教育巴巴 > 教案模板 > 优秀教案 >

勾股定理数学教案

时间: 刘骏 优秀教案

作为一位无私奉献的人民教师,有必要进行细致的教案准备工作,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。怎样写教案才更能起到其作用呢?下面是小编给大家带来的勾股定理数学教案,希望大家能够喜欢!

勾股定理数学教案

勾股定理数学教案1

教学目标:

1、知识目标:

(1)掌握勾股定理;

(2)学会利用勾股定理进行计算、证明与作图;

(3)了解有关勾股定理的历史.

2、能力目标:

(1)在定理的证明中培养学生的拼图能力;

(2)通过问题的解决,提高学生的运算能力

3、情感目标:

(1)通过自主学习的发展体验获取数学知识的感受;

(2)通过有关勾股定理的历史讲解,对学生进行德育教育.

教学重点:勾股定理及其应用

教学难点:通过有关勾股定理的历史讲解,对学生进行德育教育

教学用具:直尺,微机

教学方法:以学生为主体的讨论探索法

教学过程:

1、新课背景知识复习

(1)三角形的三边关系

(2)问题:(投影显示)

直角三角形的三边关系,除了满足一般关系外,还有另外的特殊关系吗?

2、定理的获得

让学生用文字语言将上述问题表述出来.

勾股定理:直角三角形两直角边 的平方和等于斜边 的平方

强调说明:

(1)勾――最短的边、股――较长的直角边、弦――斜边

(2)学生根据上述学习,提出自己的问题(待定)

学习完一个重要知识点,给学生留有一定的时间和机会,提出问题,然后大家共同分析讨论.

3、定理的证明方法

方法一:将四个全等的直角三角形拼成如图1所示的正方形.

方法二:将四个全等的直角三角形拼成如图2所示的正方形,

方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形

以上证明方法都由学生先分组讨论获得,教师只做指导.最后总结说明

4、定理与逆定理的应用

例1 已知:如图,在△ABC中,∠ACB= ,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长.

解:∵△ABC是直角三角形,AB=5,BC=3,由勾股定理有

∴ ∠2=∠C

∴CD的长是2.4cm

例2 如图,△ABC中,AB=AC,∠BAC= ,D是BC上任一点,

求证:

证法一:过点A作AE⊥BC于E

则在Rt△ADE中,

又∵AB=AC,∠BAC=

∴AE=BE=CE

证法二:过点D作DE⊥AB于E, DF⊥AC于F

则DE‖AC,DF‖AB

又∵AB=AC,∠BAC=

∴EB=ED,FD=FC=AE

在Rt△EBD和Rt△FDC中

在Rt△AED中,

例3 设

求证:

证明:构造一个边长 的矩形ABCD,如图

在Rt△ABE中

在Rt△BCF中

在Rt△DEF中

在△BEF中,BE+EF>BF

例4 国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某村六组有四个村庄A、B、C、D正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.

解:不妨设正方形的边长为1,则图1、图2中的总线路长分别为

AD+AB+BC=3,AB+BC+CD=3

图3中,在Rt△DGF中

同理

∴图3中的路线长为

图4中,延长EF交BC于H,则FH⊥BC,BH=CH

由∠FBH=  及勾股定理得:

EA=ED=FB=FC=

∴EF=1-2FH=1-

∴此图中总线路的长为4EA+EF=

∵3>2.828>2.732

∴图4的连接线路最短,即图4的架设方案最省电线.

5、课堂小结:

(1)勾股定理的内容

(2)勾股定理的作用

已知直角三角形的两边求第三边

已知直角三角形的一边,求另两边的关系

6、布置作业:

a、书面作业P130#1、2、3

b、上交作业P132#1、3

7、板书设计:

8、探究活动

台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东 方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响

(1)该城市是否会受到这交台风的影响?请说明理由

(2)若会受到台风影响,那么台风影响该城市持续时间有多少?

(3)该城市受到台风影响的最大风力为几级?

勾股定理数学教案2

教学目标

1、知识与技能目标

学会观察图形,勇于探索图形间的关系,培养学生的空间观念.

2、过程与方法

(1)经历一般规律的探索过程,发展学生的抽象思维能力.

(2)在将实际问题抽象成几何图形过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.

3、情感态度与价值观

(1)通过有趣的问题提高学习数学的兴趣.

(2)在解决实际问题的过程中,体验数学学习的实用性.

教学重点:

探索、发现事物中隐含的勾股定理及其逆及理,并用它们解决生活实际问题.

教学难点:

利用数学中的建模思想构造直角三角形,利用勾股定理及逆定理,解决实际问题.

教学准备:

多媒体

教学过程:

第一环节:创设情境,引入新课(3分钟,学生观察、猜想)

情景:

如图:在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B处,恰好一只在A处的蚂蚁捕捉到这一信息,于是它想从A处爬向B处,你们想一想,蚂蚁怎么走最近?

