三年级数学上册课件教案
三年级数学上册课件教案篇1
1、我们学过的时间单位有()、()和(),其中()是最小的时间单位。
2、钟面上一共有()个大格,每个大格分成了()个小格,钟面上一共有()个小格。时针走一大格的时间是();分针走一小格的时间是();秒针走一小格的时间是(),走一大格的时间是()。
3、时针走一大格,分针走()小格,分针走了()分;秒针走一圈,分针走()小格,是()分。
4、时针从数字3走到数字6,经过的时间是();分针从数字3走到数字6,经过的时间是();秒针从数字3走到数字6,经过的时间是()。
5、8:30:25是()时()分()秒。
6、一节课是()分钟,课间休息()分钟,再加上()分钟就是一小时。
8、时针在钟面上走一圈是()时;分针在钟面上走一圈是()分,等于()时;秒针在钟面上走一圈是()秒,等于()分。
9、分针走半圈是()分,时针走半圈是()时,秒针走半圈是()秒。
10、时针从12走到1,分钟走了()小格,是()分;秒针走60小格,分钟走了()小格,是()分。时针从()走到6,走了5小时。
三年级数学上册课件教案篇2
教学内容:小学数学三年级第五册104页主题图及第105页例1、例2。
教学目标:
1、通过猜测和简单实验,使学生初步体验有些事情的发生是确定的,有些事情则是不确定的,初步能用“一定”“可能”“不可能”等词语描述生活中发生的可能性。
2、培养学生的口语表达能力和合作学习的能力。
3、让学生在活动过程中懂得数学存在于现实生活中从而使学生产生积极的情感体验,激发学生学习的数学的兴趣。
教学重难点:理解事物发生的可能性。
教具准备:每组准备一个盒子,黄色和白色的乒乓球若干个。
教学过程:一游戏激趣,导入新知。
师:小朋友你们喜欢做游戏吗?现在我们来玩一个猜一猜的游戏,这里有一枚硬币,它就在我的拳头里,你们猜猜它会在哪只手里。[猜三次]硬币到底在哪只手里,我们只能靠猜测,可能在左手,也可能在右手,这就是事情发生的可能性,今天我们就一起来研究可能性。出示课题;《可能性》
(评析;通过游戏来吸引学生的学习兴趣,把学生带入新知识的学习。)
二、合作学习,探究新知
1、摸球活动
师:下面咱们再来玩一个游戏,老师这有一个盒子,盒子里装了一些球,下面请同学来摸看看摸出的是什么颜色的球?[学生摸球]
师:谁能根据这些同学摸球的结果来猜猜盒子中装的什么颜色的球?如果我们继续摸下去谁能用一句话来总结摸的结果呢?[学生回答]当我们摸的只有一种情况时,我们可以用“一定”这个词来描述。板书:一定
2、小组摸球
师:在你们的桌子上也有一个盒子,我们小组的每一个成员都来摸一次,大家记录结果这次的摸球又是怎样的情况呢?[摸完各小组汇报]
师:那么根据我们摸球的出现的情况谁能用一句话来总结。[学生总结]反问:在老师的盒子里能摸到白色的球吗?为什么?
