分数的意义简单教案
分数的意义简单教案篇1
教学目标:
1.使学生初步理解单位“1”和分数单位的含义,进一步理解分数的意义;探索并理解分数与除法的关系,会用分数表示计量单位换算的结果,会求一个数是另一个数的几分之几的实际问题‘认识真分数和假分数,知道带分数是整数和真分数合成的数,会把假分数化成整数或带分数,会进行分数与小数的互化。
2.使学生探索并理解分数的基本性质,知道最简分数的含义,掌握约分和通分的方法,能正确进行约分和通分,会进行分数的大小比较。
3.使学生经历分数意义的抽象、概括过程以及分数与除法的关系、假分数化成整数或带分数、分数与小数互化的探索过程,进一步发展数感,培养观察、比较、抽象、概括等能力。
4.使学生初步了解分数在日常生活中的应用,增强自主探索与合作交流的意识,树立学好数学的信心。
教学重点、难点:
1.教学分数的含义,重点是建立单位“1”的概念。
2.以分数单位为新知识的生长点,教学真分数和假分数。
3.用分数表示同类两个数量的关系,扩展对分数意义的理解。
4.通过操作活动感受分数与除法的关系。
5.先特殊后一般,通过改写假分数,教学带分数。
6.优化小数与分数相互改写的教学。
7.理解分数的性质并进行通分和约分。
第1课时分数的意义
教学内容:
教材第52页例1和“练一练”,第58页练习八的第1~4题。
教学目标:
1.使学生初步理解单位“1”和分数单位的含义,经历分数意义的概括过程,进一步理解分数的意义,能根据具体情境表示出相应的分数,联系实际情境解释或说明分数的具体意义;认识分数单位,能说明分数的组成。
2.使学生经历有具体到抽象的认识、理解分数意义的过程,感受分数的来源与形成,体会数的发展,培养观察、比较、分析、综合与抽象、概括的能力,感受分数与生活的联系,增强数学学习的信心。
教学重点:
认识和理解分数的意义。
教学难点:
认识和理解单位“1”。
教学方法:
探究合作法、讲解分析法、练习法等。
教学用具:ppt。
教学过程:
一、谈话导入,唤醒已知
在三年级,我们曾经分两次认识分数,今天这节课,我们要在以前学习的基础上,进一步认识分数。
二、合作探索,理解意义
1.教学例1
出示例1中的一组图
请大家根据每幅图的意思,用分数表示每个图中的涂色部分。写出分数后,再想一想:每个分数各表示什么?在小组内交流。
学生汇报所填写的分数,你认为这些图中分别是把什么平均分的?
一个饼可以称为一个物体,一个长方形是一个图形,“1米”是一个计量单位,而左起第四个图形是把6个圆看成一个整体。
左起第四个图形与前三个图形有什么不同?
一个物体,一个计量单位或由许多物体组成的一个整体,都可以用自然数1来表示,通常我们把它叫做单位“1”。
(1)在这几个图形中,分别把什么看成单位“1”的?
(2)分别把单位“1”平均分成了几份?用分数表示这样的几份?
(3)从这些例子看,怎样的数叫作分数?
拿12根小棒自已创造一个分数
说说你是怎么做的?
如果老师要表示6根小棒可以用什么分数表示?
2.完成“练一练”
第1题各图中的涂色部分怎样用分数表示?请大家在书上填空。说说是怎样想的。
每个分数的分数单位是多少?各有几个这样的分数单位?
第2题,观察直线上是把哪个部分看作“1”的?直线上表示是怎样想的?
引导:分数也可以在直线上表示。这里从0起到1是1个单位,同样地从1到2也是1个单位,这1个单位就是把单位1平均分成若干份,就可以用直线上的点表示分数。
让学生在()里填上合适的分数。
交流:你是怎样填的?为什么这样填?
三、巧妙联系,深化理解
1.做练习八的第1题
先让学生在每个图里涂色表示三分之二,再说说是怎样涂的、怎样想的。
同样是三分之二,为什么涂色桃子的个数不同?
2.做练习第2、3、4题。
第2题先读出每个分数,再说说每个分数的分数单位。
第3题让学生填,交流时说说是怎样填的。
第4题在研究分数时,把哪个数量平均分成若干份,这样的数量就是单位“1”
四、全可总结,延伸拓展
这节课学习了哪些内容?
