高中数学教案电子版下载
通过编写教案,教师可以明确教学目标、教学内容和教学计划,从而更好地组织教学,提高教学质量和效率。优秀的高中数学教案电子版下载是什么样的?下面给大家带来高中数学教案电子版下载,供大家参考。
高中数学教案电子版下载篇1
教学目标:
1、通过观察、猜测、操作等活动,找出最简单的事物的排列数和组合数。
2、经历探索简单事物排列与组合规律的过程。
3、培养学生有序地全面地思考问题的意识。
4、感受数学与生活的紧密联系,培养学生学习数学的兴趣和用数学方法解决问题的意识。
教学重点:经历探索简单事物排列与组合规律的过程。
教学难点:初步理解简单事物排列与组合的不同。
教具准备:乒乓球、衣服图片、纸箱、每组三张数字卡片、吹塑纸数字卡片。
一、情境导入,展开教学
今天,王老师要带大家去“数学广角”里做游戏,可是,我把游戏要用的材料都放在这个密码包里。你们想解开密码取出游戏材料吗?(想)我给大家提供解码的3个信息。
1、好,接下来老师提供解码的第一个信息:密码是一个两位数。(学生在两位数里猜)(你们猜的对不对呢?请听第二个解码信息)
2、下面,提供解码的第二个信息:密码是由2和7组成的(学生说出27和72)。能说说看你是怎么想的吗?
3、下面,提供解码的第三个信息:刚才说了密码可能是27也可能是72。其实这个密码和老师的年龄有关。哪个才是真正的密码是?(学生说出是27)到底是不是27呢?请看(教师出示密码)。真的是27,恭喜大家解码成功!
二、多种活动,体验新知
1、感知排列
师:请小朋友先到“数字宫”做个排数字游戏,好吗?这有两张数字卡片(1、2)(老师从密码包里拿出),你能摆出几个两位数?(用数字卡摆一摆)
生:我摆了两个不同的数字12和21。(教师板书)
师:同学们想得真好。我又请来了一位好朋友数字3,现在有三个数字1、2、3,让大家写两位数,你们不会了吧?(会)别吹牛!(真的会)好,下面大家分组合作,组长记录。看看你们能够写出几个不同的两位数,注意不要重复,如果你觉得直接写有困难的话可以借助手中的数字卡片摆一摆。好,开始。
学生活动教师巡视并参与学生活动。(学生所写的个数可能不一样,有多有少,找几份重复的或个数少的展示。)哪组同学来给大家汇报一下。(教师板书结果。)有没有需要补充的呀?
2、探讨排列方法。
有的小组摆出4个不同的两位数,有的小组摆出6个不同的两位数,有什么好的方法能保证既不重复,也不漏掉数呢?还请大家分组讨论。看一看哪组同学的方法最好!(小组讨论,分组交流,学生总结方法。)哪组同学来给大家汇报一下你们的想法?
方法1:我摆出12,然后再颠倒就是21,再摆23,颠倒后就是32,再摆13,颠倒后就是31,一共可以摆出6个两位数。
方法2:我先把数字1放在十位上,然后把数字2和3分别放在个位组成12和13;我再把数字2放在十位上,然后把数字1和3分别放在个位组成21和23;我再把数字3放在十位上,然后把数字1和2分别放在个位上组成31和32,一共摆出了6个两位数。3、老师和学生共同评议方法:让学生选择自己喜欢的方法再摆一摆,学生试着总结。(如果学生说不出方法2,老师就直接告诉学生)
3、感知组合。
①师:你们真是一群善于动脑的好孩子。来,咱们握握手,祝贺祝贺!加油!123
②提出问题:从大家刚才握手,老师想出了一个数学问题:三个小朋友,每两个人只能握一次手,一共要握几次手呢?想一想!
生1:6次!
生2:4次!
师:到底是几次呢?请小组长作裁判,小组内的三个同学,试一试,到底是几次?
③学生汇报表演。小组长指挥说明。哪组同学愿意给大家表演一下?他们握手,咱们一起来数吧!教师引导学生一起数握手的次数。(注意握过小朋友一边休息)
④师问:A和B握手了吗?B和A握手了吗?这算一次还是两次呀?
⑤小结:看来,两个人相互握手,只能算一次,和顺序无关。刚才排数,交换数的位置,就变成另一个数了,这和顺序有关。
三、反馈练习,加深理解
下面大家看这是什么呀?(老师从密码包里拿出一个乒乓球)(乒乓球)这个是我昨天专门买来的。定价5角。当时我的口袋里有1张5角的、2张2角,还有5个1角的硬币。(师出示所述人民币)大家想一想我有多少种方法付给老板钱呢?(老师引导学生有序的说出付钱的四种方法)
有了乒乓球,老师就可以教大家打乒乓球了。不过我要先考考大家。每两个人进行一场比赛,三个人要比几场?(指名答。)好的,大家真能干。下课老师就教你们的乒乓球好吗?(好)。
今天是几月几日?(12月1日)哦!快到元旦了。小明准备在数学广角举办的元旦晚会上露一手。来一个时装表演。他准备了4件衣服(教师贴出2件上衣和2件裤子),请你帮他设计一下,有几种穿法?谁来说一说?(指名答出四种穿法并演示)
大家感觉一下只有4种穿法,是不是有点少了呀?(是)小明也和大家想到一块去了。于是他又用自己的零花钱买了一条黑裤子(贴出)。大家再想一想现在一共有多少种穿法了呀?(6种)除了刚才的4种,还有哪2种,谁来说一说?(生答完后,老师再引导学生有序地回忆6种穿法)同学们真聪明。我在这里代表小明向大家说一声:谢谢了!(没关系)。对了。到时候我们一定要去看小明的精彩表演!好不好?(好)
四、游戏活动,拓展应用
1、老师看大家学得这么开心,我们来做个抽奖游戏,想参加吗?每个小朋友都有中奖的机会哦。
①教师出示4个号球:老师这这里有四个号球:2、5、7、8。
②什么样的号码能中奖呢?我给你们透露点信息:中奖号码就是从这4个数中选出的两个数组成的两位数。猜猜,什么号码可能中奖?这个号码可能中奖。再猜?你这个号码也可能中奖。看来,可能中奖的号码有很多个。有什么好办法肯定能中奖?(把你认为能中奖的号码都写出来吧)(把用这四个数能组成的所有两位数都写出来,教师巡视,有的孩子写出来8个两位数,她还在继续写,看来不止8个。你写得越多你中奖的可能就越大)
③写好了吗?大家推举一个人来摸奖吧。老师来当公证员行不行?学生先摸出一个球。中奖号码的最前面一个数出来了,是2,那中奖号码可能是?25、27、28。再摸一个球。中奖号码是?
④你中奖了吗?把你写出的这个数圈出来。同桌互相看看,如果你同位中奖了,请你给他画一面小红旗。
⑤出示所有结果:孩子们,你刚才一共写出了多少个两位数?用2、5、7、8能组成的两位数究竟有多少个呢?咱们用刚才先固定最前面一位数的办法把这些数都排出来吧!老师写,你们说,好吗?
2、老师给今天这节课表现最好的三位同学一张合影,请同学们想一想,三个人站成一行,一共有多少种不同的排法?(指名答,教师总结)
这种排法刚才有没有呀?我也糊涂了。怎样才能搞清楚呢?对了,我们也可以用刚才先固定最前面一位数的方法来排一排。(教师引导学生有顺序的排一排)这样有顺序的排一下,我们都清楚了。看来我们以后,不管在生活和学习中,做什么事情,想什么问题都要有顺序的思考,这样才能考虑全面。其实生活中有许多有趣的数学问题,不管有多难,只要大家肯动脑筋,就一定能解决。对不对?(对)
五、全课总结,升华情感
在数学广角中还有许多地方等着大家去游玩,由于时间关系,今天我们大家就玩到这里。今天你这节课最高兴的是什么事?