有什么办法让它变成可能呢?[学生想办法]看来事情有时是在发生变化的,有时不可能的事情会变成可能。
(评析:小组合作学习来探讨可能发生的情况。)
3、六个例子
师:我们刚才通过猜一猜,摸一摸用“一定”“可能”不可能来描述游戏中的情况,其实,在我们生活中同样有些事情是一定发生的,有些事情是可能发生的,老师这有生活中的六个例子,我们来判断一下[小组讨论]说明理由。
三、动手操作
师:看来我们都能解决不少的问题,不过我们只是说一说。
三年级数学上册课件教案篇3
(一)、衔接内容
1、乘法公式:①两个数的立方和与立方差公式;②两个数的和与差的完全立方公式。
2、公式法,分组分解法与十字相乘法,三种因式分解法。
3、一元二次方程的根与系数的关系。
4、一元二次不等式的解法。
5、绝对值不等式|a-b|c与|a-b|0,ab0)。
教学建议:
1、课时安排:约8课时。
2、上述五个内容的要求,分别为对四个乘法公式不仅能认清它们的结构而且能够理解它们的意义;三种因式分解法要重点突出公式法与十字相乘法能够灵活应用;对韦达定理、一元二次不等式的解法及两类绝对值不等式的解法要求理解它们的意义,掌握它们的用法。
3、对于一元二次不等式及两类绝对值不等式的解法因为是提前教学内容,所以只需介绍其解法,而不要涉及程序框图。
4、对于一元二次不等式的解法,此时不要过多地与其它两个二次纠缠,更不要涉及参数问题!关于三个二次之间的联系以及含参问题到模块必修5中的第三章不等式中重点教学。
(二)必修1 第一章 集合与函数概念
教学建议:
1、课时安排:约15课时。
2、对于集合部分:①要把握好难度,只要求理解集合的描述性定义,不要求对集合的严格的数学概念和特征进行讨论,不要求严格讨论是不是集合等理论较深的问题;②对较复杂的集合不要求从理论上严格证明两个集合相等③只要求了解教材中给出的集合运算的最基本性质,不要求补充集合运算的其它基本性质及其证明。
3、对于函数部分:①函数值域的讨论不宜过难,或在今后的教学中结合后续内容再逐步加难;
②本章函数的教学应基于具体的函数,有关抽象函数(指不给出具体的对应法则,只给出抽象的符号f(-)的函数)内容不宜引入;
③复合函数也不宜过多引申;
④对分段函数只是通过一些简单实例了解基本概念和简单应用即可;
⑤对有关求函数表达式的问题不作要求;
⑥研究函数基本性质应局限于具体的简单的函数,不要求讨论有关抽象函数的奇偶性;
⑦对,奇偶函数图像的对称性不要求作严格证明。
(三)必修1 第二章 基本初等函数(2)
教学建议:
1、课时安排:约18课时
2、有关根式的运算和化简不宜过繁过难。
3、关于指数函数的复合函数,分段函数问题的讨论不宜过繁过难。
4、对一般的形式化的反函数定义和求法都不作要求;
5、简单介绍指数与对数的概念及相互关系的发现发展历史,提高对数学高度的抽象性和广泛应用价值的理解;
6、可以简单讨论函数y=-+ 的一点性质,不要求系统讨论,主要是从中体验讨论研究函数的一般方法;
7、不要求在一般的幂函数上作引申推广。
8、注意从感性到理性的认识过程,让学生感受基本初等函数的演变过程,把握难度和标高,不要刻意追求讨论抽象的理论问题以及盲目引申过多过难的内容。
(四)必修1 第三章 函数的应用
教学建议
1、课时安排:约10课时。
2、对连续函数在闭区间上存在零点的判断方法,只要求直观理解和简单应用,不需要给出证明,但要告诉学生仅是直观理解而不是严格证明。
3、在实际应用和学习数学建模的过程中,要把培养提高学生应用数学的自觉意识作为重点。
4、体会现代信息技术对学习、研究数学的重要性和优越性。
(五)必修4 第一章 三角函数
教学建议
1、课时安排:约20课时。
2、关于弧度制的概念只要求学生理解弧度也是一种度量角的单位,随着后续内容的学习他们会逐步加深理解,在此不必深究,对弧长公式,也不必在应用方面加深;
3、用同角关系证明三角恒等式和进行求值计算,教学中不必作太多地拓展、补充。
4、突出三角函数的工具性,重点是引导学生建立三角函数模型;
5、注意新旧教材的差异及课标内容的变化,突出函数味道
6、注意重点解决好几个具体问题:
一是充分利用学生的生活经验创设问题性;
二是利用相关知识的联系,引导学生类比学习,加强教学的思想性;
三是充分利用几何直观,加强数形结合思想方法的运用;
四是重视学科之间的联系与综合;
五是把握教材要求,不搞复杂的技巧性强的三角变换训练。