分数的意义简单教案篇2
教学内容:人教版五年级下册第四单元第一课时《分数的产生和意义》。
学情分析:在学习这部分内容之前学生在三年级上学期的学习中,已经借助操作、直观,初步认识了分数,知道了分数的各部分的名称,会读、写简单的分数,会比较分数大小还会简单的同分母分数加、减法。
教学设想:本节课的教学,单位“1”和分数单位这两个概念非常重要,应从直观到抽象,由个别到一般,用利操作、讨论、交流等形式展开小组学习,适当展开概念的形成过程,帮助学生在过程中获得者得感悟,自己构建这些概念的意义。
教学目标:
1、在学生原有分数知识基础上,使学生知道分数的产生,理解分数的意义,知道分子、分母和分数单位的含义。
2、经历认识分数意义的过程,培养学生的抽象、概括能力。
3、利用操作、讨论、交流等形式展开小组学习,培养学生的合作探究能力,培养质疑和验证科学知识的能力。
教学重点:明确分数和分数单位的意义,理解单位“1”的含义。
教学难点:对单位“1”的理解。
教具和学具:卷尺、四张长方形白纸、四条一米长的绳子、若干个小立方体和一捆绘画笔。
教学过程:
一、创设情景,温故引新。
1、师:我们已经初步认识了分数。(板书:分数)谁来说几个分数?(板书:如1/4)你知道分数各部分的名称吗?(板书):师:那你们知道分数是怎样产生的吗?
二、教学分数的产生。
2、能根据成语说出下面的分数吗?
一分为二( ) 七上八下( ) 百里挑一( ) 十拿九稳( )
1、请一个学生用米尺测量黑板的长,说一说,用“米”做单位,看看测量的结果能不能用整数表示。那剩下的不足一米怎么记?
2、在古代,人们就已经遇到了这样的问题。(师用一根打了结的绳子演示古人测量的情况)。课件呈现情境图,介绍分数的起源和发展历史。
3、总结:在测量、分物的时候,可能得不到整数的结果,需要用一种新的数表示——分数表示。所以分数是人类为了适用实际需要而产生的。
4、在我们的日常生活中,为了平均分配一些东西,也常常会遇到不能用整数表示的情况。比如两个小朋友平分一个橘子、一块月饼、一块饼干等,每人分到的能用整数表示吗?用什么分数表示?
三、教学分数的意义。
师:下面老师要先考考大家,你能举例说明1/4的含义吗?(投影出示题目,学生口答)
出示一个1/4的正方形的阴影部分。
师:阴影部分可以用什么分数表示?它表示什么意思?
2、师:下列图中的阴影部分能用1/4表示吗?为什么?
如生说可以,则问:你为什么觉得可以用1/4表示呢?生说理由。
(强调一定要平均分)(板书:平均分)
3、动手操作,探索新知。
(1)操作。
师:现在我给每一个小组都提供了四种材料,一张长方形纸、一条一米长的绳子、6个小立方体,4根绘画笔。下面请每组根据这四种一样的材料,通过折一折、画一画、分一分等方法,创造出几个不同的分数。
学生动手操作,教师巡视。
(2)交流
师:谁愿意上来说一说,你得到了哪些分数?这个分数是怎样得到的?
小组交流。
(3)认识单位“1”。
师:利用这四种材料,同学们创造出了好多分数。刚才在表示这些分数时,我们都是把哪些东西来平均分的?
生:一张长方形纸、一米长的绳子、6个小立方体、4根绘画笔平均分。
师:象把一张长方形纸平均分,我们可以称之为把一个物体平均分
(课件显示:一个物体)
把一米长的绳子平均分,我们可以称之为把一个计量单位平均分。(课件显示:一个计量单位)
把6个小方块、4根绘画笔平均分,我们又可以称之为把一些物体平均分。(课件显示:一些物体)
师小结:一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。(课件显示)
师:(投影出示):我们可以把这3只象看作一个整体吗?
我们可以把这6颗草莓看作一个整体吗?这4只老虎呢?
