形式是ax2+bx+c=0(a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.

提出问题:

(1)一元二次方程的一般形式有什么特点?等号的左、右分别是什么?

(2)为什么要限制a≠0,b,c可以为0吗?

(3)2x2-x+1=0的一次项系数是1吗?为什么?

3.一元二次方程的解(根):使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解(根).

活动4例题与练习

例1在下列方程中,属于一元二次方程的是________.

(1)4x2=81;(2)2x2-1=3y;(3)1x2+1x=2;

(4)2x2-2x(x+7)=0.

总结:判断一个方程是否是一元二次方程的依据:(1)整式方程;(2)只含有一个未知数;(3)含有未知数的项的次数是2.注意有些方程化简前含有二次项,但是化简后二次项系数为0,这样的方程不是一元二次方程.

例2教材第3页例题.

例3以-2为根的一元二次方程是()

A.x2+2x-1=0B.x2-x-2=0

C.x2+x+2=0D.x2+x-2=0

总结:判断一个数是否为方程的解,可以将这个数代入方程,判断方程左、右两边的值是否相等.

练习:

1.若(a-1)x2+3ax-1=0是关于x的一元二次方程,那么a的取值范围是________.

2.将下列一元二次方程化为一般形式,并分别指出它们的二次项系数、一次项系数和常数项.

(1)4x2=81;(2)(3x-2)(x+1)=8x-3.

3.教材第4页练习第2题.

4.若-4是关于x的一元二次方程2x2+7x-k=0的一个根,则k的值为________.

答案:1.a≠1;2.略;3.略;4.k=4.

活动5课堂小结与作业布置

课堂小结

我们学习了一元二次方程的哪些知识?一元二次方程的一般形式是什么?一般形式中有什么限制?你能解一元二次方程吗?

作业布置

教材第4页习题21.1第1~7题.

初二数学教案电子版篇2

一、读一读

学习目标:1、掌握三角形内角和定理的两个推论及其证明;

2、体会几何中简单不等关系的证明;

3、从内和外、相等和不相等的不同角度对三角形的角作更全面的思考。

二、试一试

自学指导:

1、如图∠1是三角形的一个外角,它与图中其它角有什么关系?

2、自学教材P242-243,看看你的结论是否正确,并对例1例2进行学习,

仿照证明三角形内角和定理的两个推论:

推论1:三角形的一个外角等于和它不相邻的两个内角的和。

推论2:三角形的一个外角大于任何一个和它不相邻的内角。

证明:

三、练一练

1、如图,下列哪些说法一定正确

A∠HEC>∠B

B∠B+∠ACB=180°—∠A

C∠B+∠ACB<180°

D∠B>∠ACD

2、已知:如图,在△ABC中,∠A=45°,外角∠DCA=100°,

求∠B和∠ACB的大小

初二数学教案电子版篇3

教学目标:1、使学生在现实情境中理解有理数加法的意义

2、经历探索有理数加法法则的过程,掌握有理数加法法则,并能准确地进行加法运算。[]

3、在教学中适当渗透分类讨论思想。

重点:有理数的加法法则

重点:异号两数相加的法则

教学过程:

二、讲授新课

1、同号两数相加的法则

问题:一个物体作左右方向的运动,我们规定向左为负,向右为正。向右运动5m记作5m,向左运动5m记作-5m。如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是多少?

学生回答:两次运动后物体从起点向右运动了8m。写成算式就是5+3=8(m)

教师:如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是多少?

学生回答:两次运动后物体从起点向左运动了8m。写成算式就是(-5)+(-3)=-8(m)

师生共同归纳法则:同号两数相加,取与加数相同的符号,并把绝对值相加。

2、异号两数相加的法则

教师:如果物体先向右运动5m,再向左运动3m,那么两次运动后物体从起点向哪个方向运动了多少米?