第二环节:合作探究(15分钟,学生分组合作探究)

学生分为4人活动小组,合作探究蚂蚁爬行的最短路线,充分讨论后,汇总各小组的方案,在全班范围内讨论每种方案的路线计算方法,通过具体计算,总结出最短路线。让学生发现:沿圆柱体母线剪开后展开得到矩形,研究“蚂蚁怎么走最近”就是研究两点连线最短问题,引导学生体会利用数学解决实际问题的方法:建立数学模型,构图,计算.

学生汇总了四种方案:

(1) (2) (3)(4)

学生很容易算出:情形(1)中A→B的路线长为:AA’+d,情形(2)中A→B的路线长为:AA’+πd/2所以情形(1)的路线比情形(2)要短.

学生在情形(3)和(4)的比较中出现困难,但还是有学生提出用剪刀沿母线AA’剪开圆柱得到矩形,前三种情形A→B是折线,而情形(4)是线段,故根据两点之间线段最短可判断(4)最短.

如图:

(1)中A→B的路线长为:AA’+d;

(2)中A→B的路线长为:AA’+A’B>AB;

(3)中A→B的路线长为:AO+OB>AB;

(4)中A→B的路线长为:AB.

得出结论:利用展开图中两点之间,线段最短解决问题.在这个环节中,可让学生沿母线剪开圆柱体,具体观察.接下来后提问:怎样计算AB?

在Rt△AA′B中,利用勾股定理可得,若已知圆柱体高为12c,底面半径为3c,π取3,则.

第三环节:做一做(7分钟,学生合作探究)

教材23页

李叔叔想要检测雕塑底座正面的AD边和BC边是否分别垂直于底边AB,但他随身只带了卷尺,

(1)你能替他想办法完成任务吗?

(2)李叔叔量得AD长是30厘米,AB长是40厘米,BD长是50厘米,AD边垂直于AB边吗?为什么?

(3)小明随身只有一个长度为20厘米的刻度尺,他能有办法检验AD边是否垂直于AB边吗?BC边与AB边呢?

第四环节:巩固练习(10分钟,学生独立完成)

1.甲、乙两位探险者到沙漠进行探险,某日早晨8:00甲先出发,他以6/h的速度向正东行走,1小时后乙出发,他以5/h的速度向正北行走.上午10:00, 甲、乙两人相距多远?

2.如图,台阶A处的蚂蚁要爬到B处搬运食物,它怎么走最近?并求出最近距离.

3.有一个高为1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分为0.5米,问这根铁棒有多长?

第五环节 课堂小结(3分钟,师生问答)

内容:

1、如何利用勾股定理及逆定理解决最短路程问题?

第六 环节:布置作业(2分钟,学生分别记录)

内容:

作业:1.课本习题1.5第1,2,3题.

要求:A组(学优生):1、2、3

B组(中等生):1、2

C组(后三分之一生):1

板书设计:

教学反思:

勾股定理数学教案3

一、教学目标

1.灵活应用勾股定理及逆定理解决实际问题.

2.进一步加深性质定理与判定定理之间关系的认识.

二、重点、难点

1.重点:灵活应用勾股定理及逆定理解决实际问题.

2.难点:灵活应用勾股定理及逆定理解决实际问题.

3.难点的突破方法:

三、课堂引入

创设情境:在军事和航海上经常要确定方向和位置,从而使用一些数学知识和数学方法.

四、例习题分析

例1(P83例2)

分析:⑴了解方位角,及方位名词;

⑵依题意画出图形;

⑶依题意可得PR=12×1。5=18,PQ=16×1。5=24,QR=30;

⑷因为242+182=302,PQ2+PR2=QR2,根据勾股定理的逆定理,知∠QPR=90°;

⑸∠PRS=∠QPR—∠QPS=45°.

小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识.

例2(补充)一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状.

分析:⑴若判断三角形的形状,先求三角形的三边长;

⑵设未知数列方程,求出三角形的三边长5、12、13;

⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形.

解略.

本题帮助培养学生利用方程思想解决问题,进一步养成利用勾股定理的逆定理解决实际问题的意识.

勾股定理数学教案4

复习第一步::

勾股定理的有关计算

例1:(2006年甘肃省定西市中考题)下图阴影部分是一个正方形,则此正方形的面积为.

析解:图中阴影是一个正方形,面积正好是直角三角形一条直角边的平方,因此由勾股定理得正方形边长平方为:172-152=64,故正方形面积为6

勾股定理解实际问题

例2.(2004年吉林省中考试题)图①是一面矩形彩旗完全展平时的尺寸图(单位:cm).其中矩形ABCD是由双层白布缝制的穿旗杆用的旗裤,阴影部分DCEF为矩形绸缎旗面,将穿好彩旗的旗杆垂直插在操场上,旗杆旗顶到地面的高度为220cm.在无风的天气里,彩旗自然下垂,如图②.求彩旗下垂时最低处离地面的最小高度h.