高中数学教案电子版下载篇2
各位老师你们好!今天我要为大家讲的课题是
首先,我对本节教材进行一些分析:
一、教材分析(说教材):
1.教材所处的地位和作用:
本节内容在全书和章节中的作用是:《__》是中数学教材第册第章第节内容。在此之前学生已学习了基础,这为过渡到本节的学习起着铺垫作用。本节内容是在中,占据的地位。以及为其他学科和今后的学习打下基础。
2.教育教学目标:
根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:
(1)知识目标:
(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析,收集处理信息,团结协作,语言表达能力以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力,
(3)情感目标:通过的教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。
3.重点,难点以及确定依据:
本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点
重点:通过突出重点
难点:通过突破难点
关键:
下面,为了讲清重难上点,使学生能达到本节课设定的目标,再从教法和学法上谈谈:
二、教学策略(说教法)
1.教学手段:
如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点:应着重采用的教学方法。
2.教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。
3.学情分析:(说学法)
我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的指导。
(1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学
生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散
(2)知识障碍上:知识掌握上,学生原有的知识,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍,知识学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。
(3)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力
最后我来具体谈谈这一堂课的教学过程:
4.教学程序及设想:
(1)由引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的沉思,期待录找理由和证明过程。在实际情况下学习可以使学生利用已有的知识与经验,同化和索引出当肖学习的新知识,这样获取知识,不但易于保持,而且易于迁移到陌生的问题情境中。
(2)由实例得出本课新的知识点
(3)讲解例题。在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。
(4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。
(5)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。
(6)变式延伸,进行重构,重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联,累积,加工,从而达到举一反三的效果。
(7)板书
(8)布置作业。针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,
教学程序:
课堂结构:复习提问,导入讲授课,课堂练习,巩固新课,布置作业等五部分
高中数学教案电子版下载篇3
2。2。1等差数列学案
一、预习问题:
1、等差数列的定义:一般地,如果一个数列从起,每一项与它的前一项的差等于同一个,那么这个数列就叫等差数列,这个常数叫做等差数列的,通常用字母表示。
2、等差中项:若三个数组成等差数列,那么A叫做与的,
即或。
3、等差数列的单调性:等差数列的公差时,数列为递增数列;时,数列为递减数列;时,数列为常数列;等差数列不可能是。
4、等差数列的通项公式:。
5、判断正误:
①1,2,3,4,5是等差数列;()
②1,1,2,3,4,5是等差数列;()
③数列6,4,2,0是公差为2的等差数列;()
④数列是公差为的等差数列;()
⑤数列是等差数列;()
⑥若,则成等差数列;()
⑦若,则数列成等差数列;()
⑧等差数列是相邻两项中后项与前项之差等于非零常数的数列;()
⑨等差数列的公差是该数列中任何相邻两项的差。()
6、思考:如何证明一个数列是等差数列。
二、实战操作:
例1、(1)求等差数列8,5,2,的第20项。
(2)是不是等差数列中的项?如果是,是第几项?
(3)已知数列的公差则
例2、已知数列的通项公式为,其中为常数,那么这个数列一定是等差数列吗?
例3、已知5个数成等差数列,它们的和为5,平方和为求这5个数。
高中数学教案电子版下载篇4
教学目标:
1.了解反函数的概念,弄清原函数与反函数的定义域和值域的关系.
2.会求一些简单函数的反函数.
3.在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识.
4.进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力.
教学重点:求反函数的方法.
教学难点:反函数的概念.
教学过程:
教学活动
设计意图一、创设情境,引入新课
1.复习提问
①函数的概念
②y=f(x)中各变量的意义
2.同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是时间t的函数;在t=中,时间t是位移S的函数.在这种情况下,我们说t=是函数S=vt的反函数.什么是反函数,如何求反函数,就是本节课学习的内容.
3.板书课题
由实际问题引入新课,激发了学生学习兴趣,展示了教学目标.这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性.
二、实例分析,组织探究
1.问题组一:
(用投影给出函数与;与()的图象)
(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称.是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算.同样,与()也互为逆运算.)
(2)由,已知y能否求x?
(3)是否是一个函数?它与有何关系?
(4)与有何联系?
2.问题组二:
(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?
(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?
(3)函数 ()的定义域与函数()的值域有什么关系?
3.渗透反函数的概念.
(教师点明这样的函数即互为反函数,然后师生共同探究其特点)
从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力.
通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础.
三、师生互动,归纳定义
1.(根据上述实例,教师与学生共同归纳出反函数的定义)
函数y=f(x)(x∈A) 中,设它的值域为 C.我们根据这个函数中x,y的关系,用 y 把 x 表示出来,得到 x = j (y) .如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量 y 的函数.这样的函数 x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数.记作: .考虑到"用 x表示自变量, y表示函数"的习惯,将中的x与y对调写成.
2.引导分析:
1)反函数也是函数;
2)对应法则为互逆运算;
3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;
4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;
5)函数y=f(x)与x=f(y)互为反函数;
6)要理解好符号f;
7)交换变量x、y的原因.
3.两次转换x、y的对应关系
(原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的.)
4.函数与其反函数的关系
函数y=f(x)
函数
定义域
A
C
值 域
C
A
四、应用解题,总结步骤
1.(投影例题)
【例1】求下列函数的反函数
(1)y=3x-1 (2)y=x 1
【例2】求函数的反函数.
(教师板书例题过程后,由学生总结求反函数步骤.)
2.总结求函数反函数的步骤:
1° 由y=f(x)反解出x=f(y).
2° 把x=f(y)中 x与y互换得.
3° 写出反函数的定义域.
(简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?
(2)的反函数是________.
(3)(x<0)的反函数是__________.
在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数.在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握.
通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解.
通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力.
题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进.并体现了对定义的反思理解.学生思考练习,师生共同分析纠正.
五、巩固强化,评价反馈
1.已知函数 y=f(x)存在反函数,求它的反函数 y =f( x)
(1)y=-2x 3(xR) (2)y=-(xR,且x)
( 3 ) y=(xR,且x)
2.已知函数f(x)=(xR,且x)存在反函数,求f(7)的值.
五、反思小结,再度设疑
本节课主要研究了反函数的定义,以及反函数的求解步骤.互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究.
(让学生谈一下本节课的学习体会,教师适时点拨)
进一步强化反函数的概念,并能正确求出反函数.反馈学生对知识的掌握情况,评价学生对学习目标的落实程度.具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性."问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂.
六、作业
习题2.4 第1题,第2题
进一步巩固所学的知识.
教学设计说明
"问题是数学的心脏".一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程.本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念.
反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号.由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念.为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成.另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用.通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维.使学生自然成为学习的主人。
高中数学教案电子版下载篇5
一、 知识梳理
1.三种抽样方法的联系与区别:
类别 共同点 不同点 相互联系 适用范围
简单随机抽样 都是等概率抽样 从总体中逐个抽取 总体中个体比较少
系统抽样 将总体均匀分成若干部分;按事先确定的规则在各部分抽取 在起始部分采用简单随机抽样 总体中个体比较多
分层抽样 将总体分成若干层,按个体个数的比例抽取 在各层抽样时采用简单随机抽样或系统抽样 总体中个体有明显差异
(1)从含有N个个体的总体中抽取n个个体的样本,每个个体被抽到的概率为
(2)系统抽样的步骤: ①将总体中的个体随机编号;②将编号分段;③在第1段中用简单随机抽样确定起始的个体编号;④按照事先研究的规则抽取样本.
(3)分层抽样的步骤:①分层;②按比例确定每层抽取个体的个数;③各层抽样;④汇合成样本.
(4) 要懂得从图表中提取有用信息
如:在频率分布直方图中①小矩形的面积=组距 =频率②众数是矩形的中点的横坐标③中位数的左边与右边的直方图的面积相等,可以由此估计中位数的值
2.方差和标准差都是刻画数据波动大小的数字特征,一般地,设一组样本数据 , ,…, ,其平均数为 则方差 ,标准差
3.古典概型的概率公式:如果一次试验中可能出现的结果有 个,而且所有结果都是等可能的,如果事件 包含 个结果,那么事件 的概率P=
特别提醒:古典概型的两个共同特点:
○1 ,即试中有可能出现的基本事件只有有限个,即样本空间Ω中的元素个数是有限的;
○2 ,即每个基本事件出现的可能性相等。
4. 几何概型的概率公式: P(A)=
特别提醒:几何概型的特点:试验的结果是无限不可数的;○2每个结果出现的可能性相等。
二、夯实基础
(1)某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种情况,要从中抽取一个容量为20的样本.若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为____________.
(2)某赛季,甲、乙两名篮球运动员都参加了
11场比赛,他们所有比赛得分的情况用如图2所示的茎叶图表示,
则甲、乙两名运动员得分的中位数分别为( )
A.19、13 B.13、19 C.20、18 D.18、20
(3)统计某校1000名学生的数学会考成绩,
得到样本频率分布直方图如右图示,规定不低于60分为
及格,不低于80分为优秀,则及格人数是 ;优秀率为 。
(4)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:
9.4 8.4 9.4 9.9 9.6 9.4 9.7
去掉一个分和一个最低分后,所剩数据的平均值和方差分别为( )
A.9.4, 0.484 B.9.4, 0.016 C.9.5, 0.04 D.9.5, 0.016
(5)将一颗骰子先后抛掷2次,观察向上的点数,则以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=27的内部的概率________.
(6)在长为12cm的线段AB上任取一点M,并且以线段AM为边的正方形,则这正方形的面积介于36cm2与81cm2之间的概率为( )
三、高考链接
07、某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒; 第六组,成绩大于等于18秒且小于等于19秒.右图
是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为 ,成绩大于等于15秒且小于17秒的学生人数为 ,则从频率分布直方图中可分析出 和 分别为( )
08、从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( )
分数 5 4 3 2 1
人数 20 10 30 30 10
09、在区间 上随机取一个数x, 的值介于0到 之间的概率为( ).