学生回答:两次运动后物体从起点向右运动了2m。写成算式就是5+(-3)=2(m)

师生借此结论引导学生归纳异号两数相加的法则:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

3、互为相反数的两个数相加得零。

教师:如果物体先向右运动5m,再向左运动5m,那么两次运动后总的结果是多少?

学生回答:经过两次运动后,物体又回到了原点。也就是物体运动了0m。

师生共同归纳出:互为相反数的两个数相加得零

教师:你能用加法法则来解释这个法则吗?

学生回答:可用异号两数相加的法则来解释。

一般地,还有一个数同0相加,仍得这个数。

三、巩固知识

课本P18例1,例2、课本P118练习1、2题

四、总结

运算的关键:先分类,再按法则运算;

运算的步骤:先确定符号,再计算绝对值。

注意:要借用数轴来进一步验证有理数的加法法则;异号两数相加,首先要确定符号,再把绝对值相加。

五、布置作业

课本P24习题1.3第1、7题。

初二数学教案电子版篇4

一、学习目标:1.完全平方公式的推导及其应用.

2.完全平方公式的几何解释.

二、重点难点:

重点:完全平方公式的推导过程、结构特点、几何解释,灵活应用

难点:理解完全平方公式的结构特征并能灵活应用公式进行计算

三、合作学习

Ⅰ.提出问题,创设情境

一位老人非常喜欢孩子.每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,…

(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?

(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?

(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?

(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?

Ⅱ.导入新课

计算下列各式,你能发现什么规律?

(1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;

(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;

(5)(a+b)2=________;(6)(a-b)2=________.

两数和(或差)的平方,等于它们的平方和,加(或减)这两个数的积的二倍的2倍.

(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2

四、精讲精练

例1、应用完全平方公式计算:

(1)(4m+n)2(2)(y-)2(3)(-a-b)2(4)(b-a)2

例2、用完全平方公式计算:

(1)1022(2)992

初二数学教案电子版篇5

一、读一读

学习目标:1、掌握“三角形内角和定理”的证明及其简单应用;

2、体会思维实验和符号化的理性作用

二、试一试

自学指导:

1、回忆三角形内角和的探索方式,想一想,根据前面给出的公里和定理,你能进行论证么?

2、已知:如右图所示,△ABC

求证:∠A+∠B+∠C=180°

思考:延长BC到D,过点C作射线CE∥BA,这样就相

当于把∠A移到了的位置,把∠B移到的位置。

注意:这里的CD,CE称为辅助线,辅助线通常画成虚线

证明:作BC的延长线CD,过点C作射线CE∥BA,则:

3、你还有其它方式么(可参考课本239页“议一议”小明的想法;241页联系拓广4)?方法越多越好!

三、练一练

1、直角三角形的两锐角之和是多少度?正三角形的一个内角是多少度?请证明你的结论。

2、已知:如图,在△ABC中,∠A=60°,∠C=70°,点D和点E分别在AB和AC上,且DE∥BC

求证:∠ADE=50°

3、如图,在△ABC中,DE∥BC,∠DBE=30°,∠EBC=25°,求∠BDE的大小。

4、证明:四边形的内角和等于360°

初二数学教案电子版篇6

初二上册数学知识点总结:等腰三角形

一、等腰三角形的性质:

1、等腰三角形两腰相等.

2、等腰三角形两底角相等(等边对等角)。

3、等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.

4、等腰三角形是轴对称图形,对称轴是三线合一(1条)。

5、等边三角形的性质:

①等边三角形三边都相等.

②等边三角形三个内角都相等,都等于60°

③等边三角形每条边上都存在三线合一.

④等边三角形是轴对称图形,对称轴是三线合一(3条).

6.基本判定:

⑴等腰三角形的判定:

①有两条边相等的三角形是等腰三角形.

②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).

⑵等边三角形的判定:

①三条边都相等的三角形是等边三角形.

②三个角都相等的三角形是等边三角形.

③有一个角是60°的等腰三角形是等边三角形.

