高中数学教案大全
课件设计和运用,一定要结合教学内容等多方面的客观条件,具体问题具体对待。做的得体,会收到意想不到的好效果,反之,则会事与愿违,如若枯燥乏味的课件必然会使学生失去学习兴趣,而精心设计好一个课件,因势利导,就能紧扣学生的活动心理,活跃其思维,增强其学习兴趣,从而大大提高学生的积极性。下面是由小编为大家整理的“高中数学教案大全”,希望对您的工作和生活有所帮助。
高中数学教案大全(精选篇1)
一、教材分析
1、教材地位和作用:二面角是我们日常生活中经常见到的、很普通的一个空间图形。“二面角”是人教版《数学》第二册(下B)中9.7的内容。它是在学生学过两条异面直线所成的角、直线和平面所成角、又要重点研究的一种空间的角,它是为了研究两个平面的垂直而提出的一个概念,也是学生进一步研究多面体的基础。因此,它起着承上启下的作用。通过本节课的学习还对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。
2、教学目标:
知识目标:(1)正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。
(2)进一步培养学生把空间问题转化为平面问题的化归思想。
能力目标:(1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。(2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。
德育目标:(1)使学生认识到数学知识来自实践,并服务于实践,增强学生应用数学的意识(2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。
情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的情感距离。
3、重点、难点:
重点:“二面角”和“二面角的平面角”的概念
难点:“二面角的平面角”概念的形成过程
二、教法分析
1、教学方法:在引入课题时,我采用多媒体、实物演示法,在新课探究中采用问题启导、活动探究和类比发现法,在形成技能时以训练法、探究研讨法为主。
2、教学控制与调节的措施:本节课由于充分运用了多媒体和实物教具,预计学生对二面角及二面角平面角的概念能够理解,根据学生及教学的实际情况,估计二面角的具体求法一节课内完成有一定的困难,所以将其放在下节课。
3、教学手段:教学手段的现代化有利于提高课堂效益,有利于创新人才的培养,根据本节课的教学需要,确定利用多媒体课件来辅助教学;此外,为加强直观教学,还要预先做好一些二面角的模型。
三、学法指导
1、乐学:在整个学习过程中学生要保持强烈的好奇心和求知欲,不断强化自己的创新意识,全身心地投入到学习中去,成为学习的主人。
2、学会:在掌握基础知识的同时,学生要注意领会化归、类比联想等数学思想方法的运用,学会建立完善的认知结构。
3、会学:通过自己亲身参与,学生要领会复习类比和深入研究这两种知识创新的方法,从而既学到知识,又学会创新,既能解决问题,更能发现问题。
四、教学过程
心理学研究表明,当学生明确数学概念的学习目的和意义时,就会对概念的学习产生浓厚的兴趣。创设问题情境,激发了学生的创新意识,营造了创新思维的氛围。
(一)、二面角
1、揭示概念产生背景。
问题情境1、在平面几何中“角”是怎样定义的?
问题情境2、在立体几何中我们还学习了哪些角?
问题情境3、运用多媒体和身边的实例,展示我们遇到的另一种空间的角——二面角(板书课题)。
通过这三个问题,打开了学生的原有认知结构,为知识的创新做好了准备;同时也让学生领会到,二面角这一概念的产生是因为它与我们的生活密不可分,激发学生的求知欲。2、展现概念形成过程。
问题情境4、那么,应该如何定义二面角呢?
创设这个问题情境,为学生创新思维的展开提供了空间。引导学生回忆平面几何中“角”这一概念的引入过程。教师应注意多让学生说,对于学生的创新意识和创新结果,教师要给与积极的评价。
问题情境5、同学们能举出一些二面角的实例吗?通过实际运用,可以促使学生更加深刻地理解概念。
(二)、二面角的平面角
1、揭示概念产生背景。平面几何中可以把角理解为是一个旋转量,同样一个二面角也可以看作是一个半平面以其棱为轴旋转而成的,也是一个旋转量。说明二面角不仅有大小,而且其大小是唯一确定的。平面
与平面的位置关系,总的说来只有相交或平行两种情况,为了对相交平面的相互位置作进一步的探讨,我们有必要来研究二面角的度量问题。
问题情境6、二面角的大小应该怎么度量?能否转化为平面角来处理?这样就从度量二面角大小的需要上揭示了二面角的平面角概念产生的背景。
2、展现概念形成过程
(1)、类比。教师启发,寻找类比联想的对象。
问题情境7、我们以前碰到过类似的问题吗?引导学生回忆前面所学过的两种空间角的定义,电脑演示以提高效率。
问题情境8、两定义的共同点是什么?生:空间角总是转化为平面的角,并且这个角是唯一确定的。
问题情境9、这个平面的角的顶点及两边是如何确定的?
(2)、提出猜想:二面角的大小也可通过平面的角来定义。对学生提出的猜想,教师应该给予充分的肯定,以培养他们大胆猜想的意识和习惯,这对强化他们的创新意识大有帮助。
问题情境10、那么,这个角的顶点及两边应如何确定呢?生:顶点放在棱上,两边分别放在两个面内。这也是学生直觉思维的结果。
(3)、探索实验。通过实验,激发了学生的学习兴趣,培养了学生的动手操作能力。
(4)、继续探索,得到定义。
问题情境11、那么,怎样使这个角的大小唯一确定呢?师生共同探讨后发现,角的顶点确定后,要使此角的大小唯一确定,只须使它的两条边在平面内唯一确定,联想到平面内过直线上一点的垂线的唯一性,由此发现二面角的大小的一种描述方法。
(5)、自我验证:要求学生阅读课本上的定义。并说明定义的合理性,教师作适当的引导,并加以理论证明。
(三)、二面角及其平面角的画法
主要分为直立式和平卧式两种,用电脑《几何画板》作图。
(四)、范例分析
为巩固学生所学知识,由于时间的关系设置了一道例题。来源于实际生活,不但培养了学生分析问题和解决问题的能力,也让学生领会到数学概念来自生活实际,并服务于生活实际,从而增强他们应用数学的意识。
例:一张边长为10厘米的正三角形纸片ABc,以它的高AD为折痕,折成一个1200二面角,求此时B、c两点间的距离。
分析:涉及二面角的计算问题,关键是找出(或作出)该二面角的平面角。引导学生充分利用已知图形的性质,最后发现可由定义找出该二面角的平面角。可让学生先做,为调动学生的积极性,并增加学生的参与感,活跃课堂的气氛,教师可给学生板演的机会。教师讲评时强调解题规范即必须证明∠BDc是二面角B—AD—c的平面角。
变式训练:图中共有几个二面角?能求出它们的大小吗?根据课堂实际情况,本题的变式训练也可作为课后思考题。
题后反思:(1)解题过程中必须证明∠BDc是二面角B—AD—c的平面角。
(2)求二面角的平面角的方法是:先找(或作)——后证——再解(三角形)
(五)、练习、小结与作业
练习:习题9.7的第3题
小结在复习完二面角及其平面角的概念后,要求学生对空间中三种角加以比较、归纳,以促成学生建立起空间中角这一概念系统。同时要求学生对本节课的学习方法进行总结,领会复习类比和深入研究这两种知识创新的方法。
作业:习题9.7的第4题
思考题:见例题
五、板书设计(见课件)
以上是我对《二面角》授课的初步设想,不足之处,恳请大家批评指正,谢谢!
