教育巴巴 > 教案模板 > 优秀教案 >

五年级下册数学简单的教案

时间: 新华 优秀教案

五年级下册数学简单的教案篇1

教学目标:

1、学生掌握找一个数的因数,倍数的方法;

2、学生能了解一个数的因数是有限的,倍数是无限的;

3、能熟练地找一个数的因数和倍数;

4、培养学生的观察能力。

教学重点:

掌握找一个数的因数和倍数的方法。

教学难点:

能熟练地找一个数的因数和倍数。

教学过程:

一、引入新课。

1、出示主题图,让学生各列一道乘法算式。

2、师:看你能不能读懂下面的算式?

出示:因为2×6=12

所以2是12的因数,6也是12的因数;

12是2的倍数,12也是6的倍数。

3、师:你能不能用同样的方法说说另一道算式?

(指名生说一说)

师:你有没有明白因数和倍数的关系了?

那你还能找出12的其他因数吗?

4、你能不能写一个算式来考考同桌?学生写算式。

师:谁来出一个算式考考全班同学?

5、师:今天我们就来学习因数和倍数。(出示课题:因数 倍数)

齐读p12的注意。

二、新授

(一)找因数

1、出示例1:18的因数有哪几个?

从12的因数可以看得出,一个数的因数还不止一个,那我们一起找找看18的因数有哪些?

学生尝试完成:汇报

(18的因数有: 1,2,3,6,9,18)

师:说说看你是怎么找的?(生:用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…;用乘法一对一对找,如1×18=18,2×9=18…)

师:18的因数中,最小的是几?的是几?我们在写的时候一般都是从小到大排列的。

2、用这样的方法,请你再找一找36的因数有那些?

汇报36的因数有: 1,2,3,4,6,9,12,18,36

师:你是怎么找的?

举错例(1,2,3,4,6,6,9,12,18,36)

师:这样写可以吗?为什么?(不可以,因为重复的因数只要写一个就可以了,所以不需要写两个6)

仔细看看,36的因数中,最小的是几,的是几?

看来,任何一个数的因数,最小的一定是( ),而的一定是( )。

3、你还想找哪个数的因数?(18、5、42……)请你选择其中的一个在自己的练习本上写一写,然后汇报。

4、其实写一个数的因数除了这样写以外,还可以用集合表示:如

18的因数

1、2、3、6、9、18

小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?

从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。

(二)找倍数

1、我们一起找到了18的因数,那2的倍数你能找出来吗?

汇报:2、4、6、8、10、16、……

师:为什么找不完?

你是怎么找到这些倍数的? (生:只要用2去乘1、乘2、乘3、乘4、…)

那么2的倍数最小是几?的你能找到吗?

2、让学生完成做一做1、2小题:找3和5的倍数。

汇报 3的倍数有:3,6,9,12

师:这样写可以吗?为什么?应该怎么改呢?

改写成:3的倍数有:3,6,9,12,……

你是怎么找的?(用3分别乘以1,2,3,……倍)

5的倍数有:5,10,15,20,……

师:表示一个数的倍数情况,除了用这种文字叙述的方法外,还可以用集合来表示

2的倍数 3的倍数 5的倍数

2、4、6、8…… 3、6、9…… 5、10、15……

师:我们知道一个数的因数的个数是有限的,那么一个数的倍数个数是怎么样的呢?

(一个数的倍数的个数是无限的,最小的倍数是它本身,没有的倍数)

三、课堂小结

我们一起来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?

四、独立作业

完成练习二1~4题

五年级下册数学简单的教案篇2

教学目标:

1、初步建立公倍数和最小公倍数的概念;

2、初步培养学生的数学应用意识与解决简单实际问题的能力。

3、培养学生的比较推理与抽象概括能力。

教学重点:

公倍数与最小公倍数的概念建立。

教学难点:

运用“公倍数与最小公倍数”解决生活实际问题

教法学法:

根据教学的要求,结合教材的特点,为了完成教学任务,我主要采用情景教学法,创造生动具体的教学情境,使学生在愉快的情景中学习数学知识。学生通过独立思考、小组合作的方法进行学习。独立思考可以使每个人深入的探究、冷静的分析;小组合作,可以更全面的思考,解题思路得以发散。

教具准备:

印有月历纸。

教学过程:

一、创设情境,设疑引入

教师谈话:从11月1日起,小兰的妈妈每4天休息一天,爸爸每6天休息一天,他们打

算等爸爸妈妈休息时,全家一块儿去公园玩。(小黑板出示:小兰一家和一张11月份的日历)那么在这一个月里,他们可以选哪些日子去呢?你会帮他们把这些日子找出来吗?

