教育巴巴 > 高中教案 > 数学教案 >

人教版高中数学选修教案

时间: 新华 数学教案

作为一名数学教师,你一定知道如何写一篇数学教案,数学教案可以使你的工作更加顺利。写一份数学教案和我们分享吧。下面是小编为大家收集有关于人教版高中数学选修教案,希望你喜欢。

人教版高中数学选修教案1

教学目标:

1.了解反函数的概念,弄清原函数与反函数的定义域和值域的关系.

2.会求一些简单函数的反函数.

3.在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识.

4.进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力.

教学重点:求反函数的方法.

教学难点:反函数的概念.

教学过程:

教学活动

设计意图一、创设情境,引入新课

1.复习提问

①函数的概念

②y=f(x)中各变量的意义

2.同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是时间t的函数;在t=中,时间t是位移S的函数.在这种情况下,我们说t=是函数S=vt的反函数.什么是反函数,如何求反函数,就是本节课学习的内容.

3.板书课题

由实际问题引入新课,激发了学生学习兴趣,展示了教学目标.这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性.

二、实例分析,组织探究

1.问题组一:

(用投影给出函数与;与()的图象)

(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称.是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算.同样,与()也互为逆运算.)

(2)由,已知y能否求x?

(3)是否是一个函数?它与有何关系?

(4)与有何联系?

2.问题组二:

(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

(3)函数 ()的定义域与函数()的值域有什么关系?

3.渗透反函数的概念.

(教师点明这样的函数即互为反函数,然后师生共同探究其特点)

从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力.

通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础.

三、师生互动,归纳定义

1.(根据上述实例,教师与学生共同归纳出反函数的定义)

函数y=f(x)(x∈A) 中,设它的值域为 C.我们根据这个函数中x,y的关系,用 y 把 x 表示出来,得到 x = j (y) .如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量 y 的函数.这样的函数 x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数.记作: .考虑到"用 x表示自变量, y表示函数"的习惯,将中的x与y对调写成.

2.引导分析:

1)反函数也是函数;

2)对应法则为互逆运算;

3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;

4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;

5)函数y=f(x)与x=f(y)互为反函数;

6)要理解好符号f;

7)交换变量x、y的原因.

3.两次转换x、y的对应关系

(原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的.)

4.函数与其反函数的关系

函数y=f(x)

函数

定义域

A

C

值 域

C

A

四、应用解题,总结步骤

1.(投影例题)

【例1】求下列函数的反函数

(1)y=3x-1 (2)y=x 1

【例2】求函数的反函数.

(教师板书例题过程后,由学生总结求反函数步骤.)

2.总结求函数反函数的步骤:

1° 由y=f(x)反解出x=f(y).

2° 把x=f(y)中 x与y互换得.

3° 写出反函数的定义域.

(简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?

(2)的反函数是________.

(3)(x<0)的反函数是__________.

在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数.在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握.

通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解.

通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力.

题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进.并体现了对定义的反思理解.学生思考练习,师生共同分析纠正.

五、巩固强化,评价反馈

1.已知函数 y=f(x)存在反函数,求它的反函数 y =f( x)

(1)y=-2x 3(xR) (2)y=-(xR,且x)

( 3 ) y=(xR,且x)

2.已知函数f(x)=(xR,且x)存在反函数,求f(7)的值.

五、反思小结,再度设疑

本节课主要研究了反函数的定义,以及反函数的求解步骤.互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究.

(让学生谈一下本节课的学习体会,教师适时点拨)

进一步强化反函数的概念,并能正确求出反函数.反馈学生对知识的掌握情况,评价学生对学习目标的落实程度.具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性."问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂.

六、作业

习题2.4 第1题,第2题

进一步巩固所学的知识.

教学设计说明

"问题是数学的心脏".一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程.本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念.