高中数学教案大全(精选篇2)
一、课程性质与任务
数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。数学课程是中等职业学校学生必修的一门公共基础课。本课程的任务是:使学生掌握必要的数学基础知识,具备必需的相关技能与能力,为学习专业知识、掌握职业技能、继续学习和终身发展奠定基础。二、课程教学目标
1.在九年义务教育基础上,使学生进一步学习并掌握职业岗位和生活中所必要的数学基础知识。2.培养学生的计算技能、计算工具使用技能和数据处理技能,培养学生的观察能力、空间想象能力、分析与解决问题能力和数学思维能力。
3.引导学生逐步养成良好的学习习惯、实践意识、创新意识和实事求是的科学态度,提高学生就业能力与创业能力。三、教学内容结构
本课程的教学内容由基础模块、职业模块和拓展模块三个部分构成。
1.基础模块是各专业学生必修的基础性内容和应达到的基本要求,教学时数为128学时。2.职业模块是适应学生学习相关专业需要的限定选修内容,各学校根据实际情况进行选择和安排教学,教学时数为32~64学时。
3.拓展模块是满足学生个性发展和继续学习需要的任意选修内容,教学时数不做统一规定。四、教学内容与要求
(一)本大纲教学要求用语的表述1.认知要求(分为三个层次)
了解:初步知道知识的含义及其简单应用。
理解:懂得知识的概念和规律(定义、定理、法则等)以及与其他相关知识的联系。掌握:能够应用知识的概念、定义、定理、法则去解决一些问题。2.技能与能力培养要求(分为三项技能与四项能力)
计算技能:根据法则、公式,或按照一定的操作步骤,正确地进行运算求解。计算工具使用技能:正确使用科学型计算器及常用的数学工具软件。数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。观察能力:根据数据趋势,数量关系或图形、图示,描述其规律。
空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。
分析与解决问题能力:能对工作和生活中的简单数学相关问题,作出分析并运用适当的数学方法予以解决。
数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解;针对不同的问题(或需求),会选择合适的模型(模式)。
(二)教学内容与要求1.基础模块(128学时)第1单元集合(10学时)
第2单元不等式(8学时)
第3单元函数(12学时)
第4单元指数函数与对数函数(12学时)
第5单元三角函数(18学时)
第6单元数列(10学时)
第7单元平面向量(矢量)(10学时)
第8单元直线和圆的方程(18学时)
第9单元立体几何(14学时)
第10单元概率与统计初步(16学时)
2.职业模块
第1单元三角计算及其应用(16学时)
第2单元坐标变换与参数方程(12学时)
第3单元复数及其应用(10学时)
高中数学教案大全(精选篇3)
高中数学趣味竞赛题(共10题)
1、撒谎的有几人
5个高中生有,她们面对学校的新闻采访说了如下的话:
爱:“我还没有谈过恋爱。” 静香:“爱撒谎了。”
玛丽:“我曾经去过昆明。” 惠美:“玛丽在撒谎。”
千叶子:“玛丽和惠美都在撒谎。” 那么,这5个人之中到底有几个人在撒谎呢?
2、她们到底是谁
有天使、恶魔、人三者,天使时刻都说真话,恶魔时时刻刻都说假话,人呢,有时候说真话,有时候说假话。
穿黑色衣服的女子说:“我不是天使。” 穿蓝色衣服的女子说:“我不是人。” 穿白色衣服的女子说:“我不是恶魔。”那么,这三人到底分别是谁呢?
3、半只小猫
听说祖父家的波斯猫生了好多小猫,喜欢猫的我兴高采烈地来到祖父家。可是,只剩下1只小猫了。
“一共生了几只小猫呀?” “猜猜看,要是猜中了,就把剩下的这只小猫给你。附近的宠物店听说以后,马上来买走了所有小猫的一半和半只。” “半只?”“是啊,然后,邻居家的老奶奶无论如何都要,所以就把剩下的一半和另外半只给了她。这就是只剩下1只小猫的原因。那么你想想看,一共生了几只小猫呢?
4、被虫子吃掉的算式
一只爱吃墨水的虫子把下图的算式中的数字全部吃掉了。当然,没有数字的部分它没有吃(因为没有墨水)。
那么,请问原来的算式是什么样子的呢?
5、巧动火柴
用16根火柴摆成5个正方形。请移动2根火柴,
使
正形变成4。
6、折过来的角
把正三角形的纸如图那样折过来时,角?的度数是多少度?
7、星形角之和
求星形尖端的角度之和。
8、啊!双胞胎?
丈夫临死前,给有身孕的妻子留下遗言说,生的是男孩就给他财产的 2/3 、如果生的是女孩就给他财产的 2/5 、剩下的给妻子。
结果,生出来的是孪生兄妹——双胞胎。这可难坏了妻子,3个人怎么分财产好呢?
9、赠送和降价哪个更好?
1罐100元的咖啡,“买5罐送1罐”和“买5罐便宜20%”这两种促销方法哪一种好呢?还是两种方法一样好?
10、折成15度
用折纸做成45度很简单是吧。那么,请折成15度,你会吗?
