教育巴巴 > 高中教案 > 数学教案 >

高中数学教案范文集合

时间: 新华 数学教案

教案可以帮助教师根据学生的实际情况,面向大多数学生,并调动学生学习的积极性。好的高中数学教案范文集合是怎样的?这里给大家提供高中数学教案范文集合,供大家参考。

高中数学教案范文集合篇1

教学目标:

1.了解反函数的概念,弄清原函数与反函数的定义域和值域的关系.

2.会求一些简单函数的反函数.

3.在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识.

4.进一步完善学生思维的深刻性,培养学生的逆向思维能力,用辩证的观点分析问题,培养抽象、概括的能力.

教学重点:求反函数的方法.

教学难点:反函数的概念.

教学过程:

教学活动

设计意图一、创设情境,引入新课

1.复习提问

①函数的概念

②y=f(x)中各变量的意义

2.同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是时间t的函数;在t=中,时间t是位移S的函数.在这种情况下,我们说t=是函数S=vt的反函数.什么是反函数,如何求反函数,就是本节课学习的内容.

3.板书课题

由实际问题引入新课,激发了学生学习兴趣,展示了教学目标.这样既可以拨去"反函数"这一概念的神秘面纱,也可使学生知道学习这一概念的必要性.

二、实例分析,组织探究

1.问题组一:

(用投影给出函数与;与()的图象)

(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称.是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算.同样,与()也互为逆运算.)

(2)由,已知y能否求x?

(3)是否是一个函数?它与有何关系?

(4)与有何联系?

2.问题组二:

(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?

(3)函数 ()的定义域与函数()的值域有什么关系?

3.渗透反函数的概念.

(教师点明这样的函数即互为反函数,然后师生共同探究其特点)

从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培养学生抽象、概括的能力.

通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在"最近发展区"设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础.

三、师生互动,归纳定义

1.(根据上述实例,教师与学生共同归纳出反函数的定义)

函数y=f(x)(x∈A) 中,设它的值域为 C.我们根据这个函数中x,y的关系,用 y 把 x 表示出来,得到 x = j (y) .如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量 y 的函数.这样的函数 x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数.记作: .考虑到"用 x表示自变量, y表示函数"的习惯,将中的x与y对调写成.

2.引导分析:

1)反函数也是函数;

2)对应法则为互逆运算;

3)定义中的"如果"意味着对于一个任意的函数y=f(x)来说不一定有反函数;

4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;

5)函数y=f(x)与x=f(y)互为反函数;

6)要理解好符号f;

7)交换变量x、y的原因.

3.两次转换x、y的对应关系

(原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的.)

4.函数与其反函数的关系

函数y=f(x)

函数

定义域

A

C

值 域

C

A

四、应用解题,总结步骤

1.(投影例题)

【例1】求下列函数的反函数

(1)y=3x-1 (2)y=x 1

【例2】求函数的反函数.

(教师板书例题过程后,由学生总结求反函数步骤.)

2.总结求函数反函数的步骤:

1° 由y=f(x)反解出x=f(y).

2° 把x=f(y)中 x与y互换得.

3° 写出反函数的定义域.

(简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?

(2)的反函数是________.

(3)(x<0)的反函数是__________.

在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数.在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握.

通过动画演示,表格对照,使学生对反函数定义从感性认识上升到理性认识,从而消化理解.

通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培养学生分析、思考的习惯,以及归纳总结的能力.

题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进.并体现了对定义的反思理解.学生思考练习,师生共同分析纠正.

五、巩固强化,评价反馈

1.已知函数 y=f(x)存在反函数,求它的反函数 y =f( x)

(1)y=-2x 3(xR) (2)y=-(xR,且x)

( 3 ) y=(xR,且x)

2.已知函数f(x)=(xR,且x)存在反函数,求f(7)的值.

五、反思小结,再度设疑

本节课主要研究了反函数的定义,以及反函数的求解步骤.互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节研究.

(让学生谈一下本节课的学习体会,教师适时点拨)

进一步强化反函数的概念,并能正确求出反函数.反馈学生对知识的掌握情况,评价学生对学习目标的落实程度.具体实践中可采取同学板演、分组竞赛等多种形式调动学生的积极性."问题是数学的心脏"学生带着问题走进课堂又带着新的问题走出课堂.