08、现有8名奥运会志愿者,其中志愿者 通晓日语, 通晓俄语, 通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(Ⅰ)求 被选中的概率;(Ⅱ)求 和 不全被选中的概率.
高中数学教案电子版下载篇6
直线的方程
教学目标
(1)掌握由一点和斜率导出直线方程的方法,掌握直线方程的点斜式、两点式和直线方程的一般式,并能根据条件熟练地求出直线的方程.
(2)理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程.
(3)掌握直线方程各种形式之间的互化.
(4)通过直线方程一般式的教学培养学生全面、系统、周密地分析、讨论问题的能力.
(5)通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点.
(6)进一步理解直线方程的概念,理解直线斜率的意义和解析几何的思想方法.
教学建议
1.教材分析
(1)知识结构
由直线方程的概念和直线斜率的概念导出直线方程的点斜式;由直线方程的点斜式分别导出直线方程的斜截式和两点式;再由两点式导出截距式;最后都可以转化归结为直线的一般式;同时一般式也可以转化成特殊式.
(2)重点、难点分析
①本节的重点是直线方程的点斜式、两点式、一般式,以及根据具体条件求出直线的方程.
解析几何有两项根本性的任务:一个是求曲线的方程;另一个就是用方程研究曲线.本节内容就是求直线的方程,因此是非常重要的内容,它对以后学习用方程讨论直线起着直接的作用,同时也对曲线方程的学习起着重要的作用.
直线的点斜式方程是平面解析几何中所求出的第一个方程,是后面几种特殊形式的源头.学生对点斜式学习的效果将直接影响后继知识的学习.
②本节的难点是直线方程特殊形式的限制条件,直线方程的整体结构,直线与二元一次方程的关系证明.
2.教法建议
(1)教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显.教学中各部分知识之间过渡要自然流畅,不生硬.
(2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习“曲线方程”打下基础.
直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证.教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点
(3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解.
(4)教学中要使学生明白两个独立条件确定一条直线,如两个点、一个点和一个方向或其他两个独立条件.两点确定一条直线,这是学生很早就接触的几何公理,然而在解析几何,平面向量等理论中,直线或向量的方向是极其重要的要素,解析几何中刻画直线方向的量化形式就是斜率.因此,直线方程的两点式和点斜式在直线方程的几种形式中占有很重要的地位,而已知两点可以求得斜率,所以点斜式又可推出两点式(斜截式和截距式仅是它们的特例),因此点斜式最重要.教学中应突出点斜式、两点式和一般式三个教学高潮.
求直线方程需要两个独立的条件,要依不同的几何条件选用不同形式的方程.根据两个条件运用待定系数法和方程思想求直线方程.
(5)注意正确理解截距的概念,截距不是距离,截距是直线(也是曲线)与坐标轴交点的相应坐标,它是有向线段的数量,因而是一个实数;距离是线段的长度,是一个正实数(或非负实数).
(6)本节中有不少与函数、不等式、三角函数有关的问题,是函数、不等式、三角与直线的重要知识交汇点之一,教学中要适当选择一些有关的问题指导学生练习,培养学生的综合能力.
(7)直线方程的理论在其他学科和生产生活实际中有大量的应用.教学中注意联系实际和其它学科,教师要注意引导,增强学生用数学的意识和能力.
(8)本节不少内容可安排学生自学和讨论,还要适当增加练习,使学生能更好地掌握,而不是仅停留在观念上.
高中数学教案电子版下载篇7
各位同仁,各位专家:
我说课的课题是《任意角的三角函数》,内容取自苏教版高中实验教科书《数学》第四册第1。2节
先对教材进行分析
教学内容:任意角三角函数的定义、定义域,三角函数值的符号。
地位和作用:任意角的三角函数是本章教学内容的基本概念对三角内容的整体学习至关重要。同时它又为平面向量、解析几何等内容的学习作必要的准备,通过这部分内容的学习,又可以帮助学生更加深入理解函数这一基本概念。所以这个内容要认真探讨教材,精心设计过程。
教学重点:任意角三角函数的定义
教学难点:正确理解三角函数可以看作以实数为自变量的函数、初中用边长比值来定义转变为坐标系下用坐标比值定义的观念的转换以及坐标定义的合理性的理解;
学情分析:
学生已经掌握的内容,学生学习能力
1。初中学生已经学习了基本的锐角三角函数的定义,掌握了锐角三角函数的一些常见的知识和求法。
2。我们南山区经过多年的初中课改,学生已经具备较强的自学能力,多数同学对数学的学习有相当的兴趣和积极性。
3。在探究问题的能力,合作交流的意识等方面发展不够均衡,尚有待加强必须在老师一定的指导下才能进行
针对对教材内容重难点的和学生实际情况的分析我们制定教学目标如下
知识目标:
(1)任意角三角函数的定义;三角函数的定义域;三角函数值的符号,
能力目标:
(1)理解并掌握任意角的三角函数的定义;
(2)正确理解三角函数是以实数为自变量的函数;
(3)通过对定义域,三角函数值的符号的推导,提高学生分析探究解决问题的能力。
德育目标:
(1)学习转化的思想,(2)培养学生严谨治学、一丝不苟的科学精神;
针对学生实际情况为达到教学目标须精心设计教学方法
教法学法:温故知新,逐步拓展
(1)在复习初中锐角三角函数的定义的基础上一步一步扩展内容,发展新知识,形成新的概念;
(2)通过例题讲解分析,逐步引出新知识,完善三角定义
运用多媒体工具
(1)提高直观性增强趣味性。
教学过程分析
总体来说,由旧及新,由易及难,
逐步加强,逐步推进
先由初中的直角三角形中锐角三角函数的定义
过度到直角坐标系中锐角三角函数的定义
再发展到直角坐标系中任意角三角函数的定义
给定定义后通过应用定义又逐步发现新知识拓展完善定义。
具体教学过程安排
引入:复习提问:初中直角三角形中锐角的正弦余弦正切是怎样定义的?
由学生回答
SinA=对边/斜边=BC/AB
cosA=对边/斜边=AC/AB
tanA=对边/斜边=BC/AC
逐步拓展:在高中我们已经建立了直角坐标系,把“定义媒介”从直角三角形改为平面直角坐标系。
我们知道,随着角的概念的推广,研究角时多放在直角坐标系里,那么三角函数的定义能否也放到坐标系去研究呢?
引导学生发现B的坐标和边长的关系。进一步启发他们发现由于相似三角形的相似比导致OB上任一P点都可以代换B,把三角函数的定义发展到用终边上任一点的坐标来表示,从而锐角三角函数可以使用直角坐标系来定义,自然地,要想定义任意一个角三角函数,便考虑放在直角坐标中进行合理进行定义了
从而得到
知识点一:任意一个角的三角函数的定义
提醒学生思考:由于相似比相等,对于确定的角A,这三个比值的大小和P点在角的终边上的位置无关。
精心设计例题,引出新内容深化概念,完善定义
例1已知角A的终边经过P(2,—3),求角A的三个三角函数值
(此题由学生自己分析独立动手完成)
例题变式1,已知角A的大小是30度,由定义求角A的三个三角函数值
结合变式我们发现三个三角函数值的大小与角的大小有关,只会随角的大小而变化,符合当初函数的定义,而我们又一直称呼为三角函数,
提出问题:这三个新的定义确实问是函数吗?为什么?
从而引出函数极其定义域
由学生分析讨论,得出结论
知识点二:三个三角函数的定义域
同时教师强调:由于弧度制使角和实数建立了一一对应关系,所以三角函数是以实数为自变量的函数
例题变式2,已知角A的终边经过P(—2a,—3a)(a不为0),求角A的三个三角函数值
解答中需要对变量的正负即角所在象限进行讨论,让学生意识到三角函数值的正负与角所在象限有关,从而导出第三个知识点
知识点三:三角函数值的正负与角所在象限的关系
由学生推出结论,教师总结符号记忆方法,便于学生记忆
例题2:已知A在第二象限且sinA=0。2求cosA,tanA
求cosA,tanA
综合练习巩固提高,更为下节的同角关系式打下基础
拓展,如果不限制A的象限呢,可以留作课外探讨
小结回顾课堂内容
课堂作业和课外作业以加强知识的记忆和理解
课堂作业P161,2,4
(学生演板,后集体讨论修订答案同桌讨论,由学生回答答案)
课后分层作业(有利于全体学生的发展)
必作P231(2),5(2),6(2)(4)选作P233,4
板书设计(见PPT)
高中数学教案电子版下载篇8
目标
1、通过观察粘贴活动,寻找两个集合交集、差集中元素,依据特征进行尝试摆放;发展幼儿多纬度的思维能力。
2、培养幼儿的尝试精神,发展幼儿思维的敏捷性、逻辑性。
3、有兴趣参加数学活动。
准备
?水果找家》、《图形组合物》幻灯片个1张(no.86—87),幼儿每人相同内容练习纸2张(见练习册no.4—5),如图(1)和图(2)。
过程
(一)观察
1、出示《水果》幻灯片,引导幼儿思考:
(1)两个圈内分别有什么?各有几个?