我们还可以把哪些物体也看成一个整体呢?(学生举例。)
师:象这样的一个物体、一个计量单位、一个整体,我们可以用自然数“1”来表示,通常把它叫做单位“1”,( 课件显示)强调说明:①单位“1”不仅可以指一个物体、一个计量单位,也可以是很多物体组成的一个整体。如:一个苹果、一枝铅笔、一个计量单位、一堆煤、一仓库粮食等等,把什么平均分,就应把什么看做单位“1”。②单位“1”和自然数“1”的区别:自然数1是一个数,只表示一个具体事物。如:一个人、一本书、一间房子……它是自然数的计数单位。而单位“1”不仅可以表示某一个具体事物,还可以表示一堆、一群……它表示被平均分的整体。
概括分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
(4)理解分子分母的意义。
师:通过刚才的学习,大家知道了分数的意义,请同学们想一下,这个“若干份”是分数中的什么?(分母,表示平均分的份数)“这样的一份或几份”是分数中的什么?(分子,表示取的份数)
(5)师:接下来我想出几道题来考考大家,你们愿不愿意接受挑战?
①把这个文具盒里的所有铅笔平均分给2个同学,每个同学得到这盒铅笔的几分之几?
生:1/2
②师:为什么可以用1/2来表示?
③师:如果把这盒铅笔平均分给5个同学,每个同学得到这盒铅笔的几分之几呢?
如果把这盒铅笔平均分给10个同学,每个同学得到这盒铅笔的几分之几呢?
如果把这盒铅笔平均分给50个同学,每个同学得到这盒铅笔的几分之几呢?2个同学得到这盒铅笔的几分之几?
如果把这盒铅笔平均分给100个同学,每个同学得到这盒铅笔的几分之几呢?10个同学得到这盒铅笔的几分之几呢?
④师:现在这个文具盒里有6支铅笔,把它平均分给2个同学,每个同学得到的铅笔能用1/2表示吗?是几支铅笔?
⑤如果我再增加2支铅笔,把8支铅笔平均分给2个同学,每个同学得到的铅笔还能用1/2表示吗?是几支铅笔?为什么同样是1/2,铅笔的支数不一样?
师:因为一个整体表示的具体数量不同,所以同样是1/2,铅笔的支数不一样。
四、教学分数单位。
师:整灵敏有计数单位个、十、百、千、万……分数是否也有计数单位呢?它的计数单位又是怎样规定的?
显示:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
师:也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。(师举例说明后,并说出几个分数让学生回答,后再让学生自己举例说明)
加强练习,深化概念。
练习:
1、35 表示把( )平均分成( )份,表示这样的( )份,它的分母是( ),表示( );分子是( ),表示( )。
2、67 的分数单位是( ),有( )个这样的分数单位。
3、说出每个分数的意义。
(1)五(1)班的三好生人数占全班的29 。
(2)一节课的时间是23 小时。
4、课本练习十一第9题。
5、判断(对的打“√”,错的要“×”)。
(1)一堆苹果分成4份,每份占这堆苹果的14 ( )
(2)把5米长的绳子平均分成7段,每段占全长的57 ( )
(3)14个19 是914 ( )
(4)自然数1和单位“1”相同。( )
五、小结。
今天这节课我们学习了?你有哪些收获?
分数的意义简单教案篇3
教学设想:本节课的教学,单位“1”和分数单位这两个概念非常重要,应从直观到抽象,由个别到一般,用利操作、讨论、交流等形式展开小组学习,适当展开概念的形成过程,帮助学生在过程中获得者得感悟,自己构建这些概念的意义。
教学目标:
1、在学生原有分数知识基础上,使学生知道分数的产生,理解分数的意义,知道分子、分母和分数单位的含义。
2、经历认识分数意义的过程,培养学生的抽象、概括能力。
3、利用操作、讨论、交流等形式展开小组学习,培养学生的合作探究能力,培养质疑和验证科学知识的能力。
教学重点:明确分数和分数单位的意义,理解单位“1”的含义。
教学难点:对单位“1”的理解。
教具和学具:卷尺、四张长方形白纸、四条一米长的绳子、若干个小立方体和一捆绘画笔。
教学过程:
一、创设情景,温故引新。
1、师:我们已经初步认识了分数。(板书:分数)谁来说几个分数?(板书:如1/4)你知道分数各部分的名称吗?(板书):师:那你们知道分数是怎样产生的吗?