反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号.由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念.为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成.另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用.通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维.使学生自然成为学习的主人。

人教版高中数学选修教案2

一、教学目标

(一)知识与技能

1、进一步熟练掌握求动点轨迹方程的基本方法。

2、体会数学实验的直观性、有效性,提高几何画板的操作能力。

(二)过程与方法

1、培养学生观察能力、抽象概括能力及创新能力。

2、体会感性到理性、形象到抽象的思维过程。

3、强化类比、联想的方法,领会方程、数形结合等思想。

(三)情感态度价值观

1、感受动点轨迹的动态美、和谐美、对称美

2、树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气

二、教学重点与难点

教学重点:运用类比、联想的方法探究不同条件下的轨迹

教学难点:图形、文字、符号三种语言之间的过渡

三、、教学方法和手段

【教学方法】观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供给学生交流的机会,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。

【教学手段】利用网络教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的过程,通过多媒体动态演示,突破学生在旧知和新知形成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。

【教学模式】重点中学实施素质教育的课堂模式"创设情境、激发情感、主动发现、主动发展"。

四、教学过程

1、创设情景,引入课题

生活中我们四处可见轨迹曲线的影子

【演示】这是美丽的城市夜景图

【演示】许多人认为天体运行的轨迹都是圆锥曲线,

研究表明,天体数目越多,轨迹种类也越多

【演示】建筑中也有许多美丽的轨迹曲线

设计意图:让学生感受数学就在我们身边,感受轨迹

曲线的动态美、和谐美、对称美,激发学习兴趣。

2、激发情感,引导探索

靠在墙角的梯子滑落了,如果梯子上站着一个人,我们不禁会想,这个人是直直的摔下去呢?还是划了一条优美的曲线飞出去呢?我们把这个问题转化为数学问题就是新教材高二上册88页20题,也就是这里的例题1;

例1、线段长为,两个端点和分别在轴和轴上滑动,求线段的中点的轨迹方程。

第一步:让学生借助画板动手验证轨迹

第二步:要求学生求出轨迹方程

法一:设,则

由得,

化简得

法二:设,由得

化简得

法三:设, 由点到定点的距离等于定长,

根据圆的定义得;

第三步:复习求轨迹方程的一般步骤

(1)建立适当的坐标系

(2)设动点的坐标M(x,y)

(3)列出动点相关的约束条件p(M)

(4)将其坐标化并化简,f(x,y)=0

(5)证明

其中,最关键的一步是根据题意寻求等量关系,并把等量关系坐标化

设计意图:在这里我借助几何画板的动画功能,先让学生直观地、形象地、动态地感受动点的轨迹是圆,接着要求学生求出轨迹方程,最后师生共同回顾求轨迹方程的一般步骤,达到熟练掌握直译法、定义法,体会从感性到理性、从形象到抽象的思维过程。

3、主动发现、主动发展

由上述例1可知,如果人站在梯子中间,则他会划了一段优美的圆弧飞出去。学生很自然就会想,如果人不是站在中间,而是随意站,结果会怎样呢?让学生动手探究M不是中点时的轨迹。

第一步:利用网络平台展示学生得到的轨迹(教师有意识的整合在一起)

设计意图:借助数学实验,把原本属于教师行为的设疑激趣还原于学生,让学生自己在实践过程中发现疑问,更容易激发学生学习的热情,促使他们主动学习。

第二步:分解动作,向学生提出3个问题:

问题1:当M位置不同时,线段BM与MA的大小关系如何?

问题2、体现BM与MA大小关系还有什么常见的形式?

问题3、你能类比例1把这种数量关系表达出来吗?

第三步:展示学生归纳、概括出来的数学问题

1、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足,求点M的轨迹方程。

2、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足,求点M的轨迹方程。

3、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足,求点M的轨迹方程。(说明是什么轨迹)

第四步:课堂完成学生归纳出来的问题1,问题2和3课后完成

4、合作探究、实现创新

改变A、点的运动方式,同样考虑中点的轨迹,教师进行适当的指导(这里固定A点,运动B点)

学生主要列出了以下几种运动方式:圆、椭圆、双曲线、抛物线,并且得出了一些相应的轨迹。

5、布置作业、实现拓展

1、把上述同学们探究得到的轨迹图形用文字、符号描述出来,(仿造例1),并求出轨迹方程。

2、已知A(4,0),点B是圆上一动点,AB中垂线与直线OB相交于点P,求点P的轨迹方程。

3、已知A(2,0),点B是圆上一动点,AB中垂线与直线OB相交于点P,求点P的轨迹方程。

4若把上述问题中垂线改为一般的垂线与直线OB相交于点P,请同学们利用画板验证点P 的轨迹。

以下是学生课后探究得到的一些轨迹图形

课后有学生问,如果X轴和Y轴不垂直会有什么结果?定长的线段在上面滑动怎么做出来?