(2)左圈内的水果么特征?(有叶子)
(3)右圈内的水果么特征?(有梗子)
(4)两圈相交部分中的水果么特征?(有叶子且有梗子)
2、出示《图形组合物》幻灯片,引导幼儿思考:
(1)两个圈内分别有什么特征?各有一个?
(2)左圈内的东西有什么特征?(红色)
(3)右圈内的东西有什么特征?(个数是5个)
(4)两圈相交部分中的东西有什么特征?(红色且个数是5个)
(二)区分
让幼儿思考:依据特征,如把右边的水果或左边的娃娃脸摆放到圈内,该分别放在哪里?
个别幼儿口述位置和理由,如图(1)中的桃子该放在左圈但不在右圈中,因为桃子有叶无梗;图(2)中的圆脸娃娃该放在两圈相交部分,因为她是红色且组成的圆形个数是5个。
(三)粘贴
幼儿在练习纸上将左(右)边的各图示物一一撕下,分别粘贴在两个圈中的相对位置。
(教师巡回指导,帮助幼儿正确粘贴)
建议
(一)本活动设计内容亦可分两次进行。
(二)亦可用实物材料在集合摆放圈中进行分类摆放,见《儿童数形宝盒》说明图29。观察记录与评估。
高中数学教案电子版下载篇9
圆的方程
教学目标
(1)掌握圆的标准方程,能根据圆心坐标和半径熟练地写出圆的标准方程,也能根据圆的标准方程熟练地写出圆的圆心坐标和半径.
(2)掌握圆的一般方程,了解圆的一般方程的结构特征,熟练掌握圆的标准方程和一般方程之间的互化.
(3)了解参数方程的概念,理解圆的参数方程,能够进行圆的普通方程与参数方程之间的互化,能应用圆的参数方程解决有关的简单问题.
(4)掌握直线和圆的位置关系,会求圆的切线.
(5)进一步理解曲线方程的概念、熟悉求曲线方程的方法.
教学建议
教材分析
(1)知识结构
(2)重点、难点分析
①本节内容教学的重点是圆的标准方程、一般方程、参数方程的推导,根据条件求圆的方程,用圆的方程解决相关问题.
②本节的难点是圆的一般方程的结构特征,以及圆方程的求解和应用.
教法建议
(1)圆是最简单的曲线.这节教材安排在学习了曲线方程概念和求曲线方程之后,学习三大圆锥曲线之前,旨在熟悉曲线和方程的理论,为后继学习做好准备.同时,有关圆的问题,特别是直线与圆的位置关系问题,也是解析几何中的基本问题,这些问题的解决为圆锥曲线问题的解决提供了基本的思想方法.因此教学中应加强练习,使学生确实掌握这一单元的知识和方法.
(2)在解决有关圆的问题的过程中多次用到配方法、待定系数法等思想方法,教学中应多总结.
(3)解决有关圆的问题,要经常用到一元二次方程的理论、平面几何知识和前边学过的解析几何的基本知识,教师在教学中要注意多复习、多运用,培养学生运算能力和简化运算过程的意识.
(4)有关圆的内容非常丰富,有很多有价值的问题.建议适当选择一些内容供学生研究.例如由过圆上一点的切线方程引申到切点弦方程就是一个很有价值的问题.类似的还有圆系方程等问题.
教学设计示例
圆的一般方程
教学目标:
(1)掌握圆的一般方程及其特点.
(2)能将圆的一般方程转化为圆的标准方程,从而求出圆心和半径.
(3)能用待定系数法,由已知条件求出圆的一般方程.
(4)通过本节课学习,进一步掌握配方法和待定系数法.
教学重点:(1)用配方法,把圆的一般方程转化成标准方程,求出圆心和半径.
(2)用待定系数法求圆的方程.
教学难点:圆的一般方程特点的研究.
教学用具:计算机.
教学方法:启发引导法,讨论法.
教学过程:
【引入】
前边已经学过了圆的标准方程
把它展开得
任何圆的方程都可以通过展开化成形如
①
的方程
【问题1】
形如①的方程的曲线是否都是圆?
师生共同讨论分析:
如果①表示圆,那么它一定是某个圆的标准方程展开整理得到的.我们把它再写成原来的形式不就可以看出来了吗?运用配方法,得
②
显然②是不是圆方程与 是什么样的数密切相关,具体如下:
(1)当 时,②表示以 为圆心、以 为半径的圆;
(2)当 时,②表示一个点 ;
(3)当 时,②不表示任何曲线.
总结:任意形如①的方程可能表示一个圆,也可能表示一个点,还有可能什么也不表示.
圆的一般方程的定义:
当 时,①表示以 为圆心、以 为半径的圆,
此时①称作圆的一般方程.
即称形如 的方程为圆的一般方程.
【问题2】圆的一般方程的特点,与圆的标准方程的异同.
(1) 和 的系数相同,都不为0.
(2)没有形如 的二次项.
圆的一般方程与一般的二元二次方程
③
相比较,上述(1)、(2)两个条件仅是③表示圆的必要条件,而不是充分条件或充要条件.
圆的一般方程与圆的标准方程各有千秋:
(1)圆的标准方程带有明显的几何的影子,圆心和半径一目了然.
(2)圆的一般方程表现出明显的代数的形式与结构,更适合方程理论的运用.
【实例分析】
例1:下列方程各表示什么图形.
(1) ;
(2) ;
(3) .
学生演算并回答
(1)表示点(0,0);
(2)配方得 ,表示以 为圆心,3为半径的圆;
(3)配方得 ,当 、 同时为0时,表示原点(0,0);当 、 不同时为0时,表示以 为圆心, 为半径的圆.
例2:求过三点 , , 的圆的方程,并求出圆心坐标和半径.
分析:由于学习了圆的标准方程和圆的一般方程,那么本题既可以用标准方程求解,也可以用一般方程求解.
解:设圆的方程为
因为 、 、 三点在圆上,则有
解得: , ,
所求圆的方程为
可化为
圆心为 ,半径为5.
请同学们再用标准方程求解,比较两种解法的区别.
【概括总结】通过学生讨论,师生共同总结:
(1)求圆的方程多用待定系数法.其步骤为:由题意设方程(标准方程或一般方程);根据条件列出关于待定系数的方程组;解方程组求出系数,写出方程.
(2)如何选用圆的标准方程和圆的一般方程.一般地,易求圆心和半径时,选用标准方程;如果给出圆上已知点,可选用一般方程.
下面再看一个问题:
例3: 经过点 作圆 的割线,交圆 于 、 两点,求线段 的中点 的轨迹.
解:圆 的方程可化为 ,其圆心为 ,半径为2.设 是轨迹上任意一点.
∵
∴
即
化简得
点 在曲线上,并且曲线为圆 内部的一段圆弧.
【练习巩固】
(1)方程 表示的曲线是以 为圆心,4为半径的圆.求 、 、 的值.(结果为4,-6,-3)
(2)求经过三点 、 、 的圆的方程.
分析:用圆的一般方程,代入点的坐标,解方程组得圆的方程为 .
(3)课本第79页练习1,2.
【小结】师生共同总结:
(1)圆的一般方程及其特点.
(2)用配方法化圆的一般方程为圆的标准方程,求圆心坐标和半径.
(3)用待定系数法求圆的方程.
【作业】课本第82页5,6,7,8.
高中数学教案电子版下载篇10
1.教学目标
(1)知识目标:1.在平面直角坐标系中,探索并掌握圆的标准方程;
2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.
(2)能力目标:1.进一步培养学生用解析法研究几何问题的能力;
2.使学生加深对数形结合思想和待定系数法的理解;
3.增强学生用数学的意识.
(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.
2.教学重点.难点
(1)教学重点:圆的标准方程的求法及其应用.
(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰
当的坐标系解决与圆有关的实际问题.
3.教学过程
(一)创设情境(启迪思维)
问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?
[引导]画图建系
[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)
解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2y2=16(y≥0)
将x=2.7代入,得.
即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。
(二)深入探究(获得新知)
问题二:1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?
答:x2y2=r2
2.如果圆心在,半径为时又如何呢?
[学生活动]探究圆的方程。
[教师预设]方法一:坐标法
如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={mmc=r}
由两点间的距离公式,点m适合的条件可表示为①
把①式两边平方,得(x―a)2(y―b)2=r2
方法二:图形变换法
方法三:向量平移法
(三)应用举例(巩固提高)
i.直接应用(内化新知)
问题三:1.写出下列各圆的方程(课本p77练习1)
(1)圆心在原点,半径为3;
(2)圆心在,半径为;
(3)经过点,圆心在点.
2.根据圆的方程写出圆心和半径
(1);(2).
ii.灵活应用(提升能力)
问题四:1.求以为圆心,并且和直线相切的圆的方程.