二、教学分数的产生。
2、能根据成语说出下面的分数吗?
一分为二()七上八下()百里挑一()十拿九稳()
1、请一个学生用米尺测量黑板的长,说一说,用“米”做单位,看看测量的结果能不能用整数表示。那剩下的不足一米怎么记?
2、在古代,人们就已经遇到了这样的问题。(师用一根打了结的绳子演示古人测量的情况)。课件呈现情境图,介绍分数的起源和发展历史。
3、总结:在测量、分物的时候,可能得不到整数的结果,需要用一种新的数表示——分数表示。所以分数是人类为了适用实际需要而产生的。
4、在我们的日常生活中,为了平均分配一些东西,也常常会遇到不能用整数表示的情况。比如两个小朋友平分一个橘子、一块月饼、一块饼干等,每人分到的能用整数表示吗?用什么分数表示?
三、教学分数的意义。
师:下面老师要先考考大家,你能举例说明1/4的含义吗?(投影出示题目,学生口答)
出示一个1/4的正方形的阴影部分。
师:阴影部分可以用什么分数表示?它表示什么意思?
2、师:下列图中的阴影部分能用1/4表示吗?为什么?
如生说可以,则问:你为什么觉得可以用1/4表示呢?生说理由。
(强调一定要平均分)(板书:平均分)
3、动手操作,探索新知。
(1)操作。
师:现在我给每一个小组都提供了四种材料,一张长方形纸、一条一米长的绳子、6个小立方体,4根绘画笔。下面请每组根据这四种一样的材料,通过折一折、画一画、分一分等方法,创造出几个不同的分数。
学生动手操作,教师巡视。
(2)交流
师:谁愿意上来说一说,你得到了哪些分数?这个分数是怎样得到的?
小组交流。
(3)认识单位“1”。
师:利用这四种材料,同学们创造出了好多分数。刚才在表示这些分数时,我们都是把哪些东西来平均分的?
生:一张长方形纸、一米长的绳子、6个小立方体、4根绘画笔平均分。
师:象把一张长方形纸平均分,我们可以称之为把一个物体平均分
(课件显示:一个物体)
把一米长的绳子平均分,我们可以称之为把一个计量单位平均分。(课件显示:一个计量单位)
把6个小方块、4根绘画笔平均分,我们又可以称之为把一些物体平均分。(课件显示:一些物体)
师小结:一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。(课件显示)
师:(投影出示):我们可以把这3只象看作一个整体吗?
我们可以把这6颗草莓看作一个整体吗?这4只老虎呢?
我们还可以把哪些物体也看成一个整体呢?(学生举例。)
师:象这样的一个物体、一个计量单位、一个整体,我们可以用自然数“1”来表示,通常把它叫做单位“1”,(课件显示)强调说明:①单位“1”不仅可以指一个物体、一个计量单位,也可以是很多物体组成的一个整体。如:一个苹果、一枝铅笔、一个计量单位、一堆煤、一仓库粮食等等,把什么平均分,就应把什么看做单位“1”。②单位“1”和自然数“1”的区别:自然数1是一个数,只表示一个具体事物。如:一个人、一本书、一间房子……它是自然数的计数单位。而单位“1”不仅可以表示某一个具体事物,还可以表示一堆、一群……它表示被平均分的整体。
概括分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。
(4)理解分子分母的意义。
师:通过刚才的学习,大家知道了分数的意义,请同学们想一下,这个“若干份”是分数中的什么?(分母,表示平均分的份数)“这样的一份或几份”是分数中的什么?(分子,表示取的份数)
(5)师:接下来我想出几道题来考考大家,你们愿不愿意接受挑战?
①把这个文具盒里的所有铅笔平均分给2个同学,每个同学得到这盒铅笔的几分之几?
生:1/2
②师:为什么可以用1/2来表示?
③师:如果把这盒铅笔平均分给5个同学,每个同学得到这盒铅笔的几分之几呢?
如果把这盒铅笔平均分给10个同学,每个同学得到这盒铅笔的几分之几呢?