(六)必修4 第二章 平面向量
教学建议
1、课时安排:约15课时。
2、向量的线性表示应控制在基本要求的范围内,不宜作太多的扩充。
3、对于运算只要求会用即可,对基础较好的学生可以介绍证明方法。
4、平面向量的基本定理不作严格的证明。
5、平面向量的应用主要在平面几何和简单的物理学这两个方面不在其它方面拓展。
6、准确把握教学尺度。
了解:向量的实际背景、光线向量的概念,向量的线性运算性质,平面向量的基本定理及意义;
理解:向量的概念及几何表示,向量的加法、线法、数乘运算的几何意义,光线向量的含义,共线条件的坐标表示,平面向量的数量积和含义及其物理意义。
掌握:向量的加法、减法、数乘运算、平面向量的正交分解及坐标表示,数量积的坐标表达式,向量垂直、平行的主要条件,平面向量的坐标运算,夹角公式。
7、注意突出向量的实际背景,将抽象问题具体化。
8、 注意突出向量的工具性,增强学生自觉应用向量意识向量的重要功能主要有两个方面:一是向量的语言功能,二是向量的应用功能:向量不但是刻画物体位置、物理 量、几何图形性质的重要工具,同时也是刻画代数中量与量关系的主要工具,因此向量具有几何,代数双重语言功能。是一种重要的数学语言,在用向量解决实际问 题时,必须实现向量语言和其它数学语言的相互转化,消除学生对向量语言的陌生感和神秘感。
向量的应用功能:在高中主要指用向量解决与长度,角度有关的几何问题,处理几何中的平行或垂直关系,在立几中尤为广泛。要引导学生逐步掌握向量法的思路、方法和步骤,并加强运算能力的培养,体会向量法的优越性。
9、突出向量数形的双重性,有机渗透数形结合的思想。
(七)必修4 第三章 三角恒等变换
教学建议
1、课时安排:约12课时。
2、除掌握基本要求以外应有所提高,具体体现在下面方面。
①理解在两角差的余弦公式的推导过程中所体现的向量方法。
②理解和、差、倍角的相对性,能对角进行合理正确的拆分,但要控制拆分的难度。
③了解公式特点能进行逆用、变用、活用。
④了解变换中蕴含的教学思想和方法。
3、和差化积与积化和差、半角公式等只作为练习,不要求记忆。
4、把握新老教材的异同。
从知识内容看基本相同
从数学变换角度看有同有异
从思想方法层面看新教材更多体现多种思想方法
从教学方式看新教材更强调自主探究,动手实践
从顺序上看新教材安排在三角函数,向量之后仍作为知识的延伸和发展,也是后续内容的基础,因此起到了承上启下的作用
把握本章的关键点公式C-的推导过程及应用
(八)必修5 第一章 解三角形
教学建议
1、课时安排:约10课时。
2、不必增加立体情况下求解三角形的问题,这类问题可在立几学习中适当拓展,此时过早。
3、应用问题应限制在正弦定理,余弦定理的简单应用上。
4、可以利用计算器进行近似计算,但不要求太复杂或繁锁。
5、要注意体现例题的教学功能。
6、要突出问题性和探究性。
7、要重视实习作业。
二、高一年级20--年春季学期教学内容与建议
(一)必修5 第二章 数列
教学建议
1、课时安排:约16课时
2、复杂的递推关系不作要求。
3、已知数列前n项写出一个通项公式,习题不必太难。
4、等差与等比数列的性质及其应用应重点加强。
5、重视等差等比数列的前n项和公式的推导过程,掌握推导方法,能利用这些公式以及求证方法求一些特殊的组合数列的前n项和。
6、理解Sn与an的关系,会处理与之相关的问题。
7、重视学生自主性学习能力和创新意识的培养。
8、重视探究题、练习题、阅读与思考等内容的学习。
9、重视纵横联系,既突出数列的个性特点,又要体现数列的函数特征。
10、控制难度,淡化特技。
(二)必修5 第三章 不等式
教学建议
1、课时安排:约18课时。
2、加强从实际情景中抽象出不等式模型的过程。
3、加强从具体到抽象地呈现内容。
4、重视知识之间的联系,强调思想性。
①本章内容虽在代数变换上的要求有所减弱,也没在一些细节问题上过多展开,但在知识的联系和思想性方面有较多的加强。
②突出三个二次之间的联系,强调函数与方程的思想以及数形结合的思想。
5、不等式的学习不是一次到位的,而是螺旋上升的,在后续内容导数及其应用,推理与证明,不等式选讲中不断推进与加深,因此,本模块对不等式的推理与证明要求不高,有关含参问题,不要过分展开,只要达到最基本要求即可,不要在用最基本不等式证明上加大要求,也不要在等号成立条件等细节上过分纠缠。