请学生相互议论后,教师提示:同桌两位同学可分工合作来解决这个问题。一位同学找小兰妈妈的休息日,另一位同学找小兰爸爸的休息日,然后再把两人找的结果合起来对照一下,就可以很快找出小兰爸爸和妈妈共同的休息日了。

根据学生的回答,教师逐步完成以下板书

妈妈的休息日:4、8、12、16、20、24、28

爸爸的休息日:6、12、18、24、30

他们共同的休息日:12、24

其中最早的一天:12

(以讲故事的形式提出问题,为学生提供了一个“公倍数”的实体模型,让学生借助“日期”这一具体有实际意义的“数”,初步感知公倍数、最小公倍数的特点,体会求最小公倍数的基本思路。)

二、激思引探,教学新知

1.几个数的公倍数和最小公倍数的概念教学

从“妈妈的休息日”、“爸爸的休息日”、“他们共同的休息日”、“其中最早的一天”分别引出“4的倍数”、“6的倍数”、“4和6的公倍数”、“4和6的最小公倍数”的概念,教师修改并完成板书。

4的倍数:4、8、12、16、20、24、28

6的倍数:6、12、18、24、30

4和6的公倍数:12、24

其中最小的一个:12

师:教师:为什么要打省略号呢?(因为一个数的倍数是无限的,不可能写出一个数的所有倍数).

师:请你仔细观察妈妈和爸爸的休息的日子又什么特点?(引出4的倍数和6的倍数,并板书)

师:在6的倍数和4的倍数中,你觉得哪些数字比较特别呢?(引出4和6的公倍数)师:其中最小的一个是12。(引出最小公倍数)

(通过引导学生对具体问题作进一步研究并根据研究结果修改板书,让学生亲身经历了一个从具体到抽象的数学化过程。通过这一过程,不仅能帮助学生借助生活经验理解数学知识,同时也能让学生感受到数学与生活的联系,体会到数学源于生活又高于生活的特点。)

2、及时练习

师:认识了那么多关于倍数的关系,我们就来用一用。完成(试一试)。

三、巩固练习

1、书本练一练的第一题

2、书本练一练的第三题

3、书本练一练的第四题。

4、判断题

(1)两个数的积一定是这两个数的公倍数。()

(2)两个数的积一定是这两个数的最小公倍数。()

(3)两个数的公倍数是无限的,而最小公倍数只有一个。()

此题从整体上挈领知识要点,要求学生对各项知识进行抽象的比较、类比,进而推理、概括,对知识有深入完整的理解。学生有条理地表述自己的思考过程,做到言之有理,用数学语言进行合乎逻辑的讨论与质疑。

四、课堂小结:学生回忆整堂课所学知识。

学生通过这一环节可以将整个学习过程进行回顾、按一定的线条梳理新知,形成整体印象,便于知识的理解记忆。

整节课的设计,我通过四个环节的教学设计来体现数学来源于生活,服务与生活的理念。我主要通过动手操作、自主探索等方法,限度发挥学生的主体作用,使学生在爱数学、学数学、用数学过程中获得知识。

五年级下册数学简单的教案篇3

教学目标

1.理解质数和合数的概念,并能判断一个数是质数还是合数,会把自然数按因数的个数进行分类。

2.通过自主探究、合作交流的方法,理解质数和合数的意义,经历概念的形成过程。

3.培养学生自主探索、独立思考、合作交流的能力,充分展示数学的魅力。

重点难点

重点:初步学会准确判断一个数是质数还是合数。

难点:区分奇数、质数、偶数、合数。

教具学具

投影仪。

教学过程

一、创设情境,激趣导入

师:“六一”快到了,老师给大家送来了礼物!(出示百宝箱)大家想要吗?可是这上面有锁,而且是一个密码锁,打不开,怎么办?

师:密码是一个三位数,它既是一个偶数,又是5的倍数;位上的数是9的因数;十位上的数是最小的质数。你能打开密码锁吗?