如果把这盒铅笔平均分给50个同学,每个同学得到这盒铅笔的几分之几呢?2个同学得到这盒铅笔的几分之几?
如果把这盒铅笔平均分给100个同学,每个同学得到这盒铅笔的几分之几呢?10个同学得到这盒铅笔的几分之几呢?
④师:现在这个文具盒里有6支铅笔,把它平均分给2个同学,每个同学得到的铅笔能用1/2表示吗?是几支铅笔?
⑤如果我再增加2支铅笔,把8支铅笔平均分给2个同学,每个同学得到的铅笔还能用1/2表示吗?是几支铅笔?为什么同样是1/2,铅笔的支数不一样?
师:因为一个整体表示的具体数量不同,所以同样是1/2,铅笔的支数不一样。
四、教学分数单位。
师:整灵敏有计数单位个、十、百、千、万……分数是否也有计数单位呢?它的计数单位又是怎样规定的?
显示:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
师:也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。(师举例说明后,并说出几个分数让学生回答,后再让学生自己举例说明)
加强练习,深化概念。
练习:
1、35表示把()平均分成()份,表示这样的()份,它的分母是(),表示();分子是(),表示()。
2、67的分数单位是(),有()个这样的分数单位。
3、说出每个分数的意义。
(1)五(1)班的三好生人数占全班的29。
(2)一节课的时间是23小时。
4、课本练习十一第9题。
5、判断(对的打“√”,错的要“×”)。
(1)一堆苹果分成4份,每份占这堆苹果的14()
(2)把5米长的绳子平均分成7段,每段占全长的57()
(3)14个19是914()
(4)自然数1和单位“1”相同。()
五、小结。
今天这节课我们学习了?你有哪些收获?
分数的意义简单教案篇4
(一)教学目标
1.知道分数是怎样产生的,理解分数的意义,明确分数与除法的关系。
2.认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。
3.理解和掌握分数的基本性质,会比较分数的大小。
4.理解公因数与公因数、公倍数与最小公倍数,能找出两个数的公因数与最小公倍数,能比较熟练地进行约分和通分。
5.会进行分数与小数的互化。
(二)教材说明和教学建议
教材说明
1.本单元内容的结构及其地位作用。
本单元是学生系统学习分数的开始。内容包括:分数的意义、分数与除法的关系,真分数与假分数,分数的基本性质,公因数与约分,最小公倍数与通分以及分数与小数的互化。
学生在三年级上学期的学习中,已借助操作、直观,初步认识了分数(基本是真分数),知道了分数各部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数加、减法。在本学期,又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征。这些,都是本单元学习的重要基础。
通过本单元的学习,将引导学生在已有的基础上,由感性认识上升到理性认识,概括出分数的意义,比较完整地从分数的产生,从分数与除法的关系等方面加深对分数意义的理解,进而学习并理解与分数有关的基本概念,掌握必要的约分、通分以及分数与小数互化的技能。
这些知识在后面系统学习分数四则运算及其应用时都要用到。因此,学好本单元的内容是顺利掌握分数四则运算并学会应用分数知识解决一系列实际问题的必要基础。
本单元的内容分为六节,各节的内容的编排体系及其内在联系如下图所示。
五下分数的意义和性质
从上面的图示,不难看出六节教材的内容所具有的内在逻辑联系。
首先,第1节分数的意义和第3节分数的基本性质,是整个单元教学内容的主干,也是本单元教学的重点。第2节真分数与假分数是分数意义即分数概念的引申;第4节约分、第5节通分则是分数基本性质的运用。最后一节沟通了分数与小数在表现形式上的相互联系,得出了分数与小数的互化方法。整个单元的内容,大体上显现出由概念到性质,再到方法、技能的递进发展关系。