[教师引导]由问题三知:圆心与半径可以确定圆.
2.已知圆的方程为,求过圆上一点的切线方程.
[学生活动]探究方法
[教师预设]
方法一:待定系数法(利用几何关系求斜率-垂直)
方法二:待定系数法(利用代数关系求斜率-联立方程)
方法三:轨迹法(利用勾股定理列关系式)[多媒体课件演示]
方法四:轨迹法(利用向量垂直列关系式)
3.你能归纳出具有一般性的结论吗?
已知圆的方程是,经过圆上一点的切线的方程是:.
iii.实际应用(回归自然)
问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m).
[多媒体课件演示创设实际问题情境]
(四)反馈训练(形成方法)
问题六:1.求以c(-1,-5)为圆心,并且和y轴相切的圆的方程.
2.已知点a(-4,-5),b(6,-1),求以ab为直径的圆的方程.
3.求圆x2y2=13过点(-2,3)的切线方程.
4.已知圆的方程为,求过点的切线方程.
高中数学教案电子版下载篇11
教学目标
(1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;
(2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;
(3)掌握排列数公式,并能根据具体的问题,写出符合要求的排列数;
(4)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;
(5)通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的学习态度。
教学建议
一、知识结构
二、重点难点分析
本小节的重点是排列的定义、排列数及排列数的公式,并运用这个公式去解决有关排列数的应用问题。难点是导出排列数的公式和解有关排列的应用题。突破重点、难点的关键是对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中。
从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,称为从n个不同元素中任取m个元素的一个排列。因此,两个相同排列,当且仅当他们的元素完全相同,并且元素的排列顺序也完全相同。排列数是指从n个不同元素中任取m(m≤n)个元素的所有不同排列的种数,只要弄清相同排列、不同排列,才有可能计算相应的排列数。排列与排列数是两个概念,前者是具有m个元素的排列,后者是这种排列的不同种数。从集合的角度看,从n个元素的有限集中取出m个组成的有序集,相当于一个排列,而这种有序集的个数,就是相应的排列数。
公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解。要重点分析好的推导。
排列的应用题是本节教材的难点,通过本节例题的分析,应注意培养学生解决应用问题的能力。
在分析应用题的`解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用。
在教学排列应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求。
三、教法建议
①在讲解排列数的概念时,要注意区分“排列数”与“一个排列”这两个概念。一个排列是指“从n个不同元素中,任取出m个元素,按照一定的顺序摆成一排”,它不是一个数,而是具体的一件事;排列数是指“从n个不同元素中取出m个元素的所有排列的个数”,它是一个数。例如,从3个元素a,b,c中每次取出2个元素,按照一定的顺序排成一排,有如下几种:
ab,ac,ba,bc,ca,cb,
其中每一种都叫一个排列,共有6种,而数字6就是排列数,符号表示排列数。
②排列的定义中包含两个基本内容,一是“取出元素”,二是“按一定顺序排列”。
从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素完全不同,或元素部分相同或元素完全相同而顺序不同的排列,都不是同一排列。叫不同排列。
在定义中“一定顺序”就是说与位置有关,在实际问题中,要由具体问题的性质和条件来决定,这一点要特别注意,这也是与后面学习的组合的根本区别。
在排列的定义中,如果有的书上叫选排列,如果,此时叫全排列。
要特别注意,不加特殊说明,本章不研究重复排列问题。
③关于排列数公式的推导的教学。公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解。课本上用的是不完全归纳法,先推导,,…,再推广到,这样由特殊到一般,由具体到抽象的讲法,学生是不难理解的。
导出公式后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“n”、“m”比较复杂的时候把公式写错。这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是n,后面每个因数都比它前面一个因数少1,最后一个因数是,共m个因数相乘。”这实际是讲三个特点:第一个因数是什么?最后一个因数是什么?一共有多少个连续的自然数相乘。
公式是在引出全排列数公式后,将排列数公式变形后得到的公式。对这个公式指出两点:
(1)在一般情况下,要计算具体的排列数的值,常用前一个公式,而要对含有字母的排列数的式子进行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;
(2)为使这个公式在时也能成立,规定,如同时一样,是一种规定,因此,不能按阶乘数的原意作解释。
④建议应充分利用树形图对问题进行分析,这样比较直观,便于理解。
⑤学生在开始做排列应用题的作业时,应要求他们写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实。随着学生解题熟练程度的提高,可以逐步降低这种要求。
高中数学教案电子版下载篇12
一、什么是教学案例
教学案例是真实而又典型且含有问题的事件。简单地说,一个教学案例就是一个包含有疑难问题的实际情境的描述,是一个教学实践过程中的故事,描述的是教学过程中“意料之外,情理之中的事”。
这可以从以下几个层次来理解:
教学案例是事件:教学案例是对教学过程中的一个实际情境的描述。它讲述的是一个故事,叙述的是这个教学故事的产生、发展的历程,它是对教学现象的动态性的把握。
教学案例是含有问题的事件:事件只是案例的基本素材,并不是所有的教学事件都可以成为案例。能够成为案例的事件,必须包含有问题或疑难情境在内,并且也可能包含有解决问题的方法在内。正因为这一点,案例才成为一种独特的研究成果的表现形式。
案例是真实而又典型的事件:案例必须是有典型意义的,它必须能给读者带来一定的启示和体会。案例与故事之间的根本区别是:故事是可以杜撰的,而案例是不能杜撰和抄袭的,它所反映的是真是发生的事件,是教学事件的真实再现。是对“当前”课堂中真实发生的实践情景的描述。它不能用“摇摆椅子上杜撰的事实来替代”,也不能从抽象的、概括化的理论中演绎的事实来替代。
二、如何进行教学案例研究
教学案例是教师教学行为真实、典型的记录,也是教师教学理念和教学思想的真实体现。因此它是教育教学研究的宝贵资源,也是教师之间交流的重要媒介。进行教学案例的研究是教师不断反思、改进自己教学的一种方法,能促使教师更为深刻地认识到自己工作中的重点和难点。这个过程就是教师自我教育和成长的过程。
那么如何进行教学案例研究呢?一般情况下,案例研究的程序基本有以下两个环节:案例研究的准备及实施、案例研究报告的撰写与反思。
(一)案例研究的准备与实施
1.研究主题的选择
案例研究都要有研究的重点和主题,这个主题常与教学改革的核心理念、常见的疑难问题和困惑事件相关,一般来说可以从教学的各个方面确定研究的主题,如从教师教学行为确定主题——教学材料的选择、教学中的提问、教学媒体的使用、教学评价语言、课堂教学调控行为等;也可以从学生的学习方式确定主题——探究性学习、问题解决学习、合作学习、实践性活动等。另外从学科特点、教学内容等都可以确定研究的主题。
研究者要了解当前教学的大背景,教改的大方向,要熟悉相关的《课程标准》和有针对性地作一些理论准备。还要通过有关的调查,搜集详尽的材料(如阅读教师的教学设计,进行访谈等),同时初步确定案例研究的方向、研究任务,即初步确定案例的内容是关于教学策略、学生行为或是教学技能的研究。
一般来说,案例研究主题的确定往往需要思考下面一些问题:即研究的事件是否对于自我发现更有潜力?选择的事件对学生是否有较大的情感影响(心灵是否受到震撼)?关键事件再现了前人(或自己)过去成功的行为吗?事件呈现的是一个你不能确定怎样解决的问题?事件需要你做出困难的选择吗?事件使得你必须以一种感觉不熟悉的方式或是仍在思考的方式回答吗?事件暗示一个与道德或道义上相关的问题吗?研究的主题如果反映以上的一些内容,那么这样的案例研究在自我学习、内省和深层次理解方面就可能更加富有成效。
高中数学教学案例研究的主题内容主要集中在三方面:(1)学科特点的体现:如数学思想方法的教学、数学思维品质的培养、本质属性的抽象、数学结论的推广等;(2)学生数学学习规律的探究:如数学学习习惯、解决问题的思维方式、独立思考与合作学习等;(3)教师专业知识的提升:如数学板书与电子屏幕的展示对学生思维的影响、数学语言的训练对人们思维的影响、数学知识模式化教学的优劣等。
2.案例研究的基本方法
(1)课堂观察。观察方法是指研究者按照一定的目的和计划,在课堂教学活动的自然状态下,用自己的感官和辅助工具对研究对象进行观察研究的一种方法。它可以是教师自己对教学对象——学生,在课堂活动中的片断进行观察,也可以由其他教师来实施观察,这两种观察的目的都是为了掌握课堂教学中的第一手资料。课堂观察方法不限于用肉眼观察、耳听手记,还可利用各种工具如照相、录音、摄像等作为辅助观察的手段,以提高观察的效果。对观察的资料,可以逐字逐句整理成课堂教学实录、教学程序表、提问技巧水平检核表、提问行为类型频次表、课堂教学时间分配表等,以便以后继续分析案例提供翔实的原始材料。