学生质疑:什么是质数。教师引入本节课内容,板书:质数和合数。

二、探究体验,经历过程

1.认识质数与合数。

师:找因数--找出1到20的各个数的因数,看一看它们的因数的个数有什么特点?

学生分组进行,找出之后进行分类。

生:老师,我发现这些数的因数有的只有1个,有的有2个,有的有3个,还有的有4个或更多。

师:很好,我们可以把它们分类,大家把分类结果填在表中。

投影展示学生的分类结果。

【设计意图:在学生独立思考的基础上,找出1~20的因数后总结出特点,为下文概念的出示做准备,使学生亲身经历概念的形成过程,印象深刻】

师:一个数,如果只有1和它本身两个因数,这样的数叫做质数。如2、3、5、7都是质数。一个数,除了1和它本身还有别的因数,这样的数叫做合数。如4、6、15、49都是合数。1既不是质数也不是合数。

师:再举出几个质数和合数的例子,举得完吗?说明了什么?(质数和合数都有无数个)

想一想:最小的质数(合数)是几?的呢?

师:所以按照因数个数的多少,自然数又可以分为哪几类呢?

课件出示:可以把非0自然数分为质数和合数以及1,共三类。

2.制作质数表。

投影出示例1。

师:怎样找出100以内的质数呢?

生1:可以把每个数都验证一下,看哪些是质数。

生2:先把2的倍数划去,但2除外,划掉的这些数都不是质数。然后划掉3的倍数,但3不划掉……

【设计意图:通过教师的引导,学生自主建构知识,完成100以内的质数表,使学生形成一个知识网络,进一步培养了学生的数感】

三、课末总结,梳理提升

这节课我们学习了质数和合数的概念,知道了1既不是质数也不是合数。在利用所学知识进行判断时,我们要抓住质数与合数的本质特点,从因数的个数入手进行判断。在对整数进行分类时,要明确分类标准,不能把质数和合数与奇数和偶数混淆。

五年级下册数学简单的教案篇4

教学内容:人教版五年级下册第四单元第一课时《分数的产生和意义》。

学情分析:在学习这部分内容之前学生在三年级上学期的学习中,已经借助操作、直观,初步认识了分数,知道了分数的各部分的名称,会读、写简单的分数,会比较分数大小还会简单的同分母分数加、减法。

教学设想:本节课的教学,单位“1”和分数单位这两个概念非常重要,应从直观到抽象,由个别到一般,用利操作、讨论、交流等形式展开小组学习,适当展开概念的形成过程,帮助学生在过程中获得者得感悟,自己构建这些概念的意义。

教学目标:

1、在学生原有分数知识基础上,使学生知道分数的产生,理解分数的意义,知道分子、分母和分数单位的含义。

2、经历认识分数意义的过程,培养学生的抽象、概括能力。

3、利用操作、讨论、交流等形式展开小组学习,培养学生的合作探究能力,培养质疑和验证科学知识的能力。

教学重点:明确分数和分数单位的意义,理解单位“1”的含义。

教学难点:对单位“1”的理解。

教具和学具:卷尺、四张长方形白纸、四条一米长的绳子、若干个小立方体和一捆绘画笔。

教学过程:

一、创设情景,温故引新。

1、师:我们已经初步认识了分数。(板书:分数)谁来说几个分数?(板书:如1/4)你知道分数各部分的名称吗?(板书):师:那你们知道分数是怎样产生的吗?

二、教学分数的产生。

2、能根据成语说出下面的分数吗?

一分为二( ) 七上八下( ) 百里挑一( ) 十拿九稳( )

1、请一个学生用米尺测量黑板的长,说一说,用“米”做单位,看看测量的结果能不能用整数表示。那剩下的不足一米怎么记?

2、在古代,人们就已经遇到了这样的问题。(师用一根打了结的绳子演示古人测量的情况)。课件呈现情境图,介绍分数的起源和发展历史。

3、总结:在测量、分物的时候,可能得不到整数的结果,需要用一种新的数表示——分数表示。所以分数是人类为了适用实际需要而产生的。

4、在我们的日常生活中,为了平均分配一些东西,也常常会遇到不能用整数表示的情况。比如两个小朋友平分一个橘子、一块月饼、一块饼干等,每人分到的能用整数表示吗?用什么分数表示?