其次,在第1节里,分数的意义是学习的重点。在前面学习的基础上,这里引入了两个新的概念,即单位“1”与分数单位。至于分数的产生、分数与除法的关系,则是从分数的现实来源和数学内部来源两方面来帮助学生深化对分数的认识。
在第2节里,先通过三道例题,引入真分数、假分数、带分数三个概念,再通过例4,解决把假分数化成带分数或整数的问题。
在第3节里,先通过例1,得出分数基本性质,然后通过例2,在运用的过程中加以巩固。
在第4、5节里,先引入公因数与公因数,公倍数与最小公倍数的概念,再讨论求公因数、最小公倍数的方法,然后在此基础上,引入约分、通分的概念和方法。
显然,在第2、3、4、5节内部,同样显现出由概念到方法的逻辑关系。
2.本单元教材的编写特点。
与原教材相比,本单元教材的主要改进有以下几点。
(1)多侧面地展现了分数的来源。
在小学数学里,认识分数是小学生数概念的一次重要扩展。考虑到分数概念比较重要,又比较抽象,有必要通过揭示产生分数的现实背景,来帮助学生形成分数概念,理解它的含义。
从现实的角度来看,数是用来表示量的。5只兔、5个人,这些量的共同特征,可以用自然数5来表示。也就是说自然数是一个量(兔、人)与另一个作为单位的量(1只兔、1个人)的比。
现实世界中存在的量,除了上面例举的,由一些单位量合成的,可以用自然数表示多少的量之外,还存在着许多可以分割的,无法用自然数表示的量。例如,用一根作为单位长的木棒(米尺)去量一条线段AB的长,量了3次还有一段PB剩余。
五下分数的意义和性质
这时,运用自然数就只能粗略地说,这条线段长3米多一点。要更精确一些,就必须把度量单位等分成更小的单位,来度量余下的那条线段。比如把1米一分为四,则每等份叫做“四分之一”米,记做1/4米。这就引入了形如1/n(n为大于1的自然数)的分数。假如使用度量单位14米去量图中剩下的一条线段PB,量了3次恰巧量尽,那么PB的长就是“3个1/4”,记作3/4米,这样就又引入了形如m/n(n为大于1的自然数,m为自然数)的分数。历,分数正是为了比较精确地测量这类可以分割的量而引入的。
从数学的角度来看,分数的引入是为了解决在整数集合里除法不是总能实施的矛盾。比如,2÷3在整数范围内不能计算,引入分数就能记作2÷3=2/3。当然,这种抽象的表示方法也有它的实际意义。例如把2块饼平均分给3个人,每人分得2/3块饼。
在本单元的第1节里,教材首先从历史的角度,从现实生活中等分量的需要出发,生动形象地展示了分数的现实来源。
在引出分数概念之后,教材又通过分蛋糕、分月饼的实例,抽象出分数与除法的关系,使学生初步感悟,有了分数,就能解决整数除法除不尽的矛盾。这实际上是从数学内部发展的角度,揭示了分数的来源。
这就为拓宽学生的认识,加深对分数的理解,提供了较为丰富的教学素材。
(2)约数、倍数的有关知识与分数的相关知识结合起来教学。
我们知道,在小学数学中,约数、倍数的有关知识的学习,主要是为学习分数服务的。但在以往的教材中,两者各自独立成章,学完后,学生还不知道学了公因数、公倍数与公因数、最小公倍数有什么用,只能对一组组整数单纯地练习求它们的公因数或最小公倍数。而且,这些知识集中在一个单元里,概念多,而且抽象,不利于分散难点,逐步消化,也不利于认识的螺旋上升。
现在,把公因数、公因数的内容安排在讨论约分之前教学;把公倍数、最小公倍数的内容安排在引进通分之前学习。从而将两部分知识紧密结合起来,学了就用,既能减少单纯的枯燥练习,节省教学时间,又有利于整除性知识的教学改革。为了配合这一改革,约分与通分不再合成一节,而是公因数、公因数与约分编为一节,公倍数、最小公倍数与通分编为一节。
(3)关注数学的抽象过程,从现实问题情境引出数学问题,得出数学知识。
在本单元中,无论是公因数与公因数、公倍数与最小公倍数的引入,还是约分、通分的给出,教材都创设了适当的现实问题情境,进而在解决实际问题中,抽象出数学的概念,得出数学的方法。这些数学知识,还有利于培养学生的数学应用意识和解决实际问题的能力。
(4)部分内容作了适当的精简处理或编排调整。