可以说,学生的这些问题我之前并没有想过,给了我很大的触动,同时也促使我更进一步去研究几何画板,提高自己的能力。在这里,我体会到了教师不再只是一根根蜡烛,更像是一盏盏明灯,在照亮别人的同时也照亮自己。

以下是X轴和Y轴不垂直时的轨迹图形

五、教学设计说明:

(一)、教材

《平面动点的轨迹》是高二一节探究课,轨迹问题具有深厚的生活背景,求平面动点的轨迹方程涉及集合、方程、三角、平面几何等基础知识,其中渗透着运动与变化、方程的思想、数形结合的思想等,是中学数学的重要内容,也是历年高考数学考查的重点之一。

(二)、校情、学情

校情:我校是一所省一级达标校,省级示范性高中,学校的硬件设施比较完

善,每间教室都具备多媒体教学的功能,另外有两间网络教室和一个学生电子

阅室,并且能随时上网。

学情:大部分学生家里都有电脑,而且能随时上网。对学生进行了几何画板基

本操作的培训,学生能较快的画出圆、椭圆、双曲线、抛物线等基本的圆锥曲

线。学生对求轨迹方程的基本方法有了一定的掌握,但是对文字、图形、符号

三种语言之间的转换还存在很大的差异,在合作交流意识方面,发展不均衡,

有待加强。

(三)学法

观察、实验、交流、合作、类比、联想、归纳、总结

(四)、教学过程

1、创设情景,引入课题

2、激发情感,引导探索

由梯子滑落问题抽象、概括出数学问题

第一步:让学生借助画板动手验证轨迹

第二步:要求学生求出轨迹方程

第三步:复习求轨迹方程的一般步骤

3、主动发现、主动发展

探究M不是中点时的轨迹

第一步:利用网络平台展示学生得到的轨迹

第二步:分解动作,向学生提出3个问题:

第三步:展示学生归纳、概括出来的数学问题

4、合作探究、实现创新

改变A、点的运动方式,同样考虑中点的轨迹,教师进行适当的指导(这里固定A点,运动B点)

学生主要列出了以下几种运动方式:圆、椭圆、双曲线、抛物线,并且得出了一些相应的轨迹。

5、布置作业、实现拓展

(五)、教学特色:

借助网络、多媒体教学平台,让学生自己动手实验,发现问题并解决问题,同时把学生的学习情况及时的展现出来,做到大家一起学习,一起评价的效果。同时节省了时间,提高了课堂效率。

整个教学过程,体现了四个统一:既学习书本知识与投身实践的统一、书本学习与现代信息技术学习的统一、书本知识与资源拓展的统一、课堂学习与课外实践的统一。

本节课学生精神饱满、兴趣浓厚、合作积极,与我保持良好的互动,还不时产生一些争执,给我提出了一些新的问题,折射出我不足的方面,促进了我的进步与提高,师生间的教与学就像一面镜子,互相折射,共同进步。

人教版高中数学选修教案3

一:说教材

平面向量的数量积是两向量之间的乘法,而平面向量的坐标表示把向量之间的运算转化为数之间的运算。本节内容是在平面向量的坐标表示以及平面向量的数量积及其运算律的基础上,介绍了平面向量数量积的坐标表示,平面两点间的距离公式,和向量垂直的坐标表示的充要条件。为解决直线垂直问题,三角形边角的有关问题提供了很好的办法。本节内容也是全章重要内容之一。