三、教学分数的意义。

师:下面老师要先考考大家,你能举例说明1/4的含义吗?(投影出示题目,学生口答)

出示一个1/4的正方形的阴影部分。

师:阴影部分可以用什么分数表示?它表示什么意思?

2、师:下列图中的阴影部分能用1/4表示吗?为什么?

如生说可以,则问:你为什么觉得可以用1/4表示呢?生说理由。

(强调一定要平均分)(板书:平均分)

3、动手操作,探索新知。

(1)操作。

师:现在我给每一个小组都提供了四种材料,一张长方形纸、一条一米长的绳子、6个小立方体,4根绘画笔。下面请每组根据这四种一样的材料,通过折一折、画一画、分一分等方法,创造出几个不同的分数。

学生动手操作,教师巡视。

(2)交流

师:谁愿意上来说一说,你得到了哪些分数?这个分数是怎样得到的?

小组交流。

(3)认识单位“1”。

师:利用这四种材料,同学们创造出了好多分数。刚才在表示这些分数时,我们都是把哪些东西来平均分的?

生:一张长方形纸、一米长的绳子、6个小立方体、4根绘画笔平均分。

师:象把一张长方形纸平均分,我们可以称之为把一个物体平均分

(课件显示:一个物体)

把一米长的绳子平均分,我们可以称之为把一个计量单位平均分。(课件显示:一个计量单位)

把6个小方块、4根绘画笔平均分,我们又可以称之为把一些物体平均分。(课件显示:一些物体)

师小结:一个物体、一些物体等都可以看做一个整体,把这个整体平均分成若干份,这样的一份或几份都可以用分数来表示。(课件显示)

师:(投影出示):我们可以把这3只象看作一个整体吗?

我们可以把这6颗草莓看作一个整体吗?这4只老虎呢?

我们还可以把哪些物体也看成一个整体呢?(学生举例。)

师:象这样的一个物体、一个计量单位、一个整体,我们可以用自然数“1”来表示,通常把它叫做单位“1”,( 课件显示)强调说明:①单位“1”不仅可以指一个物体、一个计量单位,也可以是很多物体组成的一个整体。如:一个苹果、一枝铅笔、一个计量单位、一堆煤、一仓库粮食等等,把什么平均分,就应把什么看做单位“1”。②单位“1”和自然数“1”的区别:自然数1是一个数,只表示一个具体事物。如:一个人、一本书、一间房子……它是自然数的计数单位。而单位“1”不仅可以表示某一个具体事物,还可以表示一堆、一群……它表示被平均分的整体。

概括分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数,叫做分数。

(4)理解分子分母的意义。

师:通过刚才的学习,大家知道了分数的意义,请同学们想一下,这个“若干份”是分数中的什么?(分母,表示平均分的份数)“这样的一份或几份”是分数中的什么?(分子,表示取的份数)

(5)师:接下来我想出几道题来考考大家,你们愿不愿意接受挑战?

①把这个文具盒里的所有铅笔平均分给2个同学,每个同学得到这盒铅笔的几分之几?

生:1/2

②师:为什么可以用1/2来表示?

③师:如果把这盒铅笔平均分给5个同学,每个同学得到这盒铅笔的几分之几呢?

如果把这盒铅笔平均分给10个同学,每个同学得到这盒铅笔的几分之几呢?

如果把这盒铅笔平均分给50个同学,每个同学得到这盒铅笔的几分之几呢?2个同学得到这盒铅笔的几分之几?

如果把这盒铅笔平均分给100个同学,每个同学得到这盒铅笔的几分之几呢?10个同学得到这盒铅笔的几分之几呢?

④师:现在这个文具盒里有6支铅笔,把它平均分给2个同学,每个同学得到的铅笔能用1/2表示吗?是几支铅笔?

⑤如果我再增加2支铅笔,把8支铅笔平均分给2个同学,每个同学得到的铅笔还能用1/2表示吗?是几支铅笔?为什么同样是1/2,铅笔的支数不一样?

师:因为一个整体表示的具体数量不同,所以同样是1/2,铅笔的支数不一样。

四、教学分数单位。

师:整灵敏有计数单位个、十、百、千、万……分数是否也有计数单位呢?它的计数单位又是怎样规定的?