6、有关线性规划的教学要求
①了解抽象模型的过程,会从实际情景中抽象出一些简单的二元线性规划问题并加以解决,要选择恰当的案例,通过案例的学习,使学生掌握解决简单线性规划问题的基本方法。
②了解有关概念:线性约来条件、目标函数、线性目标函数、线性规划、可行解、可行域、最优解。
③理解二元一次不等式(组)解集的概念以及它们的几何意义,理解边界的概念及实路虚线边界的含义。会用二元一次不等式(组)表示平面区域,能画出平面区域。
④掌握简单的二元线性规划问题的解法:抽象模型画可行域数学化解析化具体化图解法
⑤不必将后续内容,直线的倾斜角与斜率提前。
7、关于基本不等式的教学,重点突出用此不等式解决问题的基本方法,不必推广到三个变量以上的情形。
(三)必修2 第一章 空间几何体
教学建议
1、课时安排:约10课时。
2、要强调学生的动手操作和主动参与培养学生的实践能力。
3、利用感性识培养学生的空间想象能力,要重视实物与图形,空间图形与平面图形的相互转化,不仅会画三视图,而且要能用结构特征想象出空间几何体;由三视图、直观图想象出空间几何体。
4、柱、锥、台球的结构特征只需通过实例概括,不必证明,空间几何体的性质也不必深入挖掘。
5、对复杂物体的三视图和直观图要适当控制难度。
6、关注新旧教材的三个变化。
①内容的变化:三个角安排在选修2-1中,多面体及欧拉定理安排在选修系列3中,增加了三视图。
几何定位也发生了变化,课标教材定位于培养和发展学生把握图形的能力,空间想象能力与几何直觉能力,逻辑推理能力等。
②教学要求的变化:
(Ⅰ)《大纲》教材要求了解概念掌握性质。《课标》教材要求认识柱、锥、台、球简单组合体的结构特征,把重点放在了空间想象能力上,对概念性质则降低了要求。
(Ⅱ)对知识发生的过程提出了较高的要求。
③处理方法的变化
《课标》教材:从整体到局部,从具体到抽象。
柱、锥、台、球点、线、面
大纲教材:点、线、面柱、锥、台、球
(四)必修2 第二章 点、直线、平面之间的位置关系
教学建议
1、课时安排:约14课时。
2、课堂教学要求遵循:直观感知操作确认思辨论证度量计算的认识过程展开。
教学中应认长方体模型中的点、线、面关系为载体,使学生在直观感知的基础上再认识空间中一般的点、线、面关系。
3、教学中应特别重视文字符号图形三种语言的转化,这是发展学生空间想象能力的着力点。
4、关于空间中的角与距离。
了解:①异面直线所成的角。②二面角及其平面角的概念。③线面距。④面面距。
理解:①线面角。
对于这些角与距离的度量问题,只要求在长方体模型中进行说明即可,具体计算在本章不作要求。
5、关于平行与垂直的判定与性质。
①有关性质定理要求证明和掌握并会用,而有关平行和垂直的判定定理的证明不作要求。
②三垂线定理及其逆定理不必补充。
③两条平行直线的公垂线、距离及有关概念不作要求。
6、有关课本中例题,习题的结论以及三垂线定理及其逆定理不能作为解题中推理的依据!
(五)必修2 第三章 直线和方程
教学建议
1、课时安排:约11课时。
2、贯穿坐标法的思想突出解析几何解决问题的五部曲:建系:坐标表示建立几何关系直译:几何问题代数化化简:通过代数运算简化方程形式翻译:把代数运算结果翻译成几何结论。
3、关注重要数学思想方法的教学。
坐标法应贯穿始终、数形结合要不断体会,感受运动变化问题中的函数思想,善于用好方程这一工具来定量。
4、直线的倾斜角和斜率的教学应突出数与形的特征,能用三角函数描述斜率。
5、关于直线方程的几种形式。
①要求掌握点斜式、斜截式(特别要注意分析方程中k和b的几何意义),两点式并能熟练运用。
②理解一般式含义,能将其它形式化为一般式,知道各种形式的局限性。
③截距式只作为了解,直线与直线方程的对应关系要求了解。
6、两条平行线的距离公式不必记忆。
7、关注信息技术的运用,能借助信息技术探求轨迹的形状等等。
(六)必修2 第四章 圆与方程
教学建议
1、课时安排:约12课时。
2、继续贯穿坐标法思想。
3、注意加强与实际问题和其它学科有关问题的联系,体现其应用价值。
4、教学中要引导学生体会几何图形圆与代数方程二次项系数相同的二元二次方程之间建立的联系,并且了解这一联系在研究、解决问题时的作用。
5、在基本要求之上还要求学生能够研究圆上任意点与直线上任意点之间距离的最值问题,体会数形结合,化归转化的'思想方法,通过圆与直线对称问题的研究进一步体会解析法思想。