高中数学教案大全(精选篇4)
教学目标
(1)了解算法的含义,体会算法思想。
(2)会用自然语言和数学语言描述简单具体问题的算法;
(3)学习有条理地、清晰地表达解决问题的步骤,培养逻辑思维能力与表达能力。
教学重难点
重点:算法的含义、解二元一次方程组的算法设计。
难点:把自然语言转化为算法语言。
情境导入
电影《神枪手》中描述的凌靖是一个天生的狙击手,他百发百中,最难打的位置对他来说也是轻而易举,是香港警察狙击手队伍的第一神枪手、作为一名狙击手,要想成功地完成一次狙击任务,一般要按步骤完成以下几步:
第一步:观察、等待目标出现(用望远镜或瞄准镜);
第二步:瞄准目标;
第三步:计算(或估测)风速、距离、空气湿度、空气密度;
第四步:根据第三步的结果修正弹着点;
第五步:开枪;
第六步:迅速转移(或隐蔽)
以上这种完成狙击任务的方法、步骤在数学上我们叫算法。
课堂探究
预习提升
1、定义:算法可以理解为由基本运算及规定的运算顺序所构成的完整的解题步骤,或者看成按照要求设计好的有限的确切的计算序列,并且这样的步骤或序列能够解决一类问题。
2、描述方式
自然语言、数学语言、形式语言(算法语言)、框图。
3、算法的要求
(1)写出的算法,必须能解决一类问题,且能重复使用;
(2)算法过程要能一步一步执行,每一步执行的操作,必须确切,不能含混不清,而且经过有限步后能得出结果。
4、算法的特征
(1)有限性:一个算法应包括有限的操作步骤,能在执行有穷的操作步骤之后结束。
(2)确定性:算法的计算规则及相应的计算步骤必须是唯一确定的。
(3)可行性:算法中的每一个步骤都是可以在有限的时间内完成的基本操作,并能得到确定的结果。
(4)顺序性:算法从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,后一步是前一步的后续,且除了最后一步外,每一个步骤只有一个确定的后续。
(5)不唯一性:解决同一问题的算法可以是不唯一的
课堂典例讲练
命题方向1对算法意义的理解
例1、下列叙述中,
①植树需要运苗、挖坑、栽苗、浇水这些步骤;
②按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…99+1=100;
③从青岛乘动车到济南,再从济南乘飞机到伦敦观看奥运会开幕式;
④3x>x+1;
⑤求所有能被3整除的正数,即3,6,9,12。
能称为算法的个数为( )
A、2
B、3
C、4
D、5
【解析】根据算法的含义和特征:①②③都是算法;④⑤不是算法、其中④,3x>x+1不是一个明确的步骤,不符合明确性;⑤的步骤是无穷的,与算法的有限性矛盾。
【答案】B
[规律总结]
1、正确理解算法的概念及其特点是解决问题的关键、
2、针对判断语句是否是算法的问题,要看它的步骤是否是明确的和有效的,而且能在有限步骤之内解决这一问题、
【变式训练】下列对算法的理解不正确的是________
①一个算法应包含有限的步骤,而不能是无限的
②算法可以理解为由基本运算及规定的运算顺序构成的完整的解题步骤
③算法中的每一步都应当有效地执行,并得到确定的结果
④一个问题只能设计出一个算法
【解析】由算法的有限性指包含的步骤是有限的故①正确;
由算法的明确性是指每一步都是确定的故②正确;
由算法的每一步都是确定的,且每一步都应有确定的结果故③正确;
由对于同一个问题可以有不同的算法故④不正确。
【答案】④
命题方向2解方程(组)的算法
例2、给出求解方程组的一个算法。
[思路分析]解线性方程组的常用方法是加减消元法和代入消元法,这两种方法没有本质的差别,为了适用于解一般的线性方程组,以便于在计算机上实现,我们用高斯消元法(即先将方程组化为一个三角形方程组,再通过回代方程求出方程组的解)解线性方程组、
[规范解答]方法一:算法如下:
第一步,①×(-2)+②,得(-2+5)y=-14+11
即方程组可化为
第二步,解方程③,可得y=-1,④
第三步,将④代入①,可得2x-1=7,x=4
第四步,输出4,-1
方法二:算法如下:
第一步,由①式可以得到y=7-2x,⑤
第二步,把y=7-2x代入②,得x=4
第三步,把x=4代入⑤,得y=-1
第四步,输出4,-1
[规律总结]1、本题用了2种方法求解,对于问题的求解过程,我们既要强调对“通法、通解”的理解,又要强调对所学知识的灵活运用。
2、设计算法时,经常遇到解方程(组)的问题,一般是按照数学上解方程(组)的方法进行设计,但应注意全面考虑方程解的情况,即先确定方程(组)是否有解,有解时有几个解,然后根据求解步骤设计算法步骤。
【变式训练】
【解】算法如下:S1,①+2×②得5x=1;③
S2,解③得x=;
S3,②-①×2得5y=3;④
S4,解④得y=;
命题方向3筛选问题的算法设计
例3、设计一个算法,对任意3个整数a、b、c,求出其中的最小值、
[思路分析]比较a,b比较m与c―→最小数
[规范解答]算法步骤如下:
1、比较a与b的大小,若a
2、比较m与c的大小,若m
[规律总结]求最小(大)数就是从中筛选出最小(大)的一个,筛选过程中的每一步都是比较两个数的大小,保证了筛选的可行性,这种方法可以推广到从多个不同数中筛选出满足要求的一个。
【变式训练】在下列数字序列中,写出搜索89的算法:
21,3,0,9,15,72,89,91,93
[解析]1、先找到序列中的第一个数m,m=21;
2、将m与89比较,是否相等,如果相等,则搜索到89;
3、如果m与89不相等,则往下执行;
4、继续将序列中的其他数赋给m,重复第2步,直到搜索到89。
命题方向4非数值性问题的算法
例4、一个人带三只狼和三只羚羊过河,只有一条船,同船可以容一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量,狼就会吃掉羚羊。
(1)设计安全渡河的算法;
(2)思考每一步算法所遵循的共同原则是什么?
高中数学教案大全(精选篇5)
内容分析:
1、 集合是中学数学的一个重要的基本概念
在小学数学中,就渗透了集合的初步概念,到了初中,更进一步应用集合的语言表述一些问题。例如,在代数中用到的有数集、解集等;在几何中用到的有点集。至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具。这些可以帮助学生认识学习本章的意义,也是本章学习的基础。
把集合的初步知识与简易逻辑知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础
例如,下一章讲函数的概念与性质,就离不开集合与逻辑。
本节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明
然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子。
这节课主要学习全章的引言和集合的基本概念
学习引言是引发学生的学习兴趣,使学生认识学习本章的意义
本节课的教学重点是集合的基本概念。
集合是集合论中的原始的、不定义的概念
在开始接触集合的概念时,主要还是通过实例,对概念有一个初步认识
教科书给出的“一般地,某些指定的对象集在一起就成为一个集合,也简称集
”这句话,只是对集合概念的描述性说明。
教学过程:
一、复习引入:
1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;
2.教材中的章头引言;
3.集合论的创始人——康托尔(德国数学家)(见附录);
4.“物以类聚”,“人以群分”;
5.教材中例子(P4)。
二、讲解新课:
阅读教材第一部分,问题如下:
(1)有那些概念?是如何定义的?
(2)有那些符号?是如何表示的?
(3)集合中元素的特性是什么?
(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.
定义:一般地,某些指定的对象集在一起就成为一个集合.