析解:彩旗自然下垂的长度就是矩形DCEF

的对角线DE的长度,连接DE,在Rt△DEF中,根据勾股定理,

得DE=h=220-150=70(cm)

所以彩旗下垂时的最低处离地面的最小高度h为70cm

与展开图有关的计算

例3、(2005年青岛市中考试题)如图,在棱长为1的正方体ABCD—A’B’C’D’的表面上,求从顶点A到顶点C’的最短距离.

析解:正方体是由平面图形折叠而成,反之,一个正方体也可以把它展开成平面图形,如图是正方体展开成平面图形的一部分,在矩形ACC’A’中,线段AC’是点A到点C’的最短距离.而在正方体中,线段AC’变成了折线,但长度没有改变,所以顶点A到顶点C’的最短距离就是在图2中线段AC’的长度.

在矩形ACC’A’中,因为AC=2,CC’=1

所以由勾股定理得AC’=.

∴从顶点A到顶点C’的最短距离为

复习第二步:

1.易错点:本节同学们的易错点是:在用勾股定理求第三边时,分不清直角三角形的斜边和直角边;另外不论是否是直角三角形就用勾股定理;为了避免这些错误的出现,在解题中,同学们一定要找准直角边和斜边,同时要弄清楚解题中的'三角形是否为直角三角形.

例4:在Rt△ABC中,a,b,c分别是三条边,∠B=90°,已知a=6,b=10,求边长c.

错解:因为a=6,b=10,根据勾股定理得c=剖析:上面解法,由于审题不仔细,忽视了∠B=90°,这一条件而导致没有分清直角三角形的斜边和直角边,错把c当成了斜边.

正解:因为a=6,b=10,根据勾股定理得,c=温馨提示:运用勾股定理时,一定分清斜边和直角边,不能机械套用c2=a2+b2

例5:已知一个Rt△ABC的两边长分别为3和4,则第三边长的平方是

错解:因为Rt△ABC的两边长分别为3和4,根据勾股定理得:第三边长的平方是32+42=25

剖析:此题并没有告诉我们已知的边长4一定是直角边,而4有可能是斜边,因此要分类讨论.

正解:当4为直角边时,根据勾股定理第三边长的平方是25;当4为斜边时,第三边长的平方为:42-32=7,因此第三边长的平方为:25或7.

温馨提示:在用勾股定理时,当斜边没有确定时,应进行分类讨论.

例6:已知a,b,c为⊿ABC三边,a=6,b=8,bc,且c为整数,则c=.

错解:由勾股定理得c=剖析:此题并没有告诉你⊿ABC为直角三角形

勾股定理数学教案5

学习目标

1、通过拼图,用面积的方法说明勾股定理的正确性。

2、探索勾股定理的过程,发展合情推理的能力,体会数型结合的思想。

重点难点

或学习建议学习重点:用面积的方法说明勾股定理的正确。

学习难点:勾股定理的应用。

学习过程教师

二次备课栏

自学准备与知识导学:

这是1955年希腊为纪念一位数学家曾经发行的邮票。

邮票上的图案是根据一个著名的数学定理设计的。

学习交流与问题研讨:

1、探索

问题:分别以图中的直角三角形三边为边向三角形外

作正方形,小方格的面积看做1,求这三个正方形的面积?

S正方形BCED=S正方形ACFG=S正方形ABHI=

发现:

2、实验

在下面的方格纸上,任意画几个顶点都在格点上的三角形;并分别以这个三角形的各边为一边向三角形外做正方形并计算出正方形的面积。

请完成下表:

S正方形BCEDS正方形ACFGS正方形ABHIS正方形BCED、S正方形ACFG、S正方形ABHI的关系

112

145

41620

91625

发现:

如何用直角三角形的三边长来表示这个结论?

这个结论就是我们今天要学习的勾股定理:

如图:我国古代把直角三角形中,较短的直角边叫做“勾”,较长的直角边叫做“股”,斜边叫做“弦”,所以勾股定理可表示为:弦股还可以表示为:或勾

练习检测与拓展延伸:

练习1、求下列直角三角形中未知边的长

练习2、下列各图中所示的线段的长度或正方形的面积为多少。

(注:下列各图中的三角形均为直角三角形)

例1、如图,在四边形中,∠,∠,,求。

检测:

1、在Rt△ABC中,∠C=90°(1)若a=5,b=12,则c=________;

(2)b=8,c=17,则S△ABC=________。

2、在Rt△ABC中,∠C=90,周长为60,斜边与一条直角边之比为13∶5,则这个三角形三边长分别是()

A、5、4、3、;B、13、12、5;C、10、8、6;D、26、24、10

3、若等腰三角形中相等的两边长为10cm,第三边长为16cm,那么第三边上的高为()

A。12cmB。10cmC。8cmD。6cm

4、要登上8m高的建筑物,为了安全需要,需使梯子底端离建筑物6m,至少需要多长的梯子?(画出示意图)

5、飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4千米处,过了20秒,飞机距离这个男孩5千米,飞机每小时飞行多少千米?

课后反思或经验总结:

1、什么叫勾股定理;

2、什么样的三角形的三边满足勾股定理;

3、用勾股定理解决一些实际问题。

24974