显示:把单位“1”平均分成若干份,表示其中一份的数叫做分数单位。

师:也就是说分数单位是由一个分数的分母决定的,分母是几,它的分数单位就是几分之一。(师举例说明后,并说出几个分数让学生回答,后再让学生自己举例说明)

加强练习,深化概念。

练习:

1、35 表示把( )平均分成( )份,表示这样的( )份,它的分母是( ),表示( );分子是( ),表示( )。

2、67 的分数单位是( ),有( )个这样的分数单位。

3、说出每个分数的意义。

(1)五(1)班的三好生人数占全班的29 。

(2)一节课的时间是23 小时。

4、课本练习十一第9题。

5、判断(对的打“√”,错的要“×”)。

(1)一堆苹果分成4份,每份占这堆苹果的14 ( )

(2)把5米长的绳子平均分成7段,每段占全长的57 ( )

(3)14个19 是914 ( )

(4)自然数1和单位“1”相同。( )

五、小结。

今天这节课我们学习了?你有哪些收获?

五年级下册数学简单的教案篇5

教学目标:

1.借助实际操作和图形语言,理解一个数除以分数的意义和基本算理。

2.掌握一个数除以分数的计算方法,并能正确计算。

3.培养学生解决简单实际问题的能力。

教学重难点:

1.掌握一个数除以分数的计算方法,并能正确计算。

2.整数除以分数的计算法则推导过程。

教学过程:

一、创设情景 激趣揭题

1.猜一猜:有4个苹果,每人得到2个,1个,1/2个,你知道这三 次分别是几个人分苹果吗?

2.引入并板书课题:分数除法(二)

设计意图:设疑激趣。 明确目标。

二、扶放结合 探究新知

1.分一分,引导感知一个数除以分数的意义。

2.画一画:引导完成27页的画一画,理解分数除以分数的计算方法。

3.引导完成28页的填一填,想一想,你发现了什么?

4.引导归纳计算方法。

设计意图: 理解一个数除以分数的意义。 总结归纳计算法则。

三、反馈矫正

出示P28的试一试。

1.统一分数除法的计算法则。

2.指导完成P28练一练的1~4题。

四、小结评价 布置预习

1.引导小结:通过这节课的学习,你有什么收获?

2.布置预习: P29 分数除法(三)

板书设计: 分数除法(二)

4÷1/2=4×2=8 ;4÷1/4=4×4=16

一个数除以分数的意义与整数除法的意义相同。 一个数除以分数,等于乘这个分数的倒数。

五年级下册数学简单的教案篇6

教学目标:

1.知识与技能:理解公倍数和最小公倍数的含义。

2.过程与方法:经历探索找公倍数的方法,会利用列举法等方法找出两个数的公倍数和最小公倍数。

3.情感态度与价值观:结合生活实际,激发学生学习数学的愿望,培养学生学习数学的乐趣。

教学重点:

理解公倍数和最小公倍数的含义。

教学难点:

掌握找最小公倍数的方法。

教学用具:

课件

教学过程:

一、 复习导入

说出2的倍数有哪些,3的倍数有哪些?

二、 教学公倍数和最小公倍数的含义

(一)探索公倍数

1.观察刚才同学们说的2的倍数和3的倍数,你有什么发现?

2.师生共同观察分析得出公倍数的含义。

(二)探索最小公倍数,引出课题。

三、探索找两个数最小公倍数的方法

(一)找两个数最小公倍数的一般方法

1.列举法

2.分解质因数法

3.短除法

(二)找两个数最小公倍数的特殊方法

1.找出下面几组数的最小公倍数。

7和14   8和24   9和18

5和6   2和7   9和4

2.观察每横数据和结果,你有什么发现?为什么

3.师生共同观察分析得出特殊情况下的特殊方法。

四、巩固练习

课件出示习题。

五、小结:今天你有什么收获?

板书设计:

找最小公倍数

4的倍数有:4、8、12、16、20、24、28… …

6的倍数有:6、12、18、24、30、… …

4和6公倍数有:12、24、… …

最小公倍数: 12

五年级下册数学简单的教案篇7

设计说明

1.从学生已有的知识经验出发,促进知识的构建。

本设计从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的时间和空间。利用数轴引出公倍数,让学生对公倍数和最小公倍数产生感性的认识。利用最大公因数的知识迁移,让学生自己抽象出公倍数和最小公倍数的概念,从而激发学生的学习兴趣,激活学生的思维。