1、集合的概念
(1)集合:某些指定的对象集在一起就形成一个集合(简称集)
(2)元素:集合中每个对象叫做这个集合的元素
2、常用数集及记法
(1)非负整数集(自然数集):全体非负整数的集合,记作N,N={0,1,2,…}
(2)正整数集:非负整数集内排除0的集,记作N__或N+,N__={1,2,3,…}
(3)整数集:全体整数的集合,记作Z ,Z={0,±1,±2,…}
(4)有理数集:全体有理数的集合,记作Q,Q={整数与分数}
(5)实数集:全体实数的集合,记作R,R={数轴上所有点所对应的数}
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0
(2)非负整数集内排除0的集,记作N__或N+
Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z__
3、元素对于集合的隶属关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作aA
4、集合中元素的特性
(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可
(2)互异性:集合中的元素没有重复
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)
5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……
元素通常用小写的拉丁字母表示,如a、b、c、p、q……
⑵“∈”的开口方向,不能把a∈A颠倒过来写。
高中数学教案大全(精选篇6)
各位评委、各位专家,大家好!今天,我说课的内容是人民教育出版社全日制普通高级中学教科书(必修)《数学》第一章第五节“一元二次不等式解法”。
下面从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计、效果评价六方面进行说课。
一、教材分析
(一)教材的地位和作用
“一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。
(二)教学内容
本节内容分2课时学习。本课时通过二次函数的图象探索一元二次不等式的解集。通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。
二、教学目标分析
根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为:
知识目标——理解“三个二次”的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。
能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。
情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。
三、重难点分析
一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。
要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。
四、教法与学法分析
(一)学法指导
教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。
(二)教法分析
本节课设计的指导思想是:现代认知心理学——建构主义学习理论。
建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。
本节课采用“诱思引探教学法”。把问题作为出发点,指导学生“画、看、说、用”。较好地探求一元二次不等式的解法。
五、课堂设计
本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。
(一)创设情景,引出“三个一次”的关系
本节课开始,先让学生解一元二次方程x2-x-6=0,如果我把“=”改成则变成一元二次不等式x2-x-60让学生解,学生肯定感到很突然。但是“思维往往是从惊奇和疑问开始”,这样直奔主题,目的在于构造悬念,激活学生的思维兴趣。
为此,我设计了以下几个问题:
1、请同学们解以下方程和不等式:
①2x-7=0;②2x-70;③2x-70
学生回答,我板书。
2、我指出:2x-70和2x-70的解实际上只需利用不等式基本性质就容易得到。
3、接着我提出:我们能否利用不等式的基本性质来解一元二次不等式呢?学生可能感到很困惑。
4、为此,我引入一次函数y=2x-7,借助动画从图象上直观认识方程和不等式的解,得出以下三组重要关系:
①2x-7=0的解恰是函数y=2x-7的图象与x轴
交点的横坐标。
②2x-70的解集正是函数y=2x-7的图象
在x轴的上方的点的横坐标的集合。
③2x-70的解集正是函数y=2x-7的图象
在x轴的下方的点的横坐标的集合。
三组关系的得出,实际上让学生找到了利用“一次函数的图象”来解一元一次方程和一元一次不等式的方法。让学生看到了解决一元二次不等式的希望,大大激发了学生解决新问题的兴趣。此时,学生很自然联想到利用函数y=x2-x-6的图象来求不等式x2-x-60的解集。
(二)比旧悟新,引出“三个二次”的关系
为此我引导学生作出函数y=x2-x-6的图象,按照“看一看 说一说 问一问”的思路进行探究。
看函数y=x2-x-6的图象并说出:
①方程x2-x-6=0的解是
x=-2或x=3 ;
②不等式x2-x-60的解集是
{x|x-2,或x3};
③不等式x2-x-60的解集是
{x|-23}。
此时,学生已经冲出了困惑,找到了利用二次函数的图象来解一元二次不等式的方法。
学生沉浸在成功的喜悦中,不妨趁热打铁问一问:如果把函数y=x2-x-6变为y=ax2+bx+c(a0),那么图象与x轴的位置关系又怎样呢?(学生回答:△0时,图象与x轴有两个交点;△=0时,图象与x轴只有一个交点;△0时,图象与x辆没有交点。)请同学们讨论:ax2+bx+c0与ax2+bx+c0的解集与函数y=ax2+bx+c的图象有怎样的关系?
(三)归纳提炼,得出“三个二次”的关系
1、引导学生根据图象与x轴的相对位置关系,写出相关不等式的解集。
2、此时提出:若a0时,怎样求解不等式ax2+bx+c0及ax2+bx+c0?(经讨论之后,有的学生得出:将二次项系数由负化正,转化为上述模式求解,教师应予以强调;也有的学生提出画出相应的二次函数图象,根据图象写出解集,教师应给予肯定。)
(四)应用新知,熟练掌握一元二次不等式的解集
借助二次函数的图象,得到一元二次不等式的解集,学生形成了感性认识,为巩固所学知识,我们一起来完成以下例题:
例1、解不等式2x2-3x-20
解:因为Δ0,方程2x2-3x-2=0的解是
x1= ,x2=2
所以,不等式的解集是
{ x| x ,或x2}
例1的解决达到了两个目的:一是巩固了一元二次不等式解集的应用;二是规范了一元二次不等式的解题格式。
下面我们接着学习课本例2。
例2 解不等式-3x2+6x2
课本例2的出现恰当好处,一方面突出了“对于二次项系数是负数(即a0)的一元二次不等式,可以先把二次项系数化为正数,再求解”;另一方面,学生对此例的解答极易出现写错解集(如出现“或”与“且”的错误)。
通过例1、例2的解决,学生与我一起总结了解一元二次不等式的一般步骤:一化正—二算△—三求根—四写解集。
例3 解不等式4x2-4x+10
例4 解不等式-x2+2x-30
分别突出了“△=0”、“△0”对不等式解集的影响。这两例由学生练习,教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予热情表扬。
4道例题,具有典型性、层次性和学生的可接受性。为了避免学生学后“一团乱麻”、“一盘散沙”的局面,我和学生一起总结。
(五)总结
解一元二次不等式的“四部曲”:
(1)把二次项的系数化为正数
(2)计算判别式Δ
(3)解对应的一元二次方程
(4)根据一元二次方程的根,结合图像(或口诀),写出不等式的解集。概括为:一化正→二算Δ→三求根→四写解集
(六)作业布置
为了使所有学生巩固所学知识,我布置了“必做题”;又为学有余力者留有自由发展的空间,我布置了“探究题”。
(1)必做题:习题1.5的1、3题
(2)探究题:①若a、b不同时为零,记ax2+bx+c=0的解集为P,ax2+bx+c0的解集为M,ax2+bx+c0的解集为N,那么P∪M∪N=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求实数k的取值范围。
(七)板书设计
一元二次不等式解法(1)
五、教学效果评价
本节课立足课本,着力挖掘,设计合理,层次分明。以“三个一次关系→三个二次关系→一元二次不等式解法”为主线,以“从形到数,从具体到抽象,从特殊到一般”为灵魂,以“画、看、说、用”为特色,把握重点,突破难点。在教学思想上既注重知识形成过程的教学,还特别突出学生学习方法的指导,探究能力的训练,创新精神的培养,引导学生发现数学的美,体验求知的乐趣。
高中数学教案大全(精选篇7)
教学目标
1、知识与技能
(1)了解周期现象在现实中广泛存在;(2)感受周期现象对实际工作的意义;(3)理解周期函数的概念;(4)能熟练地判断简单的实际问题的周期;(5)能利用周期函数定义进行简单运用。
2、过程与方法
通过创设情境:单摆运动、时钟的圆周运动、潮汐、波浪、四季变化等,让学生感知周期现象;从数学的角度分析这种现象,就可以得到周期函数的定义;根据周期性的定义,再在实践中加以应用。
3、情感态度与价值观
通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物。
教学重难点
重点:感受周期现象的存在,会判断是否为周期现象。
难点:周期函数概念的理解,以及简单的应用。
教学工具
投影仪
教学过程
【创设情境,揭示课题】
同学们:我们生活在海南岛非常幸福,可以经常看到大海,陶冶我们的情操。众所周知,海水会发生潮汐现象,大约在每一昼夜的时间里,潮水会涨落两次,这种现象就是我们今天要学到的周期现象。再比如,[取出一个钟表,实际操作]我们发现钟表上的时针、分针和秒针每经过一周就会重复,这也是一种周期现象。所以,我们这节课要研究的主要内容就是周期现象与周期函数。(板书课题)
【探究新知】
1、我们已经知道,潮汐、钟表都是一种周期现象,请同学们观察钱塘江潮的图片(投影图片),注意波浪是怎样变化的?可见,波浪每隔一段时间会重复出现,这也是一种周期现象。请你举出生活中存在周期现象的例子。(单摆运动、四季变化等)
(板书:一、我们生活中的周期现象)
2、那么我们怎样从数学的角度研究周期现象呢?教师引导学生自主学习课本P3——P4的相关内容,并思考回答下列问题:
①如何理解“散点图”?