二:说学习目标和要求

通过本节的学习,要让学生掌握

(1):平面向量数量积的坐标表示。

(2):平面两点间的距离公式。

(3):向量垂直的坐标表示的充要条件。

以及它们的一些简单应用,以上三点也是本节课的重点,本节课的难点是向量垂直的坐标表示的充要条件以及它的灵活应用。

三:说教法

在教学过程中,我主要采用了以下几种教学方法:

(1)启发式教学法

因为本节课重点的坐标表示公式的推导相对比较容易,所以这节课我准备让学生自行推导出两个向量数量积的坐标表示公式,然后引导学生发现几个重要的结论:如模的计算公式,平面两点间的距离公式,向量垂直的坐标表示的充要条件。

(2)讲解式教学法

主要是讲清概念,解除学生在概念理解上的疑惑感;例题讲解时,演示解题过程!

主要辅助教学的手段(powerpoint)

(3)讨论式教学法

主要是通过学生之间的相互交流来加深对较难问题的理解,提高学生的自学能力和发现、分析、解决问题以及创新能力。

四:说学法

学生是课堂的主体,一切教学活动都要围绕学生展开,借以诱发学生的学习兴趣,增强课堂上和学生的交流,从而达到及时发现问题,解决问题的目的。通过精讲多练,充分调动学生自主学习的积极性。如让学生自己动手推导两个向量数量积的坐标公式,引导学生推导4个重要的结论!并在具体的问题中,让学生建立方程的思想,更好的解决问题!

五:说教学过程

这节课我准备这样进行:

首先提出问题:要算出两个非零向量的数量积,我们需要知道哪些量?

继续提出问题:假如知道两个非零向量的坐标,是不是可以用这两个向量的坐标来表示这两个向量的数量积呢?

引导学生自己推导平面向量数量积的坐标表示公式,在此公式基础上还可以引导学生得到以下几个重要结论:

(1) 模的计算公式

(2)平面两点间的距离公式。

(3)两向量夹角的余弦的坐标表示

(4)两个向量垂直的标表示的充要条件

第二部分是例题讲解,通过例题讲解,使学生更加熟悉公式并会加以应用。

例题1是书上122页例1,此题是直接用平面向量数量积的坐标公式的题,目的是让学生熟悉这个公式,并在此题基础上,求这两个向量的夹角?目的是让学生熟悉两向量夹角的余弦的坐标表示公式例题2是直接证明直线垂直的题,虽然比较简单,但体现了一种重要的证明方法,这种方法要让学生掌握,其实这一例题也是两个向量垂直坐标表示的充要条件的一个应用:即两个向量的数量积是否为零是判断相应的两条直线是否垂直的重要方法之一。

例题3是在例2的基础上稍微作了一下改变,目的是让学生会应用公式来解决问题,并让学生在这要有建立方程的思想。

再配以练习,让学生能熟练的应用公式,掌握今天所学内容。

人教版高中数学选修教案4

一、教学内容分析

本节内容是学生在学习了乘法原理、排列、排列数公式和加法原理以后的知识,学生已经掌握了排列问题,并且对顺序与排列的关系已经有了一个比较清晰的认识.因此关键是排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系,指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.

二、教学目标设计

1.理解组合的意义,掌握组合数的计算公式;

2.能正确认识组合与排列的联系与区别

3.通过练习与训练体验并初步掌握组合数的计算公式

三、教学重点及难点

组合概念的理解和组合数公式;组合与排列的区别.

四、教学用具准备

多媒体设备

五、教学流程设计



六、教学过程设计

一、 复习引入

1.复习

我们在前几节中学习了排列、排列数以及排列数公式

定 义

特 点

相同排列

公 式

排 列

 以上由学生口答.

2.引入

那么请问:平面上有7个点,问以这7点中任何两个为端点,构成有向线段有几条?

这是一个排列问题 

若改为:构成的线段有几条?则为 ,

其实亦可用另一种方法解决,这就是组合.

二、学习新课

探究性质

1. 组合定义: P16

一般地,从个不同元素中取出个元素并成一组,叫做从个不同元素中取出个元素的一个组合.

【说明】:⑴不同元素; ⑵“只取不排”——无序性;

⑶相同组合:元素相同.