(2)访谈与调查。对一些课堂教学不能观察到的师生内心活动,如教师教学的目的、教学程序的意图、教学手段的运用以及教学达标的成效等一些需要进一步了解的问题,可以通过与执教教师的交谈以及和学生的座谈,以丰富和充实课堂教学观察的材料;对学生在课堂教学活动中回答问题的心理状态、解题思路等问题,也可以在课后做一些问卷调查;对学生达标的成度、效度,也可以作一些测试调查。从这些访谈、调查的材料中,再分析课堂教学的现象,不难发现造成各种课堂现象与教师教学行为之间的因果关系,然后再具体寻找在哪个教学环节中出现问题,从中提炼出解决问题的对策。
(3)文献分析。文献分析是通过查阅文献资料,从过去和现在的有关研究成果中受到启发,从中找到课堂教学现象的理论依据,从而增强案例分析的说服力。当然,对广大第一线教师而言,这里所运用的文献分析方法,并不是为了论证新教育理论,也不是去归纳教育的宏观现象,而是通过有关教育理论文献的查阅,去进一步解读课堂教学的活动,挖掘案例中的教育思想。如在数学教学中,我们常常通过学生的动手操作来获得有关的数学概念、法则与公式,那么,为什么要这样做呢?就可以带着问题,查阅、分析有关文献资料,从学习中提高研究者自身的理论水平。
(二)案例研究报告的撰写
1.常见的案例报告格式
撰写教学案例,结构可以灵活多样,并非要千篇一律、一个模式,而是可以有不同的表现形式,如“案例背景——案例描述——案例分析”、“案例过程——案例反思”、“课例——问题——分析”、“主题与背景——情景描述——问题讨论——诠释与研究”等。当前,国内外课堂教学案例编写的格式有多种多样。但不管何种编写格式,它们都有两个共同的特点:一是对案例的客观描述;二是对案例中所述问题、关键教学事件等的分析。
下面介绍两种常用的案例编写的格式:
(1)“描述+分析”式
此格式的特点是将整个案例分为两大部分,前半部分主要为描述课堂教学活动的情景,后半部分主要针对情景中的一个问题进行理论分析并获得结论。案例的描述一般是把课堂教学活动中的.某一片断像讲故事一样原原本本地、具体生动地描绘出来。描述的形式可以是一串问答式的课堂对话,也可以概括式地叙述,主要是提供一个或一连串课堂教学疑难的问题,并把教育理论、教育思想隐藏在描述之中。案例的分析部分是针对描述的情景发表个人或多人的感受,同时加以理论的分析与说明。分析方法可以是对描述中提出的一个问题,从几个方面加以分析:也可以是对描述中的几个问题,集中从一个方面加以分析。分析的目的是要从描述的情景中提炼问题的本质,讲述理论的解释,明确正确的方法,最终获得对关键教学事件的正确把握。
(2)“背景+描述+问题+诠释”式
此格式是一种要求比较高的编写格式,而且,它在实际教学中的作用也更大。通常它将整个案例分为四个部分:
A.主题与背景
主题是关键教学事件中所反映的案例主要观点,也是整篇案例的核心思想。背景主要叙述案例发生的地点、时间、人物的一些基本情况。当然,这部分的内容不宜很长,只需提纲挈领叙述清楚即可。
B.情景描述
与“描述+分析”式中的描述相同,主要突出主题所反映的课堂教学活动。
C.问题讨论
这是根据主题要求与情景描述,进行的分析、归纳、总结与提炼,包括学科知识的要点、教学法和情景特点以及案例的说明与注意事项。这部分内容主要是为案例教学服务的,目的是提高教师的认识水平与学生主动学习的能力。不同的教学观念,不同的教学手段,所提出的问题也不同。对案例中所提出的主题以及情景描述中提出的问题阐述自己的见解。
D.诠释与研究
这部分主要是用教育理论对案例情景作多角度的解读。它包括对课堂教学行为的技术资料、课堂教学实录以及教学活动背后的故事等作理论上的分析。例如,在课堂教学中,我们常看到这样的现象,课堂教学的效果高于预期的目标,反之教师期望的目标学生没有达到或有所偏离,教学内容呈现的先后与学生理解的程度、教学方法运用与学生内在动机的激发等环节存在着矛盾,这些事件的背后,必然隐含着丰富的教育思想。所以,通过诠释,挖掘这些事件背后的内在思想,揭示其教育规律就显得十分的必要。
2.案例报告撰写的关键
(1)掌握四个原则。要写好教学案例,除了平时多积累素材,学习他人的案例作品以提高写作技巧外,还应把握以下四点:
A.主题性原则:要有捕捉关键教学事件的意识,以此确定案例研究的主题。为此要注意了解新的课程改革的动向、把握适合时代要求的数学教育方式、明确学生数学学习的难点和重点,寻找数学教师专业发展的途径与规律。报告围绕主题进行情景描述和获得解决问题的策略。这种描述不是简单的教学活动实录,要反映事件发生的过程,重点描述反映关键教学事件的变化和戏剧化的情境,犹如记叙文写作,突出主题,详写重点,雕刻高潮。
案例鲜明的主题通常关系到教学的核心理念、常见问题、处理方法等等,可以说,主题就是案例的灵魂。而主题的最佳表现形式就是文题直接体现主题。因此,设计主题就要有新意、有时代感,通俗地说就是与众不同,要有独特见解、独家发现。来源于实践的教学案例并非都有同等价值,关键要看撰写者对实践的发展与理论的升华程度,包括对题目的推敲。如有的教学案例重点描述了有戏剧性的情节,用了“细节决定成败”的题目,给人耳目一新,一下子揪住了读者的心。再如,一些有创意的题目《“导之有方”方能“导之有效”》、《跳出数学教数学》、《在数学的疑难处悟成长》、《捕捉资源因势利导》等等,让人一看题目就有阅读的欲望。实践证明,在写作案例时,选择有感悟、有新意的内容,在明确主题,恰当拟题后再动笔,才能写出高质量的案例。
B.理论性原则:解决问题的策略中应当蕴含一定的教育基本原理和教育思想。实际是将自己对教育理念以及教育基本原理的理解渗透于描述的字里行间,比如学生做了什么,参与程度,投入程度如何,教师如何引导点拨,师生心理、行为变化情况等,无不体现教师的教学思想和教育基本原理。
C.叙事性原则:案例报告的书写方式是叙事式,它不同于论述式。叙事方式必须以课堂教学生动的事实为主要情节,可以夹叙夹议,也可以选择情景片段,可以是一节课中的情景,也可以是围绕一个主题的几节课的情景片段。
D.学科性原则:数学案例报告一定要体现学科的特征,要有较深刻的理性思考,要反映数学的基本思想与方法,要符合课程标准,满足教材内容的呈现方法,积极培养良好的思维习惯。就是撰写者的教育思想和教育理念在教学实践中具体体现。
(2)用好四种表述。教学案例的表述方法很多,可以归纳为以下四种方法:
A.故事式陈述法:就是教学全程或某一精彩教学片段实录,包括教师和学生的一言一行。陈述时,根据操作程序作一点“简评”,最后作“总评”。
B.以案说理:对教学过程进行陈述时,舍去与文题不相关或不重要的部分,并强化与主题相关的重要情节,尤其是引发高潮的关键行为,然后有较长篇幅的理性思考。
C.图表展示法:用图表进行统计的形式体现撰写者的教育思想,给人以一目了然的感觉,帮助读者迅速了解撰写者的写作意图,是常用的一种案例撰写方法。比如,描述学生的参与人数,投入程度,解决问题的质量等多个问题,都可以在一张或数张图表上用百分比或个(次)数进行统计。在每一张图表后,应有一段“分析”或“结论”,将撰写者的教学理念进行理性阐述,亦可在图表展示后,总的提出自己对案例的分析和建议。
D.分析讨论法:在撰写时,应汲取分析讨论中最精彩的部分做深入、细致的全面记录,最后撰写者还必须对讨论情况做一分析,或提出一些值得今后进一步思考的问题。
3.优秀案例的特征
(1)时代性:一个好的案例描述的是现实生活场景——案例的叙述要把事件置于一个时空框架之中,应该以关注今天所面临的疑难问题为着眼点,至少应该是近年发生的事情,展示的整个事实材料应该与整个时代及教学背景相照应,这样的案例读者更愿意接触。一个好的案例可以使读者有身临其境的感觉,并对案例所涉及的人产生移情作用。
(2)真实性:一个好的案例应该包括从案例所反映的对象那里引述的材料——案例写作必须持一种客观的态度,因此可引述一些口头的或书面的、正式的或非正式的材料,如对话、笔记、信函等,以增强案例的真实感和可读性。重要的事实性材料应注明资料来源。
(3)适用性:一个好的案例需要针对面临的疑难问题提出解决办法——案例不能只是提出问题,它必须提出解决问题的主要思路、具体措施,并包含着解决问题的详细过程,这应该是案例写作的重点。如果一个问题可以提出多种解决办法的话,那么最为适宜的方案,就应该是与特定的背景材料相关最密切的那一个。如果有包治百病、普遍适用的解决问题的办法,那么案例这种形式就不必要存在了。
(4)反思性:一个好的案例需要有对已经做出的解决问题的决策的评价——评价是为了给新的决策提供参考点。可在案例的开头或结尾写下案例作者对自己解决问题策略的评论,以点明案例的基本论点及其价值。
三、案例研究过程中需注意的问题
1.选材面过窄。从内容上看,多数案例是关于课堂教学甚至局限于一节课的研究,往往不能说明问题,或者在一节课中,也只会从简单的对话分析问题,做不到全方位、多角度。这说明教师对教学情境的丰富性、复杂性和联系性认识不够。
2.缺乏典型性。有的案例对教学实践没有挖掘与反思,随意摘取一些教学片段泛泛而谈、人云亦云,没有实用价值。不能够通过对某一事件现象的分析、处理、诠释,达到举一反三的效果,这样的案例对他人没什么借鉴作用。
3.主题不明确。主要体现为:
(1)主题涣散。有的案例象记流水帐,没有根据需要进行恰当的取舍,看不出作者要反映、探讨什么问题,缺乏指导性、创新性和参考性。
(2)定题过于随意。有的案例直接用案例研究依据的文题为题目,如《“三角函数”教学案例》、《“抛物线”教学案例》等,题目不鲜明、不形象,影响读者的选读和案例的传播。
4.结构不合理。案例作为一种文体,有它自己的写作结构,只有优化案例的结构,才能增强案例的可读性和指导性。如写成一般的教学设计,一般包括“备课思路、教学目标、教学重点、教学方法、课前准备、教学内容、教学过程”等内容;写成教学实录,把一堂课从头到尾详尽地记录下来,再写上作者的看法;重记录轻分析,过程描述多,评析少等等。没有创新,平淡无趣,看不出案例研究和反映的问题。
5.描述与分析脱节。有的案例描述与分析矛盾,让人不知所云;有时反映的是一种观点,分析阐明的是另一种观点,虽然不矛盾,但联系不紧密;有的分析中热衷于抄录教育理论的一些条条,脱离案例描述的事件而空谈理论,显得空泛无物。
高中数学教案电子版下载篇13
教学目标:
1.了解复数的几何意义,会用复平面内的点和向量来表示复数;了解复数代数形式的加、减运算的几何意义.