②图1—1中横坐标和纵坐标分别表示什么?
③如何理解图1—1中的“H/m”和“t/h”?
④对于周期函数的定义,你的理解是怎样?
以上问题都由学生来回答,教师加以点拨并总结:周期函数定义的理解要掌握三个条件,即存在不为0的常数T;x必须是定义域内的任意值;f(x+T)=f(x)。
(板书:二、周期函数的概念)
3、[展示投影]练习:
(1)已知函数f(x)满足对定义域内的任意x,均存在非零常数T,使得f(x+T)=f(x)。
求f(x+2T),f(x+3T)
略解:f(x+2T)=f[(x+T)+T]=f(x+T)=f(x)
f(x+3T)=f[(x+2T)+T]=f(x+2T)=f(x)
本题小结,由学生完成,总结出“周期函数的周期有无数个”,教师指出一般情况下,为避免引起混淆,特指最小正周期。
(2)已知函数f(x)是R上的周期为5的周期函数,且f(1)=20__,求f(11)
略解:f(11)=f(6+5)=f(6)=f(1+5)=f(1)=20__
(3)已知奇函数f(x)是R上的函数,且f(1)=2,f(x+3)=f(x),求f(8)
略解:f(8)=f(2+2×3)=f(2)=f(—1+3)=f(—1)=—f(1)=—2
【巩固深化,发展思维】
1、请同学们先自主学习课本P4倒数第五行——P5倒数第四行,然后各个学习小组之间展开合作交流。
2、例题讲评
例1、地球围绕着太阳转,地球到太阳的距离y是时间t的函数吗?如果是,这个函数
y=f(t)是不是周期函数?
例2、图1—4(见课本)是钟摆的示意图,摆心A到铅垂线MN的距离y是时间t的函数,y=g(t)。根据钟摆的知识,容易说明g(t+T)=g(t),其中T为钟摆摆动一周(往返一次)所需的时间,函数y=g(t)是周期函数。若以钟摆偏离铅垂线MN的角θ的度数为变量,根据物理知识,摆心A到铅垂线MN的距离y也是θ的周期函数。
例3、图1—5(见课本)是水车的示意图,水车上A点到水面的距离y是时间t的函数。假设水车5min转一圈,那么y的值每经过5min就会重复出现,因此,该函数是周期函数。
3、小组课堂作业
(1)课本P6的思考与交流
(2)(回答)今天是星期三那么7k(k∈Z)天后的那一天是星期几?7k(k∈Z)天前的那一天是星期几?100天后的那一天是星期几?
五、归纳整理,整体认识
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
六、布置作业
1、作业:习题1、1第1,2,3题、
2、多观察一些日常生活中的周期现象的例子,进一步理解它的特点、
课后小结
归纳整理,整体认识
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
课后习题
作业
1、作业:习题1、1第1,2,3题、
2、多观察一些日常生活中的周期现象的例子,进一步理解它的特点、
板书
高中数学教案大全(精选篇8)
1.课题
填写课题名称(高中代数类课题)
2.教学目标
(1)知识与技能:
通过本节课的学习,掌握......知识,提高学生解决实际问题的能力;
(2)过程与方法:
通过......(讨论、发现、探究),提高......(分析、归纳、比较和概括)的能力;
(3)情感态度与价值观:
通过本节课的学习,增强学生的学习兴趣,将数学应用到实际生活中,增加学生数学学习的乐趣。
3.教学重难点
(1)教学重点:本节课的知识重点
(2)教学难点:易错点、难以理解的知识点
4.教学方法(一般从中选择3个就可以了)
(1)讨论法
(2)情景教学法
(3)问答法
(4)发现法
(5)讲授法
5.教学过程
(1)导入
简单叙述导入课题的方式和方法(例:复习、类比、情境导出本节课的课题)
(2)新授课程(一般分为三个小步骤)
①简单讲解本节课基础知识点(例:奇函数的定义)。
②归纳总结该课题中的重点知识内容,尤其对该注意的一些情况设置易错点,进行强调。可以设计分组讨论环节(分组判断几组函数图像是否为奇函数,并归纳奇函数图像的特点。设置定义域不关于原点对称的函数是否为奇函数的易错点)。
③拓展延伸,将所学知识拓展延伸到实际题目中,去解决实际生活中的问题。
(在新授课里面一定要表下出讲课的大体流程,但是不必太过详细。)
(3)课堂小结
教师提问,学生回答本节课的收获。
(4)作业提高
布置作业(尽量与实际生活相联系,有所创新)。
6.教学板书
2.高中数学教案格式
一.课题(说明本课名称)
二.教学目的(或称教学要求,或称教学目标,说明本课所要完成的教学任务)
三.课型(说明属新授课,还是复习课)
四.课时(说明属第几课时)
五.教学重点(说明本课所必须解决的关键性问题)
六.教学难点(说明本课的学习时易产生困难和障碍的知识传授与能力培养点)
七.教学方法要根据学生实际,注重引导自学,注重启发思维
八.教学过程(或称课堂结构,说明教学进行的内容、方法步骤)
九.作业处理(说明如何布置书面或口头作业)
十.板书设计(说明上课时准备写在黑板上的内容)
十一.教具(或称教具准备,说明辅助教学手段使用的工具)
十二.教学反思:(教者对该堂课教后的感受及学生的收获、改进方法)
3.高中数学教案范文
【教学目标】
1.知识与技能
(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:
(2)账务等差数列的通项公式及其推导过程:
(3)会应用等差数列通项公式解决简单问题。
2.过程与方法
在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。
3.情感、态度与价值观
通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。
【教学重点】
①等差数列的概念;
②等差数列的通项公式
【教学难点】
①理解等差数列“等差”的特点及通项公式的含义;
②等差数列的通项公式的推导过程.
【学情分析】
我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。
【设计思路】
1、教法
①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.
②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.
③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.
2、学法
引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.
【教学过程】
一、创设情境,引入新课
1、从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?
2、水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?
3、我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?
教师:以上三个问题中的数蕴涵着三列数.
学生:
①0,5,10,15,20,25,….
②18,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.
二、观察归纳,形成定义
①0,5,10,15,20,25,….
②18,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
思考1上述数列有什么共同特点?
思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?
思考3你能将上述的文字语言转换成数学符号语言吗?
教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.
学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.
教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.
(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)
三、举一反三,巩固定义
1、判定下列数列是否为等差数列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.
注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0.
(设计意图:强化学生对等差数列“等差”特征的理解和应用).
2、思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?
(设计意图:强化等差数列的证明定义法)
四、利用定义,导出通项
1、已知等差数列:8,5,2,…,求第200项?
2、已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?
教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.
(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)
五、应用通项,解决问题
1、判断100是不是等差数列2,9,16,…的项?如果是,是第几项?
2、在等差数列{an}中,已知a5=10,a12=31,求a1,d和an.
3、求等差数列3,7,11,…的第4项和第10项
教师:给出问题,让学生自己操练,教师巡视学生答题情况.
学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式
(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)
六、反馈练习:教材13页练习1
七、归纳总结:
1、一个定义:
等差数列的定义及定义表达式
2、一个公式:
等差数列的通项公式
3、二个应用:
定义和通项公式的应用
教师:让学生思考整理,找几个代表发言,最后教师给出补充
(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)
【设计反思】
本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.