2.组合数定义:

从个不同元素中取出个元素的所有组合的个数,叫做从个不同元素中取出个元素的组合数.用符号表示.

如:引入中的例子可表示为 

== 这是为什么呢?

因为 构成有向线段的问题可分成2步来完成:

第一步,先从7个点中选2个点出来,共有种选法;

第二步,将选出的2个点做一个排列,有种次序;

根据乘法原理,共有·= 所以

·判断何为排列、组合问题: 利用书本P16~P17例题请学生判断

·这个公式叫组合数公式

3.组合数公式:

如= =

用计算器求  、  、  、 

可发现= =

由此猜想: 

用实际例子说明:比如要从50人中挑选4个出来参加迎春长跑的选择方案有,就相当于挑46个人不参加长跑的选择方案一样.“取法”与“剩法”是“一 一对应”的.

证明:∵

又 ,∴

当m=n时,

此性质作用:当时,计算可变为计算,能够使运算简化.

4. 组合数性质:

1、

2、=  

可解释为:从这n 1个不同元素中取出m个元素的组合数是,这些组合可以分为两类:一类含有元素,一类不含有.含有的组合是从这n个元素中取出m (1个元素与组成的,共有个;不含有的组合是从这n个元素中取出m个元素组成的,共有个.根据加法原理,可以得到组合数的另一个性质.在这里,主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想.

证明:





得证.

【说明】1( 公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与高的相同的一个组合数.

2( 此性质的作用:恒等变形,简化运算.在今后学习“二项式定理”时,我们会看到它的主要应用.

2.例题分析

例1、(1),求x

(2)

(3)

略解:(1) 





(2) 

(3)



例2、应用题:

有15本不同的书,其中6本是数学书,问:

分给甲4本,且都不是数学书;

略解:(1)

3.问题拓展

例3.题设同例2:

(2)平均分给3人;

(3)若平均分为3份;

(4)甲分2本,乙分7本,丙分6本;

(5)1人2本,1人7本,1人6本.

略解:(2) (3)

(4) (5)

三、课堂小结

指导学生根据生活经验和问题的内涵领悟其中体现出来的顺序.教的秘诀在于度,学的真谛在于悟,只有学生真正理解了,才能举一反三、融会贯通.

能列举出某种方法时,让学生通过交换元素位置的办法加以鉴别.

学生易于辨别组合、全排列问题,而排列问题就是先组合后全排列.在求解排列、组合问题时,可引导学生找出两定义的关系后,按以下两步思考:首先要考虑如何选出符合题意要求的元素来,选出元素后再去考虑是否要对元素进行排队,即第一步仅从组合的角度考虑,第二步则考虑元素是否需全排列,如果不需要,是组合问题;否则是排列问题.

排列、组合问题大都来源于同学们生活和学习中所熟悉的情景,解题思路通常是依据具体做事的过程,用数学的原理和语言加以表述.也可以说解排列、组合题就是从生活经验、知识经验、具体情景的出发,正确领会问题的实质,抽象出“按部就班”的处理问题的过程.据观察,有些同学之所以学习中感到抽象,不知如何思考,并不是因为数学知识跟不上,而是因为平时做事、考虑问题就缺乏条理性,或解题思路是自己主观想象的做法(很可能是有悖于常理或常规的做法).要解决这个问题,需要师生一道在分析问题时要根据实际情况,怎么做事就怎么分析,若能借助适当的工具,模拟做事的过程,则更能说明问题.久而久之,学生的逻辑思维能力将会大大提高.

四、作业布置

(略)

七、教学设计说明

在学习过程中,从排列问题引入,随即自然地过渡到组合问题.由此让学生对于排列与组合两者的异同有深刻理解,并能自如地进行判断.

本节课在教学技术上通过多媒体课件大大缩短了教师板书抄题的时间,让学生能够更加连贯的思考以及探索问题.

在例题的设计上从最基本的组合数公式的利用,到简单的应用题,再到组合中较难的分组分配以及平均不平均分配问题的训练,由浅入深,层层递进,以积极发挥课堂教学的基础型和研究型功能,培养学生的基础性学力和发展性学力.