六、作业

习题2.4 第1题,第2题

进一步巩固所学的知识.

教学设计说明

"问题是数学的心脏".一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程.本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念.

反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采用了抽象的符号.由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念.为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,研究性质,进而得出概念,这正是数学研究的顺序,符合学生认知规律,有助于概念的建立与形成.另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用.通过对函数与方程的分析,互逆探索,动画演示,表格对照、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培养学生的逆向思维.使学生自然成为学习的主人。

高中数学教案范文集合篇2

一、教材分析

《余弦定理》选自人教A版高中数学必修五第一章第一节第一课时。本节课的主要教学内容是余弦定理的内容及证明,以及运用余弦定理解决“两边一夹角”“三边”的解三角形问题。

余弦定理的学习有充分的基础,初中的勾股定理、必修一中的向量知识、上一课时的正弦定理都是本节课内容学习的知识基础,同时又对本节课的学习提供了一定的方法指导。其次,余弦定理在高中解三角形问题中有着重要的地位,是解决各种解三角形问题的常用方法,余弦定理也经常运用于空间几何中,所以余弦定理是高中数学学习的一个十分重要的内容。

二、教学目标

知识与技能:

1、理解并掌握余弦定理和余弦定理的推论。

2、掌握余弦定理的推导、证明过程。

3、能运用余弦定理及其推论解决“两边一夹角”“三边”问题。过程与方法:

1、通过从实际问题中抽象出数学问题,培养学生知识的迁移能力。

2、通过直角三角形到一般三角形的过渡,培养学生归纳总结能力。

3、通过余弦定理推导证明的过程,培养学生运用所学知识解决实际问题的能力。

情感态度与价值观:

1、在交流合作的过程中增强合作探究、团结协作精神,体验解决问题的成功喜悦。

2、感受数学一般规律的美感,培养数学学习的兴趣。

三、教学重难点

重点:余弦定理及其推论和余弦定理的运用。

难点:余弦定理的发现和推导过程以及多解情况的判断。

四、教学用具

普通教学工具、多媒体工具(以上均为命题教学的准备)

高中数学教案范文集合篇3

上个学期,根据需要,学校安排我上高二数学文科,在这一学期里我从各方面严格要求自己,在教学上虚心向老教师请教,结合本校和班级学生的实际状况,针对性的开展教学工作,使工作有计划,有组织,有步骤。经过了一学期,我对教学工作有了如下感想:

一、认真备课,做到既备学生又备教材与备教法。

上学期我根据教材资料及学生的实际状况设计课程教学,拟定教学方法,并对教学过程中遇到的问题尽可能的预先思考到,认真写好教案。每一课都做到“有备而去”,每堂课都在课前做好充分的准备,课后及时对该课作出小结,并认真整理每一章节的知识要点,帮忙学生进行归纳总结。

二、增强上课技能,提高教学质量。

增强上课技能,提高教学质量是我们每一名新教师不断努力的目标。因为应对的是文科生,基础普遍比较差,所以我主要是立足于基础,让学生学得简单,学得愉快。注意精讲精练,在课堂上讲得尽量少些,而让学生自己动口动手动脑尽量多些;同时在每一堂课上都充分思考每一个层次的学生学习需求和理解潜力,让各个层次的学生都得到提高。

三、虚心向其他老师学习,在教学上做到有疑必问。

在每个章节的学习上都用心征求其他有经验老师的意见,学习他们的方法。同时多听老教师的课,做到边听边学,给自己不断充电,弥补自己在教学上的不足,征求他们的意见,改善教学工作。

四、认真批改作业、布置作业有针对性,有层次性。

作业是学生对所学知识巩固的过程。为了做到布置作业有针对性,有层次性,我常常多方面的搜集资料,对各种辅导资料进行筛选,力求每一次练习都能让学生起到的效果。同时对学生的作业批改及时、认真,并分析学生的作业状况,将他们在作业过程出现的问题及时评讲,并针对反映出的状况及时改善自己的教学方法,做到有的放矢。

然而,在肯定成绩、总结经验的同时,我清楚地认识到我所获得的教学经验还是肤浅的,在教学中存在的问题也不容忽视,也有一些困惑有待解决今后我将努力工作,用心向老老师学习以提高自己的教学水平。

以上几点便是我的一点心得,期望能发扬优点,克服不足,总结经验教训,为今后的教育教学工作积累经验,以便尽快地提高自己的水平。

高中数学教案范文集合篇4

教学目标:

1.结合实际问题情景,理解分层抽样的必要性和重要性;

2.学会用分层抽样的方法从总体中抽取样本;

3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.