高中数学教案大全(精选篇9)
教学目标
(1)使学生正确理解组合的意义,正确区分排列、组合问题;
(2)使学生掌握组合数的计算公式;
(3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;
教学重点难点
重点是组合的定义、组合数及组合数的公式;
难点是解组合的应用题.
教学过程设计
(-)导入新课
(教师活动)提出下列思考问题,打出字幕.
[字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?
(学生活动)讨论并回答.
答案提示:(1)排列;(2)组合.
[评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题.这节课着重研究组合问题.
设计意图:组合与排列所研究的问题几乎是平行的.上面设计的问题目的是从排列知识中发现并提出新的问题.
(二)新课讲授
[提出问题 创设情境]
(教师活动)指导学生带着问题阅读课文.
[字幕]1.排列的定义是什么?
2.举例说明一个组合是什么?
3.一个组合与一个排列有何区别?
(学生活动)阅读回答.
(教师活动)对照课文,逐一评析.
设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境.
【归纳概括 建立新知】
(教师活动)承接上述问题的回答,展示下面知识.
[字幕]模型:从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合.如前面思考题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合.
组合数:从 个不同元素中取出 个元素的所有组合的个数,称之,用符号 表示,如从6个元素中取出2个元素的组合数为 .
[评述]区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题.
(学生活动)倾听、思索、记录.
(教师活动)提出思考问题.
[投影] 与 的关系如何?
(师生活动)共同探讨.求从 个不同元素中取出 个元素的排列数 ,可分为以下两步:
第1步,先求出从这 个不同元素中取出 个元素的组合数为 ;
第2步,求每一个组合中 个元素的全排列数为 .
根据分步计数原理,得到
[字幕]公式1:
公式2:
(学生活动)验算 ,即一条铁路上6个火车站有15种不同的票价的普通客车票.
设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去.
(三)小结
(师生活动)共同小结.
本节主要内容有
1.组合概念.
2.组合数计算的两个公式.
(四)布置作业
1.课本作业:习题10 3第1(1)、(4),3题.
2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中,男、女同学各有多少人?
3.研究性题:
在 的 边上除顶点 外有 5个点,在 边上有 4个点,由这些点(包括 )能组成多少个四边形?能组成多少个三角形?
(五)课后点评
在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力.
作业参考答案
2.解;设有男同学 人,则有女同学 人,依题意有 ,由此解得 或 或2.即男同学有5人或6人,女同学相应为3人或2人.
3.能组成 (注意不能用 点为顶点)个四边形, 个三角形.
探究活动
同室四人各写一张贺年卡,先集中起来,然后每人从中拿一张别人送出的贺年卡,那么四张不同的分配万式可有多少种?
解 设四人分别为甲、乙、丙、丁,可从多种角度来解.
解法一 可将拿贺卡的情况,按甲分别拿乙、丙、丁制作的贺卡的情形分为三类,即:
甲拿乙制作的贺卡时,则贺卡有3种分配方法.
甲拿丙制作的贺卡时,则贺卡有3种分配方法.
甲拿丁制作的贺卡时,则贺卡有3种分配方法.
由加法原理得,贺卡分配方法有3+3+3=9种.
解法二 可从利用排列数和组合数公式角度来考虑.这时还存在正向与逆向两种思考途径.
正向思考,即从满足题设条件出发,分步完成分配.先可由甲从乙、丙、丁制作的贺卡中选取1张,有 种取法,剩下的乙、丙、丁中所制作贺卡被甲取走后可在剩下的3张贺卡中选取1张,也有 种,最后剩下2人可选取的贺卡即是这2人所制作的贺卡,其取法只有互取对方制作贺卡1种取法.根据乘法原理,贺卡的分配方法有 (种).
逆向思考,即从4人取4张不同贺卡的所有取法中排除不满足题设条件的取法.不满足题设条件的取法为,其中只有1人取自己制作的贺卡,其中有2人取自己制作的贺卡,其中有3人取自己制作的贺卡(此时即为4人均拿自己制作的贺卡).其取法分别为 1.故符合题设要求的取法共有 (种).
高中数学教案大全(精选篇10)
教学目标
1.了解映射的概念,象与原象的概念,和一一映射的概念.
(1)明确映射是特殊的对应即由集合 ,集合 和对应法则f三者构成的一个整体,知道映射的特殊之处在于必须是多对一和一对一的对应;
(2)能准确使用数学符号表示映射, 把握映射与一一映射的区别;
(3)会求给定映射的指定元素的象与原象,了解求象与原象的方法.
2.在概念形成过程中,培养学生的观察,比较和归纳的能力.
3.通过映射概念的学习,逐步提高学生对知识的探究能力.
教学建议
教材分析
(1)知识结构
映射是一种特殊的对应,一一映射又是一种特殊的映射,而且函数也是特殊的映射,它们之间的关系可以通过下图表示出来,如图:
由此我们可从集合的包含关系中帮助我们把握相关概念间的区别与联系.
(2)重点,难点分析
本节的教学重点和难点是映射和一一映射概念的形成与认识.
①映射的概念是比较抽象的概念,它是在初中所学对应的基础上发展而来.教学中应特别强调对应集合 B中的唯一这点要求的理解;
映射是学生在初中所学的对应的基础上学习的,对应本身就是由三部分构成的整体,包括集 合A和集合B及对应法则f,由于法则的不同,对应可分为一对一,多对一,一对多和多对多. 其中只有一对一和多对一的能构成映射,由此可以看到映射必是“对B中之唯一”,而只要是对应就必须保证让A中之任一与B中元素相对应,所以满足一对一和多对一的对应就能体现出“任一对唯一”.
②而一一映射又在映射的基础上增加新的要求,决定了它在学习中是比较困难的.
教法建议
(1)在映射概念引入时,可先从学生熟悉的对应入手, 选择一些具体的生活例子,然后再举一些数学例子,分为一对多、多对一、多对一、一对一四种情况,让学生认真观察,比较,再引导学生发现其中一对一和多对一的对应是映射,逐步归纳概括出映射的基本特征,让学生的认识从感性认识到理性认识.
(2)在刚开始学习映射时,为了能让学生看清映射的构成,可以选择用图形表示映射,在集合的选择上可选择能用列举法表示的有限集,法则尽量用语言描述,这样的表示方法让学生可以比较直观的认识映射,而后再选择用抽象的数学符号表示映射,比如:
(3)对于学生层次较高的学校可以在给出定义后让学生根据自己的理解举出映射的例子,教师也给出一些映射的例子,让学生从中发现映射的特点,并用自己的语言描述出来,最后教师加以概括,再从中引出一一映射概念;对于学生层次较低的学校,则可以由教师给出一些例子让学生观察,教师引导学生发现映射的特点,一起概括.最后再让学生举例,并逐步增加要求向一一映射靠拢,引出一一映射概念.
(4)关于求象和原象的问题,应在计算的过程中总结方法,特别是求原象的方法是解方程或方程组,还可以通过方程组解的不同情况(有唯一解,无解或有无数解)加深对映射的认识.