2.通过建立复平面上的点与复数的一一对应关系,自主探索复数加减法的几何意义.
教学重点:
复数的几何意义,复数加减法的几何意义.
教学难点:
复数加减法的几何意义.
教学过程:
一、问题情境
我们知道,实数与数轴上的点是一一对应的,实数可以用数轴上的点来表示.那么,复数是否也能用点来表示呢?
二、学生活动
问题1任何一个复数a+bi都可以由一个有序实数对(a,b)惟一确定,而有序实数对(a,b)与平面直角坐标系中的点是一一对应的,那么我们怎样用平面上的点来表示复数呢?
问题2平面直角坐标系中的点A与以原点O为起点,A为终点的向量是一一对应的,那么复数能用平面向量表示吗?
问题3任何一个实数都有绝对值,它表示数轴上与这个实数对应的点到原点的距离.任何一个向量都有模,它表示向量的长度,那么相应的,我们可以给出复数的模(绝对值)的概念吗?它又有什么几何意义呢?
问题4复数可以用复平面的向量来表示,那么,复数的加减法有什么几何意义呢?它能像向量加减法一样,用作图的方法得到吗?两个复数差的模有什么几何意义?
三、建构数学
1.复数的几何意义:在平面直角坐标系中,以复数a+bi的实部a为横坐标,虚部b为纵坐标就确定了点Z(a,b),我们可以用点Z(a,b)来表示复数a+bi,这就是复数的几何意义.
2.复平面:建立了直角坐标系来表示复数的平面.其中x轴为实轴,y轴为虚轴.实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数.
3.因为复平面上的点Z(a,b)与以原点O为起点、Z为终点的向量一一对应,所以我们也可以用向量来表示复数z=a+bi,这也是复数的几何意义.
4.复数加减法的几何意义可由向量加减法的平行四边形法则得到,两个复数差的模就是复平面内与这两个复数对应的两点间的距离.同时,复数加减法的法则与平面向量加减法的坐标形式也是完全一致的。
高中数学教案电子版下载篇14
教学目标
1.明确等差数列的定义.
2.掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题
3.培养学生观察、归纳能力.
教学重点
1.等差数列的概念;
2.等差数列的通项公式
教学难点
等差数列“等差”特点的理解、把握和应用
教具准备
投影片1张
教学过程
(I)复习回顾
师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)
(Ⅱ)讲授新课
师:看这些数列有什么共同的特点?
1,2,3,4,5,6;①
10,8,6,4,2,…;②
生:积极思考,找上述数列共同特点。
对于数列①(1≤n≤6);(2≤n≤6)
对于数列②-2n(n≥1)(n≥2)
对于数列③(n≥1)(n≥2)
共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。
师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。
一、定义:
等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。
如:上述3个数列都是等差数列,它们的公差依次是1,-2,。
二、等差数列的通项公式
师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:
若将这n-1个等式相加,则可得:
即:即:即:……
由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。
如数列①(1≤n≤6)
数列②:(n≥1)
数列③:(n≥1)
由上述关系还可得:即:则:=如:三、例题讲解
例1:(1)求等差数列8,5,2…的第20项
(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?
解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。
(Ⅲ)课堂练习
生:(口答)课本P118练习3
(书面练习)课本P117练习1
师:组织学生自评练习(同桌讨论)
(Ⅳ)课时小结
师:本节主要内容为:①等差数列定义。
即(n≥2)
②等差数列通项公式(n≥1)
推导出公式:
(V)课后作业
一、课本P118习题3.21,2
二、1.预习内容:课本P116例2P117例4
2.预习提纲:
①如何应用等差数列的定义及通项公式解决一些相关问题?
②等差数列有哪些性质?
高中数学教案电子版下载篇15
自我介绍:;我姓鞠,今后我将和大家一起学习高中数学课程,手机;讨论数学:;相信大家对于高中学习都充满着好奇,和初中相比,高;我们不急于上新课,我想和大家聊一聊数学,一起来思;一、为什么要学习数学?;数学是科学的大门和钥匙;马克思说:一种科学只有在成功地运用数学时,才算达;著名数学家华罗庚在《人民日报》精彩描述:数学在“;大家知道海王星是怎高中数学开学第一课
自我介绍:
我姓鞠,今后我将和大家一起学习高中数学课程,手机:????,QQ:????。告诉我的通讯方式是希望能拓宽与大家交流的平台。希望能与大家在课堂中相识,在生活中相知,不仅能成为你们知识的传授者,方法的指引者,更希望成为你们情感上的依赖者,成为朋友。
讨论数学:
相信大家对于高中学习都充满着好奇,和初中相比,高中课程与初中课程有很大的不同。今天这节课
我们不急于上新课,我想和大家聊一聊数学,一起来思考为什么要学习数学及如何学好数学这两个问题。
一、为什么要学习数学?
数学是科学的大门和钥匙。
马克思说:一种科学只有在成功地运用数学时,才算达到完善的地步。
著名数学家华罗庚在《人民日报》精彩描述:数学在“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁”等方面无处不有重要贡献。
大家知道海王星是怎么发现的,冥王星又是怎么被请出十大行星行列的???
其实在我们的周围有很多事情都是可以用数学可以来解决的,无非很多人都没有用数学的眼光来看待。
当然,我们学习的数学只是数学学科体系中很基础,很小的一部分。现在课本上学的未必能直接应用于生活,主要是为以后学习更高层次的理科打好基础,同时,也为了掌握一些数学的思考方法以及分析问题解决问题的思维方式。哲学家培根说过:“读诗使人灵秀,读历史使人明智,学逻辑使人周密,学哲学使人善辩,学数学使人聪明?”,也有人形象地称数学是思维的体操。下面我们通过具体的例子来体验一下某些数学思想方法和思维方式。
故事一:据说国际象棋是古印度的一位宰相发明的。国王很欣赏他的这项发明,问他的宰相要什么赏赐。聪明的宰相说,“我所要的从一粒谷子(没错,是1粒,不是1两或1斤)开始。在这个有64格的棋盘上,第一格里放1粒谷子,第二格里放2粒,第三格里放4粒,即每下一格粒数加倍,??如此下去,一直放满到棋盘上的64格。这就是我所要的赏赐。”国王觉得宰相要的实在不多,就叫人按宰相的要求赏赐。但后来发现即使把全国所有的谷子抬来也远远不够。
数学游戏:两人相继轮流往长方形桌子上放同样大小的硬币,硬币一定要平放在桌面上,后放的硬币不能压在先放的硬币上,放最后一颗的硬币的人算赢。应该先放还是后放才有必胜的把握。
数学思想:退到最简单、最特殊的地方。
故事二:聪明的渡边:20世纪40年代末,手写工具突破性进展圆珠笔问世,它以价廉、方便、书写流利在社会上广泛流传,但写到20万字时就会因圆珠磨小而漏油,影响了销售。工程师们从圆珠质量入手,从改进油墨性能入手进行改良,但收效甚微。于是厂家打出广告:解决此问题获奖金50万元。当时山地制笔厂的青年工人渡边看到女儿把圆珠笔用到快漏油时就不用这一现象中受到启发,很好地解决了这一问题,你认为他会怎么做呢?