6、关于空间直角坐标系,重点应放在对坐标系的理解上,即:理解空间中点的坐标的意义会表示,会用两点间距离公式,能建立空间坐标系表示一些特殊的几何体(如正三棱柱)。
三年级数学上册课件教案篇4
一、班级情况分析:
本学期一年级学生人,这些学生大部分是上过幼儿班,还有些学生是从外地转入的。他们天真可爱,活泼调皮。据幼儿班老师介绍,这些学生各方面的差异较大。有的活泼开朗,还有个别学生智力低下,接受能力差。开学初,经过和学生初步接触了解,这些学生由于常规训练少,一些起码的常规知识都不懂,他们还像在幼儿班一样没有任何约束,想来就来,要走就走,上课时乱走乱动。本学期施行的实验教材,主要是开拓学生的思维,发挥学生的想象。因此,针对学生的不同特点在教学过程中,在传授知识的同时,注重对学生进行思维的开拓,创新能力的培养,使他们每一个人都成为一名优秀的学生。
二、教材分析
本册教材包括下面一些内容:准备课、位置、10以内数的认识和加减法,认识图形、11-20各数的认识、认识钟表、20以内的进位加法,用数学,数学实践活动。
三、教学重、难点
这一册的重点教学内容是10以内的加减法和20以内的进位加法。这两部分内容和20以内的退位减法(一般总称一位数的加法和相应的减法)是学生学习认数和计算的开始,在日常生活中有广泛的应用,同时它们又是多位数计算的基础,是小学数学中最基础的内容,是学生终身学习与发展必备的基础知识和基本技能,必须让学生切实掌握。
四、教学目标
1、熟练地数出数量在20以内的物体的个数,会区分几个和第几个,掌握数的顺序和大小,掌握10以内各数的组成,会读、会写0-20各数。
2、初步知道加、减法的含义和加、减法算式中各部分名称,初步知道加法和减法的关系,比较熟练地计算一位数的加法和10以内的减法。
3、初步学会根据加、减法的含义和算法解决一些简单的实际问题。
4、认识符号“=”、“>”、“<”,会使用这些符号表示数的大小。
5、直观认识长方体、正方体、圆柱、球、长方形、正方形、三角形和圆。
6、通过直观演示和动手操作,认识“上、下”、“前、后”、“左、右”的基本含义,会用“上、下”、“前、后”、“左、右”描述物体的相对位置。
7、初步认识钟表,会认识整时和半时。
8、体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。
9、认真作业、书写整洁的良好习惯。
10、通过实践活动体验数学与日常生活的密切联系。
五、教学措施
1、重视学生的经验和体验,根据学生的已有经验和知识设计活动内容和学习素材。
(1)注意注意以学生的已有经验为基础,提供学生熟悉的活动情境以帮助学生理解数学概念,构建有关的数学知识。
(2)尽量选择、设计现实的、开放式的学习活动,让学生通过活动,积极思考、相互交流,体会数学知识的含义。
(3)让学生了解现实生活中的数学,初步感受数学与日常生活的密切联系,体验用数学的乐趣。
(4)设计富有儿童情趣的学习素材和活动情境,激发学生学习的兴趣与动机。
(5)联系儿童实际、根据学生特点渗透思想品德教育。
2、重视对数概念的理解,让学生体会数可以用来表示和交流,建立数感。
3、计算教学应体现算法多样化,允许学生采用合适的方法进行计算。
4、根据儿童生活特点,从感必经验出发直观认识立体和平面图形,发展学生的空间观念。
5、通过“用数学”的教学,培养学生初步的应用意识和用数学解决问题的能力。注意培养学生从生活中发现并提出简单的数学问题的能力。
6、设计安排符合学生年龄特点的实践活动,注意应用意识和实践能力的培养,使学生体验数学与日常生活的密切关系。
7、充分利用教材资源,教学方法应体现开放性和创造性。组织学生自主探索、合作交流的学习方式。尽量注意使创设的情境为探索数学问题提供丰富的素材或信息。
8、教学中充分利用直观教具和学具。
三年级数学上册课件教案篇5
教学目标:
1、使学生理解并掌握不含括号的混合式题的运算顺序,自主、熟练的计算含有乘除混合的三步计算式题.
2、培养学生的学习兴趣,养成认真审题、仔细验算的良好习惯。
教学重点:
使学生掌握混合运算顺序,能熟练地进行计算。
教学难点:
帮助学生利用知识的迁移,探索混合运算的运算顺序。
教学过程:
一、口算引入
1、计算:140×3+280 400—400÷8
以上各式中都含有哪些运算?它们的运算顺序是什么?