本单元中,比较重要的内容精简处理与编排调整,在前面揭示单元内容结构与联系的图示中,已有所显示。这里,再择要作些说明。
其一,分数大小比较,不在第1节中单列一段,而是充分利用前面学习分数初步认识时打下的基础,把有关内容与通分结合在一起学习。这样既进一步简化了第1节的内容,也有利于发挥学习的正向迁移作用。
其二,删去了原来第2节中把整数或带分数化成假分数的内容。这是因为根据课程标准,今后的分数运算中将不含带分数,所以无须再掌握把整数或带分数化成假分数的技能。考虑到把假分数化成带分数,容易看出这个假分数的大小在哪两个整数之间,从而有利于数感的形成;把能化成整数的假分数化成整数,是化简某些计算结果的需要。所以,把假分数化成带分数或整数的内容,仍然保留,但也作了简化,合在一个例题中予以解决。
教学建议
1.充分利用教材资源,用好直观手段。
如前介绍,本单元教材在加强数学与现实世界的联系上作了不少努力,同时,教材还运用了多种形式的直观图示,数形集合,展现了数学概念的几何意义。从而为教师与学生提供了较为丰富的学习资源。教学时,应充分利用这些资源,以发挥形象思维和生活体验对于抽象思维的支持作用。
本单元的特点之一就是概念较多,且比较抽象。而小学高年级学生的思维特点是他们的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。因此,在引入新的数学概念时,适当加大思维的形象性,化抽象为具体、为直观,对于顺利开展教学来说,是十分必要的。所谓化抽象为具体,就是通过具体的现实情境,调动学生相关生活经验来帮助理解。所谓化抽象为直观,就是运用适当的图形、图示来说明数学概念的含义,这是小学数学最常用的也是最主要的直观教学手段。
2.及时抽象,在适当的抽象水平上,建构数学概念的意义。
为了搞好本单元的教学,在加强直观教学的同时,还要重视及时抽象,不能听任学生的认识停留在直观水平上。否则,同样会妨碍学生对所学知识的理解和应用。例如:比较1/3与1/2的大小,有学生回答,不一定谁大谁小,要看他们分的那个圆,哪个大,由此得出1/3可能比1/2大,也可能比1/2小,还可能和1/2相等。造成这种错误认识的主要原因,就在于过分依赖直观,而没有及时抽象。因此,在充分展开直观教学,让学生获得足够的感性认识基础上,要不失时机地引导学生由实例、图示加以概括,建构概念的意义。
3.揭示知识与方法的内在联系,在理解的基础上掌握方法。
在本单元中,约分与通分、假分数化为带分数或整数、分数与小数的互化的方法,都是必须掌握的。这些方法看似头绪较多,但若归结为基础知识,就是揭示相关知识与方法的联系,就比较容易在理解的基础上掌握方法。以约分与通分为例,它们都是分数基本性质的应用。尽管约分时分子、分母同除以一个适当的数,通分时分子、分母同乘一个适当的数,但它们都是依据分数的基本性质,使分数的大小保持不变。因此,教学时不宜就方法论方法,而应凸显得出方法的过程,使学生明白操作方法背后的算理。这样就能依靠理解掌握方法,而不是依赖记忆学会操作。
4.这部分内容可以用20课时进行教学。
分数的意义简单教案篇5
【教学目标】
1.知道分数是怎样产生的,理解分数的意义,明确分数与除法的关系。
2.认识真分数和假分数,知道带分数是一部分假分数的另一种书写形式,能把假分数化成带分数或整数。
3.理解和掌握分数的基本性质,会比较分数的大小。
4.理解公因数与公因数、公倍数与最小公倍数的意义,能找出两个数的公因数与最小公倍数,能比较熟练地约分和通分。
5.会进行分数与小数的互化。
【重点难点】
1.分数的意义和分数的基本性质。
2.理解单位“1”的含义。
【教学指导】
1.充分利用教材资源,用好直观手段。
本单元教材在加强教学与现实世界的联系上做了不少努力,同时,教材还运用了多种形式的直观图式数形结合,展现了数学概念的几何意义,从而为老师与学生提供了丰富的学习资源。教学时,应充分利用这些资源,发挥形象思维和生活体验对于抽象思维的支持作用。
2.及时抽象,在适当的水平上,构建数学概念的意义。