2.体现学生的主体地位,提高教学的实效性。

《数学课程标准》的理念倡导,要注重角色转变,改变在以往的教学中只注重对学生知识的传授,而忽略了学生的主观能动性,要让学生学会自主学习,让学生主动参与课堂教学,在教学中尊重学生,凸显学生的主体地位。本设计在教学如何找两个数的最小公倍数时,放手让学生自主探究出方法,并观察公倍数和最小公倍数之间的关系,让学生得到充分的思考,提高教学的实效性。

课前准备

教师准备 PPT课件 投影仪

学生准备 数轴卡片 彩色笔

教学过程

⊙复习旧知,引入新课

1.复习。

分别说一说4和6的倍数分别有哪些。

4的倍数 6的倍数

4 6

812

1218

1624

2030

…………

2.导入。

师:我们分别列出了4的倍数和6的倍数。前面我们已经学过两个数公有的因数,今天来学习两个数公有的倍数。

设计意图:分别说出4和6的倍数,一是复习倍数知识,二是为学习公倍数和最小公倍数作铺垫,使学生的思维自然过渡到新知。

⊙公倍数与最小公倍数

1.探究概念。

(1)在数轴上表示数。

在数轴上分别找出表示4的倍数和6的倍数的点。(学生观察数轴,用两种不同颜色的笔在数轴上分别描出这些点)

(2)观察数轴,交流发现。

4和6公有的倍数有哪些?最小的是几?有没有最大的?(学生口答后,老师在投影仪上表示出来)

(3)迁移命名。

想一想我们已经学过的公因数和最大公因数,谁能给几个公有的.倍数和其中最小的一个取名字?(公倍数 最小公倍数)

(4)理解意义。

请说一说什么是公倍数和最小公倍数。(学生口答:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数)

(5)集合表示法。

课件出示教材68页的集合圈。为什么集合圈里要写上省略号?(一个数的倍数的个数是无限的,几个数的公倍数的个数也是无限的)

2.练习。(课件出示)

把不超过50的3和6的倍数、公倍数填在68页“做一做”中的集合圈里,再找出它们的最小公倍数。请一位同学板演,其他同学填在教材上,然后集体订正。

设计意图:通过引导学生对具体问题的进一步研究,帮助学生加深对公倍数、最小公倍数意义的理解,使表象更加清晰,由此让学生亲身经历一个从具体到抽象的教学过程。

⊙最小公倍数的求法

1.探究方法。

师:你是怎样求6和8的公倍数的?可以怎样表示?

(1)学生先独立思考,用自己的想法试着找出6和8的最小公倍数。

(2)小组讨论,互相启发,再全班交流。

可能出现以下几种方法。

方法一 先分别写出6和8各自的倍数,再从中找出它们的公倍数和最小公倍数。

方法二 先写出8的倍数,再从小到大圈出6的倍数,第一个圈出的就是它们的最小公倍数。

方法三 先写出6的倍数,再看6的倍数中哪些是8的倍数,从中找出最小的。

方法四 从小到大写出8的倍数,边写边判断是不是6的倍数,第一个6的倍数,就是6和8的最小公倍数。

五年级下册数学简单的教案篇8

教学目标

1、掌握整除、约数、倍数的概念.

2、知道约数和倍数以整除为前提及约数和倍数相互依存的关系.

教学重点

1、建立整除、约数、倍数的概念.

2、理解约数、倍数相互依存的关系.

3、应用概念正确作出判断.

教学难点

理解约数、倍数相互依存的关系.

教学步骤

一、铺垫孕伏(课件演示:数的整除下载)

1、口算

6÷515÷323÷7

1.2÷0.324÷231÷3

2、观察算式和结果并将算式分类.

除尽

除不尽

6÷5=1.215÷3=15

1.2÷0.3=424÷2=12

23÷7=3......2

31÷3=10......1

3、引导学生回忆:研究整数除法时,一个数除以另一个不为零的数,商是整数而没有余数,我们就说第一个数能被第二个数整除.

4、寻找具有整除关系的算式.

板书:15÷3=515能被3整除

5、分类除尽

除不尽

不能整除

整除

6÷5=1.2

1.2÷0.3=4

15÷3=15

24÷2=12

23÷7=3......2

31÷3=10......1

二、探究新知

(一)进一步理解”整除“的意义.

1、整除所需的条件.