在课堂教学中教师遵循“以学生为主体”的思想,鼓励学生善于观察和发现;鼓励学生积极思考和探究;鼓励学生大胆猜想,努力营造一个民主和谐、平等交流的课堂氛围,采取对话式教学,调动学生学习的积极性,激发学生学习的热情,使学生开阔思维空间,让学生积极参与教学活动,提高学生的数学思维能力.

人教版高中数学选修教案5

一、 知识梳理

1.三种抽样方法的联系与区别:

类别 共同点 不同点 相互联系 适用范围

简单随机抽样 都是等概率抽样 从总体中逐个抽取 总体中个体比较少

系统抽样 将总体均匀分成若干部分;按事先确定的规则在各部分抽取 在起始部分采用简单随机抽样 总体中个体比较多

分层抽样 将总体分成若干层,按个体个数的比例抽取 在各层抽样时采用简单随机抽样或系统抽样 总体中个体有明显差异

(1)从含有N个个体的总体中抽取n个个体的样本,每个个体被抽到的概率为

(2)系统抽样的步骤: ①将总体中的个体随机编号;②将编号分段;③在第1段中用简单随机抽样确定起始的个体编号;④按照事先研究的规则抽取样本.

(3)分层抽样的步骤:①分层;②按比例确定每层抽取个体的个数;③各层抽样;④汇合成样本.

(4) 要懂得从图表中提取有用信息

如:在频率分布直方图中①小矩形的面积=组距 =频率②众数是矩形的中点的横坐标③中位数的左边与右边的直方图的面积相等,可以由此估计中位数的值

2.方差和标准差都是刻画数据波动大小的数字特征,一般地,设一组样本数据 , ,…, ,其平均数为 则方差 ,标准差

3.古典概型的概率公式:如果一次试验中可能出现的结果有 个,而且所有结果都是等可能的,如果事件 包含 个结果,那么事件 的概率P=

特别提醒:古典概型的两个共同特点:

○1 ,即试中有可能出现的基本事件只有有限个,即样本空间Ω中的元素个数是有限的;

○2 ,即每个基本事件出现的可能性相等。

4. 几何概型的概率公式: P(A)=

特别提醒:几何概型的特点:试验的结果是无限不可数的;○2每个结果出现的可能性相等。

二、夯实基础

(1)某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种情况,要从中抽取一个容量为20的样本.若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为____________.

(2)某赛季,甲、乙两名篮球运动员都参加了

11场比赛,他们所有比赛得分的情况用如图2所示的茎叶图表示,

则甲、乙两名运动员得分的中位数分别为( )

A.19、13 B.13、19 C.20、18 D.18、20

(3)统计某校1000名学生的数学会考成绩,

得到样本频率分布直方图如右图示,规定不低于60分为

及格,不低于80分为优秀,则及格人数是 ;

优秀率为 。

(4)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:

9.4 8.4 9.4 9.9 9.6 9.4 9.7

去掉一个分和一个最低分后,所剩数据的平均值

和方差分别为( )

A.9.4, 0.484 B.9.4, 0.016 C.9.5, 0.04 D.9.5, 0.016

(5)将一颗骰子先后抛掷2次,观察向上的点数,则以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=27的内部的概率________.

(6)在长为12cm的线段AB上任取一点M,并且以线段AM为边的正方形,则这正方形的面积介于36cm2与81cm2之间的概率为( )

三、高考链接

07、某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒

; 第六组,成绩大于等于18秒且小于等于19秒.右图

是按上述分组方法得到的频率分布直方图.设成绩小于17秒

的学生人数占全班总人数的百分比为 ,成绩大于等于15秒

且小于17秒的学生人数为 ,则从频率分布直方图中可分析

出 和 分别为( )

08、从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( )

分数 5 4 3 2 1

人数 20 10 30 30 10

09、在区间 上随机取一个数x, 的值介于0到 之间的概率为( ).

08、现有8名奥运会志愿者,其中志愿者 通晓日语, 通晓俄语, 通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.

(Ⅰ)求 被选中的概率;(Ⅱ)求 和 不全被选中的概率.

9968