(5)在教学方法上可以采用启发,讨论的形式,让学生在实例中去观察,比较,启发学生寻找共性,共同讨论映射的特点,共同举例,计算,最后进行小结,教师要起到点拨和深化的作用.
教学设计方案
2.1映射
教学目标(1)了解映射的概念,象与原象及一一映射的概念.
(2)在概念形成过程中,培养学生的观察,分析对比,归纳的能力.
(3)通过映射概念的学习,逐步提高学生的探究能力.
教学重点难点::映射概念的形成与认识.
教学用具:实物投影仪
教学方法:启发讨论式
教学过程:
一、引入
在初中,我们已经初步探讨了函数的定义并研究了几类简单的常见函数.在高中,将利用前面集合有关知识,利用映射的观点给出函数的定义.那么映射是什么呢?这就是我们今天要详细的概念.
二、新课
在前一章集合的初步知识中,我们学习了元素与集合及集合与集合之间的关系,而映射是重点研究两个集合的元素与元素之间的对应关系.这要先从我们熟悉的对应说起(用投影仪打出一些对应关系,共6个)
我们今天要研究的是一类特殊的对应,特殊在什么地方呢?
提问1:在这些对应中有哪些是让A中元素就对应B中唯一一个元素?
让学生仔细观察后由学生回答,对有争议的,或漏选,多选的可详细说明理由进行讨论.最后得出(1),(2),(5),(6)是符合条件的(用投影仪将这几个集中在一起)
提问2:能用自己的语言描述一下这几个对应的共性吗?
经过师生共同推敲,将映射的定义引出.(主体内容由学生完成,教师做必要的补充)
高中数学教案大全(精选篇11)
1.1.1任意角
教学目标
(一) 知识与技能目标
理解任意角的概念(包括正角、负角、零角) 与区间角的概念.
(二) 过程与能力目标
会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.
(三) 情感与态度目标
1. 提高学生的推理能力;
2.培养学生应用意识. 教学重点
任意角概念的理解;区间角的集合的书写. 教学难点
终边相同角的集合的表示;区间角的集合的书写.
教学过程
一、引入:
1.回顾角的定义
①角的第一种定义是有公共端点的两条射线组成的图形叫做角.
②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
二、新课:
1.角的有关概念:
①角的定义:
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
②角的名称:
③角的分类: A
正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角
负角:按顺时针方向旋转形成的角
④注意:
⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;
⑵零角的终边与始边重合,如果α是零角α =0°;
⑶角的概念经过推广后,已包括正角、负角和零角.
⑤练习:请说出角α、β、γ各是多少度?
2.象限角的概念:
①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.
例1.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.
⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;
答:分别为1、2、3、4、1、2象限角.
3.探究:教材P3面
终边相同的角的表示:
所有与角α终边相同的角,连同α在内,可构成一个集合S={ β | β = α +
k·360° ,
k∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k∈Z
⑵ α是任一角;
⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差
360°的整数倍;
⑷ 角α + k·720°与角α终边相同,但不能表示与角α终边相同的所有角.
例2.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.
⑴-120°;
⑵640°;
⑶-950°12’.
答:⑴240°,第三象限角;
⑵280°,第四象限角;
⑶129°48’,第二象限角;
例4.写出终边在y轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n·180°,n∈Z}.
例5.写出终边在y?x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.
4.课堂小结
①角的定义;
②角的分类:
正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角
负角:按顺时针方向旋转形成的角
③象限角;
④终边相同的角的表示法.
5.课后作业:
①阅读教材P2-P5;
②教材P5练习第1-5题;
③教材P.9习题1.1第1、2、3题 思考题:已知α角是第三象限角,则2α,
解:角属于第三象限,
? k·360°+180°<α<k·360°+270°(k∈Z)
因此,2k·360°+360°<2α<2k·360°+540°(k∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k∈Z)
故2α是第一、二象限或终边在y轴的非负半轴上的角. 又k·180°+90°<
各是第几象限角?
<k·180°+135°(k∈Z) .
<n·360°+135°(n∈Z) ,
当k为偶数时,令k=2n(n∈Z),则n·360°+90°<此时,
属于第二象限角
<n·360°+315°(n∈Z) ,
当k为奇数时,令k=2n+1 (n∈Z),则n·360°+270°<此时,
属于第四象限角
因此
属于第二或第四象限角.
1.1.2弧度制
(一)
教学目标
(二) 知识与技能目标
理解弧度的意义;了解角的集合与实数集R之间的可建立起一一对应的关系;熟记特殊角的弧度数.
(三) 过程与能力目标
能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题
(四) 情感与态度目标
通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点
弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点
“角度制”与“弧度制”的区别与联系.
教学过程
一、复习角度制:
初中所学的角度制是怎样规定角的度量的? 规定把周角的作为1度的角,用度做单位来度量角的制度叫做角度制.
二、新课:
1.引 入:
由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢?
2.定 义
我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad.在实际运算中,常常将rad单位省略.
3.思考:
(1)一定大小的圆心角?所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?
(2)引导学生完成P6的探究并归纳: 弧度制的性质:
①半圆所对的圆心角为
②整圆所对的圆心角为
③正角的弧度数是一个正数.
④负角的弧度数是一个负数.
⑤零角的弧度数是零.
⑥角α的弧度数的绝对值|α|= .
4.角度与弧度之间的转换:
①将角度化为弧度:
②将弧度化为角度:
5.常规写法:
① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数.
② 弧度与角度不能混用.
弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.
例1.把67°30’化成弧度.
例2.把? rad化成度.
例3.计算:
(1)sin4
(2)tan1.5.
8.课后作业:
①阅读教材P6 –P8;
②教材P9练习第1、2、3、6题;
③教材P10面7、8题及B2、3题.
高中数学教案大全(精选篇12)
一、教学目标
知识与技能:
理解任意角的概念(包括正角、负角、零角)与区间角的概念。
过程与方法:
会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。
情感态度与价值观:
1、提高学生的推理能力;
2、培养学生应用意识。
二、教学重点、难点:
教学重点:
任意角概念的理解;区间角的集合的书写。
教学难点:
终边相同角的集合的表示;区间角的集合的书写。
三、教学过程
(一)导入新课
1、回顾角的定义
①角的第一种定义是有公共端点的.两条射线组成的图形叫做角。
②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
(二)教学新课
1、角的有关概念:
①角的定义:
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
②角的名称:
注意:
⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;
⑵零角的终边与始边重合,如果α是零角α =0°;
⑶角的概念经过推广后,已包括正角、负角和零角。
⑤练习:请说出角α、β、γ各是多少度?
2、象限角的概念:
①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。
例1、如图⑴⑵中的角分别属于第几象限角?
高中数学教案大全(精选篇13)
一、教学目标
培养学生德、智、体等方面全面发展,使学生掌握从事社会主义现代化建设和进一步学习现代化科学技术所需要的数学知识和基本技能,强化学生的交流意识、合作意识、探究意识、重点培养学生创新精神和实践能力,并注重培养学生良好的学习习惯。
二、具体措施
1、同组数学教师加强同头研究,集中集体智慧,统一进度、统一考试、统一安排。
2、每长周星期三下午召开同组数学教师会,总结上一周教学得与失,布置下一长周教学任务。
3、每一章节小考一次,重点班、普通班分别命题,分层次检测,每章责任人见附表。
4、每个组员加强自身业务知识学习,每学期至少听课15节。
5、全组教师尽量采用多媒体教学,加大大课堂容量,加强课堂趣味性。
三、进度安排
说明:各班教学进度可根据本班实际情况适当调整!