(1)分析:24能被2整除,15能被3整除;

23不能被7整除,31不能被3整除;(商有余数)

6不能被5整除;(商是小数)

1.2不能被0.3整除;(被除数和除数都是小数)

(2)引导学生明确:第一个数能被第二个数整除必须满足三个条件:

a、被除数和除数(0除外)都是整数;

b、商是整数;

c、商后没有余数.

板书:整数整数整数(没有余数)

15÷3=5

2、用字母表示相除的两个数,理解整除的意义.

(1)讨论:如果用字母a和b表示两个数相除,那么必须满足几个条件才能说a能被b整除?

(板书:a÷b)

学生明确:a和b都是整数,除得的商正好是整数而没有余数,我们就说a能被b整除.

(板书:a能被b整除)

(2)继续讨论:在什么情况下才能说a能被b整除?(板书:b≠0)

学生明确:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除(也可以说b能整除a).

3、反馈练习.

(1)下面的数,哪一组的第一个数能被第二个数整除?

29和336和121.2和0.4

(2)判断下面的说法是否正确,并说明理由.

a.36能被12整除.()

b.19能被3整除.()

c.3.2能被0.4整除.()

d.0能被5整除.()

e.29能整除29.()

4、”整除“与”除尽“的联系和区别.

讨论:综合以上所学知识讨论,”整除“和”除尽“有什么联系?又有什么区别?

(举例说明)

(二)约数、倍数的意义

1、类推约数、倍数的意义.

(1)教师讲解:15能被3整除,我们就说15是3的倍数,3是15的约数.

(2)学生口述:

24能被2整除,我们就说,24是2的倍数,2是24的约数.

10能被5整除,我们就说,10是5的倍数,5是10的约数.

a能被b整除,我们就说a是b的倍数,b是a的约数.

(3)讨论:如果用字母a和b表示两个整数,在什么情况下才可以说a是b的倍数,b是a的约数?(在数a能被数b整除的条件下)

(4)小结:如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数).

2、进一步理解约数、倍数的意义.

(1)整除是约数、倍数的前提.学生明确:约数和倍数必须以整除为前提,不能整除的两个数就没有的数和倍数的关系.

(2)约数和倍数相互依存的关系.

学生明确:约数和倍数是一对相互依存的概念,不能单独存在.

(3)反馈练习:

A、下面各组数中,有约数和倍数关系的有哪些?

16和2140和2045和15

33和64和2472和8

B、判断下面说法是否正确.

a、8是2的倍数,2是8的约数.()

b、6是倍数,3是约数.()

c、30是5的倍数.()

d、4是历的约数.()

e、5是约数.()

3、教师说明:以后在研究约数和倍数时,我们所说的数一般不包括零.

4、教学例2:12的约数有哪几个?

(1)引导学生合作学习,讨论分析.

(2)汇报、板书:

12的约数有:1、2、3、4、6、12

(3)练习:15的约数有哪几个?

(4)学生明确:

一个数的约数是有限的.其中最小的约数是1,的约数是它本身.

5、教学例3:2的倍数有哪些?

(1)引导学生合作学习,讨论、分析.

(2)汇报、板书:

2的倍数有:2、4、6、8、10......

(3)练习:2的倍数有哪些?

(4)学生明确:

一个数的倍数的个数是无限的,其中最小的倍数是它本身.

三、全课小结

这节课,我们在进一步研究整除的基础上又学到了什么?通过学习你知道了什么?

(板书课题:约数和倍数的意义)

四、随堂练习

1、下面的说法对吗?说出理由.

(1)因为36÷9=4,所以36是倍数,9是约数.

(2)57是3的倍数.

(3)1是1、2、3、4、5,...的约数.

2、下面的数,哪些是60的约数,哪些是6的倍数?

3412162460

教师说明:一个数可以是另一个数的约数,也可以是某个数的倍数.

3、下面的说法对吗?为什么?

(1)1.8能被0.2除尽.()1.8能被0.2整除.()

1.8是0.2的倍数.()1.8是0.2的9倍.()

(2)若a÷b=10,那么:

a一定是b的倍数.()a能被b整除.()

b可能是a的约数.()a能被b除尽.()

五、布置作业

1、先写出下面每个数的约数,再写出下面每个数的倍数(按照从小到大的顺序各写5个)

101336

2、在下面的圈里填上适当的数.

六、板书设计

约数和倍数的意义

探究活动

47913