为了搞好本单元的教学,在加强直观教学的同时,还要重视及时抽象,不能听任学生的认识停留在直观水平上。否则,同样会妨碍学生对所学知识的理解和应用。因此,在充分展开直观教学,让学生获得足够的感性认识的基础上,要不失时机地引导学生由实例、图式加以概括,构建概念的意义。
3.揭示知识与方法的内在联系,在理解的基础上掌握方法。
在本单元中,假分数化为带分数或整数,约分与通分,分数与小数互化的方法,都是必须掌握的。这些方法看似头绪较多,但若归结为基础知识,就是揭示相关知识与方法的联系,就比较容易在理解的基础上掌握方法。以约分与通分为例,它们都是分数基本性质的应用。因此,教学时不宜就方法论方法,而应突出方法的过程,使学生明白操作方法背后的算理,这样就能依靠理解掌握方法,而不是依赖记忆学会操作。
【课时安排】建议共分17课时
1.分数的意义3课时
2.真分数和假分数2课时
3.分数的基本性质2课时
4.约分4课时
5.通分4课时
6.分数和小数的互化2课时
分数的意义简单教案篇6
教学内容
人教版课标实验教材五年级下册第60——64页。
教学目标
1、知道分数的产生,理解分数的意义,掌握分数单位。
2、在具体的生活情境中感悟分数的意义,理解单位“1”的含义,体会部分与整体的关系,培养学生的抽象概括能力。
3、通过合作学习使学生获得成功、兴趣、愉悦、兴奋这些丰富的情感体验,并感受到生活中处处有分数。
教学重点
自主探究分数的意义。
教学难点
建立单位“1”的概念。
教学过程
一、导入新课
师出示分数3/7 6/8 1/4 认识吗?读一读。这些数都是我们曾经学过的分数。
师:你们知道分数是怎样产生的吗?想知道吗?从古至今,我们在进行测量、分物的时候往往不能得到整数的结果,就用分数来表示。(课件演示)
二、探究新知
1、动手操作,理解1/4
师:今天我们就进一步来认识分数,了解分数的意义.(板书课题) 为了让大家更好的理解分数的意义,今天老师为大家准备了一个正方形、4支笔、8颗糖。
活动要求:现在我们以1/4为例,请同学们4人一组,,通过折一折、分一分、涂一涂的办法表示出它的1/4。
2、小组合作,交流方法
师:分好的同学就与同组的小伙伴交流一下,说说1/4是怎么得到的?1/4的含义是什么?
组1:我们选的是正方形。我们把正方形平均分成了4份,每一份是这个正方形的1/4。
组2:我们选的是4支笔。把4只笔平均分成了4份,其中一份是这些笔的1/4。
组3:我们选的是8颗糖。把8个糖平均分成了4份,其中一份是8个糖的1/4。
3、建立单位“1”的概念
师:仔细观察这3幅图,它们有什么相同的地方?
生1:都是平均分成了4份,都表示了各自的1/4。
生2:被分的东西不一样,每一份也不一样。
师:对,大家都发现原来是因为被分的东西不一样,有的'是一个物体、有的是一些物体。像这样的一个物体或一些物体,我们都可以把它看作是一个整体。(板书“整体”)一个整体可以用自然数1来表示,我们通常把它叫做单位“1”。(板书单位“1”)
4、归纳分数的意义
师:谁来说说什么是分数?
生:把单位“1”平均分成一份或几份,就可以用分数表示。
师:一个整体用什么表示?平均分是什么意思?若干份是什么意思?(生:很多份)
5、练习:
四、认识分数单位
自学课本,学生汇报什么是分数单位。
生:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。
师:你能个举例子来说明吗?
生:2/3的分数单位是1/3。(板书2/3)
师:他有几个这样的分数单位?(2个)
师:3/4的分数单位是多少?11/23呢?17/120呢?你们找分数单位怎么又准又快呀?有什么简便的好方法?”
生:分数的分母是几,它的分数单位就是几分之一,分子是几,就有几个这样的分数单位。
五、巩固练习
六、全课小结
师:今天这节课你有什么收获?对自己学习情况进行简单评价。有收获的同学占全班人数的几分之几?(百分之百)在学习评价的时候也用到了分数,分数真是无处不在,希望大家课后到生活中去寻找分数,进一步去了解分数。