渡边的成功之处就在于思维角度新,从问题的侧面轻巧取胜。也正体现了数学学习中经常用到的发散式思维。在数学学习中,既要有集中式思维又要有发散式思维。集中式思维是一种常用思维渠道,即为对问题的归纳,联系思维方式,表现为对解题方法的模仿和继承;而发散式思维即对问题开拓、创新,表现为对问题举一反三,触类旁通。在解决具体问题中,我们应该将两种思维方式相结合。
学数学有利于培养人的思维品质:结构意识、整体意识、抽象意识、化归意识、优化意识、反思意识,尽管数学在培养学生的这些思维品质方面和其他学科存在着交集,但数学在其中的地位是无法被代替的。总之,学习数学可以使人思考问题更合乎逻辑,更有条理,更严密精确,更深入简洁,更善于创造??
二、如何学好高中数学
与初中数学相比,高中数学更注重提高数学思维能力,要求同学们在学习数学和运用数学解决问题时,不断地经历直观感知、观察发现、归纳类比、空间想象、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等思维过程。高一数学一开始便在必修1中触及集合语言、函数模型,在必修2中涉及空间立体图形、坐标法、文字符号图形语言的转换,相对初中数学而言,抽象程度高,逻辑推理强,知识难度大,同学们会感到难学,认为数学神秘莫测,有些章节如听天书,从而可能会产生畏惧感。我认为学好高中数学要注意以下几点:
第一:培养数学兴趣
只有爱好某项事业或专业才能对它产生兴趣,才能激发学习、工作和自觉性与积极性;很难说哪个人天生爱好数学,爱好都是在生活和学习中逐渐产生的。如果你认为数学枯燥、乏味,那么你不可能真正学好数学,只有在学习中,逐渐发现数学的简单美、对称美以及数学高度的严谨与和谐,才能在学习过程中喜欢这门学科,才能产生兴趣。爱因斯坦说:兴趣是最好的老师;在诸多非智力因素中,兴趣处于一种特殊的地位,她可以激发一定的情感,唤起某种动机,培养人的意志,也可以改变人的态度。
第二:要改变一个观念。
有人会说自己的基础不好。那我问下什么是基础?今天所学的知识就是明天的基础。明天学习的知识就是后天的基础。所以要学好每一天的内容,那么你打的基础就是最扎实的了。所以现在你们是在同一个起跑线上的,无所谓基础好不好。今后的学习中,我会照顾大多数同学的数学基础。
第三:养成良好的学习习惯
㈠课前预习。怎样预习呢?就是自己在上课之前把内容先看一边,把自己不懂的地方做个记号或者打个问号,以至于上课的时候重点听,这样才能够很快提高自己的水平。但是预习不是很随便的把课本看一边,预习有个目标,那就是通过预习可以把书本后面的练习题可以自己独立的完成。一中的同学预习就已经有好几个层次了,先是课本,再是精编,再是高考题典,上课对于他们来说是第一轮高考复习。
㈡上课认真听讲。上课的时候准备课本,一只笔,一本草稿。做不做笔记你们自己决定,不过我不大提倡数学课做笔记的。不过有一点,有些知识点比较重要,课本上又没有的,我要求你们把它写在课本上的相应的空白地方。还有如果你觉得某个例题比较新或者比较重要,也可以把它记在书本的相应位置上,这样以后复习起来就一目了然了。那么草稿要来干什么的呢?课堂上你可以自己演算还有做课堂练习。
㈢关于作业。绝对不允许有抄作业的情况发生。如果我发现有谁抄作业,那么既然他这样喜欢抄,我就要你把当天的作业多抄几遍给我。那有人会问,碰到不会做的题目怎么办?有两个办法:一、向同学请教,请教做题目的思路,而不是整个过程和答案。同学之间也要相互帮助,如果你让他抄袭你的作业这样不是帮助他而是害他,这个道理大家应该明白吧。我非常提倡同学之间的相互讨论问题的,这样才能够相互促进提高。二、向老师请教,要养成多想多问的习惯。
㈣准备一本笔记本,作为自己的问题集。把平时自己不懂的和不大理解的还有易错的记录下来,并且要及时的消化,不懂的地方问老师。这是一个很好的办法,到考试的时候就可以有重点、有针对性的自己复习了。我高中的时候就是采用这样的方法把数学成绩提高。
好的开始是成功的一半,新的学期开始了,请大家调整好自己的思想,找到学习的原动力。播种一种思想,收获一种行为;播种一种行为,收获一种习惯;播种一种习惯,收获一种性格;播种一种性格,收获一种命运。愿每位同学都有个好的开始。
高中数学教案电子版下载篇16
重点难点教学:
1.正确理解映射的概念;
2.函数相等的两个条件;
3.求函数的定义域和值域。
一.教学过程:
1. 使学生熟练掌握函数的概念和映射的定义;
2. 使学生能够根据已知条件求出函数的定义域和值域; 3. 使学生掌握函数的三种表示方法。
二.教学内容:
1.函数的定义
设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数()fx和它对应,那么称:fAB为从集合A到集合B的一个函数(function),记作:
(),yfA
其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{()|}fA叫值域(range)。显然,值域是集合B的子集。
注意:
① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.
2.构成函数的三要素 定义域、对应关系和值域。
3、映射的定义
设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意
一个元素x,在集合B中都有确定的元素y与之对应,那么就称对应f:A→B为从 集合A到集合B的一个映射。
4. 区间及写法:
设a、b是两个实数,且a
(1) 满足不等式axb的实数x的集合叫做闭区间,表示为[a,b];
(2) 满足不等式axb的实数x的集合叫做开区间,表示为(a,b);
5.函数的三种表示方法 ①解析法 ②列表法 ③图像法
高中数学教案电子版下载篇17
教学目标
知识目标等差数列定义等差数列通项公式
能力目标掌握等差数列定义等差数列通项公式
情感目标培养学生的观察、推理、归纳能力
教学重难点
教学重点等差数列的概念的理解与掌握
等差数列通项公式推导及应用教学难点等差数列“等差”的理解、把握和应用
教学过程
由__《红高粱》主题曲“酒神曲”引入等差数列定义
问题:多媒体演示,观察————发现?
一、等差数列定义:
一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列。这个常数叫做等差数列的公差,通常用字母d表示。
例1:观察下面数列是否是等差数列:…。
二、等差数列通项公式:
已知等差数列{an}的首项是a1,公差是d。
则由定义可得:
a2—a1=d
a3—a2=d
a4—a3=d
……
an—an—1=d
即可得:
an=a1+(n—1)d
例2已知等差数列的首项a1是3,公差d是2,求它的通项公式。
分析:知道a1,d,求an。代入通项公式
解:∵a1=3,d=2
∴an=a1+(n—1)d
=3+(n—1)×2
=2n+1
例3求等差数列10,8,6,4…的第20项。
分析:根据a1=10,d=—2,先求出通项公式an,再求出a20
解:∵a1=10,d=8—10=—2,n=20
由an=a1+(n—1)d得
∴a20=a1+(n—1)d
=10+(20—1)×(—2)
=—28
例4:在等差数列{an}中,已知a6=12,a18=36,求通项an。
分析:此题已知a6=12,n=6;a18=36,n=18分别代入通项公式an=a1+(n—1)d中,可得两个方程,都含a1与d两个未知数组成方程组,可解出a1与d。
解:由题意可得
a1+5d=12
a1+17d=36
∴d=2a1=2
∴an=2+(n—1)×2=2n
练习
1、判断下列数列是否为等差数列:
①23,25,26,27,28,29,30;
②0,0,0,0,0,0,…
③52,50,48,46,44,42,40,35;
④—1,—8,—15,—22,—29;
答案:①不是②是①不是②是
2、等差数列{an}的前三项依次为a—6,—3a—5,—10a—1,则a等于
A、1B、—1C、—1/3D、5/11
提示:(—3a—5)—(a—6)=(—10a—1)—(—3a—5)
3、在数列{an}中a1=1,an=an+1+4,则a10=。
提示:d=an+1—an=—4
教师继续提出问题
已知数列{an}前n项和为……
作业
P116习题3。21,2