初二数学教案电子版篇7

教学目标

1.通过实际操作,了解什么叫做轴对称变换.

2.如何作出一个图形关于一条直线的轴对称图形.

教学重点

1.轴对称变换的定义.

2.能够按要求作出简单平面图形经过轴对称后的图形.

教学难点

1.作出简单平面图形关于直线的轴对称图形.

2.利用轴对称进行一些图案设计.

教学过程

Ⅰ.设置情境,引入新课

在前一个章节,我们学习了轴对称图形以及轴对称图形的一些相关的性质问题.在上节课的作业中,我们有个要求,让同学们自己思考一种作轴对称图形的方法,现在来看一下同学们完成的怎么样.

将一张纸对折后,用针尖在纸上扎出一个图案,将纸打开后铺平,得到的两个图案是关于折痕成轴对称的图形.

准备一张质地较软,吸水性能好的纸或报纸,在纸的一侧上滴上一滴墨水,将纸迅速对折,压平,并且手指压出清晰的折痕.再将纸打开后铺平,位于折痕两侧的墨迹图案也是对称的.

这节课我们就是来作简单平面图形经过轴对称后的图形.

Ⅱ.导入新课

由我们已经学过的知识知道,连结任意一对对应点的线段被对称轴垂直平分.

类似地,我们也可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案.

对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化.大家看大屏幕,从电脑演示的图案变化中找出对称轴的方向和位置,体会对称轴方

向和位置的变化在图案设计中的奇妙用途.

下面,同学们自己动手在一张纸上画一个图形,将这张纸折叠描图,再打开看看,得到了什么?改变折痕的位置并重复几次,又得到了什么?同学们互相交流一下.

结论:由一个平面图形呆以得到它关于一条直线L对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点,都是原图形上的某一点关于直线L的对称点;

连结任意一对对应点的线段被对称轴垂直平分.

我们把上面由一个平面图形得到它的轴对称图形叫做轴对称变换.

成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.

取一张长30厘米,宽6厘米的纸条,将它每3厘米一段,一正一反像“手风琴”那样折叠起来,并在折叠好的纸上画上字母E,用小刀把画出的字母E挖去,拉开“手风琴”,你就可以得到以字母E为图案的花边.回答下列问题.

(1)在你所得的花边中,相邻两个图案有什么关系?相间的两个图案又有什么关系?说说你的理由.

(2)如果以相邻两个图案为一组,每一组图案之间有什么关系?三个图案为一组呢?为什么?

(3)在上面的活动中,如果先将纸条纵向对折,再折成“手风琴”,然后继续上面的步骤,此时会得到怎样的花边?它是轴对称图形吗?先猜一猜,再做一做.

注:为了保证剪开后的纸条保持连结,画出的图案应与折叠线稍远一些.

Ⅲ.随堂练习

(一)如图(1),将一张正六边形纸沿虚线对折折3次,得到一个多层的60°角形纸,用剪刀在折叠好的纸上随意剪出一条线,如图(2).

(1)猜一猜,将纸打开后,你会得到怎样的图形?

(2)这个图形有几条对称轴?

(3)如果想得到一个含有5条对称轴的图形,你应取什么形状的纸?应如何折叠?

答案:(1)轴对称图形.

(2)这个图形至少有3条对称轴.

(3)取一个正十边形的纸,沿它通过中心的五条对角线折叠五次,得到一个多层的36°角形纸,用剪刀在叠好的纸上任意剪出一条线,打开即可得到一个至少含有5条对称轴的轴对称图形.

(二)回顾本节课内容,然后小结.

Ⅳ.课时小结

本节课我们主要学习了如何通过轴对称变换来作出一个图形的轴对称图形,并且利用轴对称变换来设计一些美丽的图案.在利用轴对称变换设计图案时,要注意运用对称轴位置和方向的变化,使我们设计出更新疑独特的美丽图案.

52013