高中数学教案大全(精选篇14)
准确把握《教学大纲》和《考试大纲》的各项基本要求,立足于基础知识和基本技能的教学,注重渗透数学思想和方法。针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的基础知识、基本技能和基本能力,着力于培养学生的创新精神,运用数学的意识和能力,奠定他们终身学习的基础。
教学建议:
1、深入钻研教材。以教材为核心,深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系,细致领悟教材改革的精髓,逐步明确教材对教学形式、内容和教学目标的影响。
2、准确把握新大纲。新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的基本要求,防止自觉不自觉地对教材加深加宽。同时,在整体上,要重视数学应用;重视数学思想方法的渗透。如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。
3、树立以学生为主体的教育观念。学生的发展是课程实施的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的氛围。
4、发挥教材的多种教学功能。用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。
5、加强课堂教学研究,科学设计教学方法。根据教材的内容和特征,实行启发式和讨论式教学。发扬教学民主,师生双方密切合作,交流互动,让学生感受、理解知识的产生和发展的过程。教研组要根据教材各章节的重难点制定教学专题,每人每学期指定一个专题,安排一至二次教研课。年级备课组每周举行一至二次教研活动,积累教学经验。
6、落实课外活动的内容。组织和加强数学兴趣小组的活动内容,加强对高层次学生的竞赛辅导,培养拔尖人才。
高中数学教案大全(精选篇15)
1、努力提高数学教学质量,使各班数学成绩达到学校规定的有关标准。
2、在数学学科教研教改中注重素质教育,让本组教师成为一支思想素质、业务素质过硬的数学教师队伍。
3、狠抓生本教育,加强数学课堂改革力度,积极开展各项教研活动,提高现代教学水平,切实优化数学课堂教学,充分发挥多媒体教学手段,促进教学质量的提高。
4、积极开展业务学习活动,在全组形成教研之风、互学之风、创新教育之风,共同提高教育教学水平。
5、加强集体备课。本学期,我们组将按照学校的教学计划如实开展教研活动,认真开展合作研练活动,按照“个人研究、同伴交流、达成共识、主备撰写、实践改进、反思提高”的步骤进行集体备课,听课后认真评课,及时反馈,如教学内容安排否恰当。难点是否突破,教法是否得当,教学手段的使用,教学思想、方法的渗透。是否符合素质教育的要求,老师的教学基本功等方面进行中肯,全面的评论、探讨。争取使我们的教学水平更上一个新的台阶。
(1)把握教材关:
认真学习新课程标准,钻研教材,把握各单元、各节的教学要求和重难点,熟悉教材的特点和编者的意图,订好所教学科的教学计划。计划要体现每单元重难点以及采取的措施,研究解决难点的方法。从而改进自己的教学方法和练习策略。对教材中存在的问题及教学中出现的问题要及时进行记录,及时进行反思,认真反思个人的教育教学心得。
(2)规范日常工作:
严格规范数学教学常规。每位教师要认真制定教学计划,认真备课、上课、布置和批改作业、辅导学生、组织数学学科的质量调查。学生作业的规范性要求,包括学生书写作业的规范和教师批阅作业的规范。
(3)教师角色的变化:
全组成员要积极实践生本教育,真正实现教师是学习的组织者、引导者,是学生的合作伙伴,不再是在“讲”的基础上“扶”着学生、“牵”着学生去掌握知识,而是要将知识“放”给学生,放心、放手地让学生自主学习。
高中数学教案大全(精选篇16)
我以前一直是在教文科班的数学,这学期对于我来说,面临着挑战,因为本学期我接手了两个理科班。以前我带的始终是文科班,对于文科班的学生的情况比较理解,但对于理科班来说,我不知道他们对学习会有怎样的想法与做法。针对这种情况,我制定了如下的高中数学教学计划:
一、指导思想
在学校、数学组的领导下,严格执行学校的各项教育教学制度和要求,认真完成各项任务,严格执行“三规”、“五严”。利用有限的时间,使学生在获得所必须的基本数学知识和技能的同时,在数学能力方面能有所提高,为学生今后的发展打下坚实的数学基础。
二、教学措施
1、以能力为中心,以基础为依托,调整学生的学习习惯,调动学生学习的积极性,让学生多动手、多动脑,培养学生的运算能力、逻辑思维能力、运用数学思想方法分析问题解决问题的能力。精讲多练,一般地,每一节课让学生练习20分钟左右,充分发挥学生的主体作用。
2、坚持每一个教学内容集体研究,充分发挥备课组集体的力量,精心备好每一节课,努力提高上课效率。调整教学方法,采用新的教学模式。
3、脚踏实地做好落实工作。当日内容,当日消化,加强每天、每月过关练习的检查与落实。坚持每周一周练,每章一章考。通过周练重点突破一些重点、难点,章考试一章的查漏补缺,章考后对一章的不足之处进行重点讲评。
4、周练与章考,切实把握试题的选取,切实把握高考的脉搏,注重基础知识的考查,注重能力的考查,注意思维的层次性(即解法的多样性),适时推出一些新题,加强应用题考察的力度。每一次考试试题坚持集体研究,努力提高考试的效率。
5、注重对所选例题和练习题的把握。
6、周密计划合理安排,现数学学科特点,注重知识能力的提高,提升综合解题能力,加强解题教学,使学生在解题探究中提高能力。
7、多从“贴近教材、贴近学生、贴近实际”角度,选择典型的数学 联系生活、生产、环境和科技方面的问题,对学生进行有计划、针对性强的训练,多给学生锻炼各种能力的机会,从而达到提升学生数学综合能力之目的不脱离基础知识来讲学生的能力,基础扎实的学生不一定能力强。教学中不断地将基础知识运用于数学问题的解决中,努力提高学生的学科综合能力。
三、对自己的要求——落实教学的各个环节
1、精心上好每一节课
备课时从实际出发,精心设计每一节课,备课组分工合作,利用集体智慧制作课件,充分应用现代化教育手段为教学服务,提高四十五分钟课堂效率。
2、严格控制测验,精心制作每一份复习资料和练习
教学中配备资料应要求学生按教学进度完成相应的习题,老师要给予检查和必要的讲评,老师要提前向学生指出不做的题,以免影响学生的学习。三类练习(大练习、训练、月考)试题的制作分工落实到每个人(备课组长出月考卷,其他教师出大练习、训练卷),并经组长严格把关方可使用。注重考试质量和试卷分析,定期组织备课组教师进行学情分析,发现问题,寻找对策,及时解决,确保学生的学习积极性不断提高。
3、做好作业批改和加强辅导工作
我们的工作对象是活生生的对象——学生,这里需要关心、帮助及鼓励。我们要对学生的学习情况做大量的细致工作,批改作业、辅导疑难、及时鼓励等,特别是对已经出现数学学习困难的学生,教我们的辅导更为重要。在教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,不仅要给他们解疑难,还要给他们鼓信心、调动自身的学习积极性,帮助他们树立良好的学习态度,积极主动地去投入学习,变“要我学”为“我要学”。