使学生明确:当只有加减或乘除法时,按从左到右的顺序计算;当既有乘除法又有加减法,要先算乘法或除法,再算加法或减法。
学生练习,指名板演。
2、今天我们继续学习混和运算。
板书:不带括号的混和运算。
二、教学新课
1、学习例题。
媒体出示例题:一副中国象棋12元。一副围棋15元。购买3副中国象棋和4副围棋。一共要付多少元?
(1)请学生读题,教师提问:你看出了哪些已知条件?你认为要想求出一共要付的钱数,应该先求出什么?你能列出综合算式吗?
学生列式:12×3+15×4或15×4+12×3
那这样列式应该先算什么?应该按怎样的运算顺序计算,才能先求出买3副中国象棋和4副围棋用去的钱?
(2)学生分小组讨论上述问题并汇报。
(3)师:在没有括号的混合运算中应该先算乘除,后算加减。学生在书上完成。
2、试一试:150+120÷6×5。
学生在书上独立完成,指明说一说是怎样计算的?
在计算120÷6×5,为什么应该先算120÷6,而不先算6×5呢?你们是按怎样的运算顺序计算的?
通过刚才两道混合运算的解答,你能总结一下没有括号的三步混合运算顺序是怎样的吗? 使学生明确:在一道既有乘除法又有加减法的混合式题里,应先算乘除法,后算加减法;乘除连在一起,或加减连在一起,要从左往右依次计算。
三、巩固练习
1、“想想做做”1。
学生独立完成,展示个别学生作业。
注意强调运算顺序和书写格式.要明确:在没有括号的三步混合运算式题里,要先算乘除后算加减法。
2、说出运算顺序,并口算出计算结果。
48÷4+2×4
48÷4+20÷4
48-4+2×4
48+4+2×4
3、“想想做做”5。
学生先列式解答,再交流、汇报思考过程和解题方法。
四、课堂小结
五、布置作业
“想想做做”6。
三年级数学上册课件教案篇6
一、教学内容和教学目标
这一册教材包括下面一些内容:数一数,比一比,10以内数的认识和加减法,认识图形,分类,11~20各数的认识,认识钟表,20以内的进位加法,用数学,数学实践活动。
这一册的重点教学内容是10以内的加减法和20以内的进位加法。这两部分内容和20以内的退位减法(一般总称一位数的加法和相应的减法)是学生学习认数和计算的开始,在日常生活中有广泛的应用,同时它们又是多位数计算的基础。因此,一位数的加法和相应的减法是小学数学中最基础的内容,是学生终身学习与发展必备的基础知识和基本技能,必须让学生切实掌握。
除了认数和计算以外,教材安排了常见几何图形的直观认识,比较多少、长短和高矮,简单的分类,以及初步认识钟面等。虽然每一单元的内容都不多,但是都很重要,有利于学生了解数学的实际应用,培养学生学习数学的兴趣。
这一册教材的教学目标是,使学生能够:
1.熟练地数出数量在20以内的物体的个数,会区分几个和第几个,掌握数的顺序和大小,掌握10以内各数的组成,会读、写0~20各数。
2.初步知道加、减法的含义和加、减法算式中各部分名称,初步知道加法和减法的关系,比较熟练地计算一位数的加法和10以内的减法。
3.初步学会根据加、减法的含义和算法解决一些简单的实际问题。
4.认识符号"="、">"、"<",会使用这些符号表示数的大小。
5.直观认识长方体、正方体、圆柱、球、长方形、正方形、三角形和圆。
6.初步了解分类的方法,会进行简单的分类。
7.初步认识钟表,会认识整时和半时。
8.体会学习数学的乐趣,提高学习数学的兴趣,建立学好数学的信心。
9.认真作业、书写整洁的良好习惯。
10.通过实践活动体验数学与日常生活的密切联系。
二、教学措施
1.重视学生的经验和体验,根据学生的已有经验和知识设计活动内容和学习素材。
2.认数与计算相结合、穿插教学,使学生逐步形成数概念,达到计算熟练。
3.重视学生对数概念的理解,让学生体会数可以用来表示和交流,初步建立数感。
4.计算教学体现算法多样化,允许学生采用自己认为合适的方法进行计算。
5.直观认识立体和平面图形,发展学生的空间观念。
6.安排实践活动,使学生体验数学与日常生活的密切关系。