教学重点:

通过实例理解分层抽样的方法.

教学难点:

分层抽样的步骤.

教学过程:

一、问题情境

1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.

2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?

二、学生活动

能否用简单随机抽样或系统抽样进行抽样,为什么?

指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性.

由于样本的容量与总体的个体数的比为100∶2500=1∶25,

所以在各年级抽取的个体数依次是,,,即40,32,28.

三、建构数学

1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.

说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;

②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.

2.三种抽样方法对照表:

类别

共同点

各自特点

相互联系

适用范围

简单随机抽样

抽样过程中每个个体被抽取的概率是相同的

从总体中逐个抽取

总体中的个体数较少

系统抽样

将总体均分成几个部分,按事先确定的规则在各部分抽取

在第一部分抽样时采用简单随机抽样

总体中的个体数较多

分层抽样

将总体分成几层,分层进行抽取

各层抽样时采用简单随机抽样或系统

总体由差异明显的几部分组成

3.分层抽样的步骤:

(1)分层:将总体按某种特征分成若干部分.

(2)确定比例:计算各层的个体数与总体的个体数的比.

(3)确定各层应抽取的样本容量.

(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.

四、数学运用

1.例题.

例1(1)分层抽样中,在每一层进行抽样可用_________________.

(2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;

②某班期中考试有15人在85分以上,40人在60-84分,1人不及格.现欲从中抽出8人研讨进一步改进教和学;

③某班元旦聚会,要产生两名“幸运者”.

对这三件事,合适的抽样方法为()

A.分层抽样,分层抽样,简单随机抽样

B.系统抽样,系统抽样,简单随机抽样

C.分层抽样,简单随机抽样,简单随机抽样

D.系统抽样,分层抽样,简单随机抽样

例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:

很喜爱

喜爱

一般

不喜爱

2435

4567

3926

1072

电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?

解:抽取人数与总的比是60∶12000=1∶200,

则各层抽取的人数依次是12.175,22.835,19.63,5.36,

取近似值得各层人数分别是12,23,20,5.

然后在各层用简单随机抽样方法抽取.

答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人

数分别为12,23,20,5.

说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.

(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本.

分析:(1)总体容量较小,用抽签法或随机数表法都很方便.

(2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样.

(3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法.

五、要点归纳与方法小结

本节课学习了以下内容:

1.分层抽样的概念与特征;

2.三种抽样方法相互之间的区别与联系.

高中数学教案范文集合篇5

教学目标

1.掌握对数函数的概念,图象和性质,且在掌握性质的基础上能进行初步的应用.

(1) 能在指数函数及反函数的概念的基础上理解对数函数的定义,了解对底数的要求,及对定义域的要求,能利用互为反函数的两个函数图象间的关系正确描绘对数函数的图象.

(2) 能把握指数函数与对数函数的实质去研究认识对数函数的性质,初步学会用对数函数的性质解决简单的问题.

2.通过对数函数概念的学习,树立相互联系相互转化的观点,通过对数函数图象和性质的学习,渗透数形结合,分类讨论等思想,注重培养学生的观察,分析,归纳等逻辑思维能力.

3.通过指数函数与对数函数在图象与性质上的对比,对学生进行对称美,简洁美等审美教育,调动学生学习数学的积极性.

教学建议

教材分析

(1) 对数函数又是函数中一类重要的基本初等函数,它是在学生已经学过对数与常用对数,反函数以及指数函数的基础上引入的.故是对上述知识的应用,也是对函数这一重要数学思想的进一步认识与理解.对数函数的概念,图象与性质的学习使学生的知识体系更加完整,系统,同时又是对数和函数知识的拓展与延伸.它是解决有关自然科学领域中实际问题的重要工具,是学生今后学习对数方程,对数不等式的基础.

(2) 本节的教学重点是理解对数函数的定义,掌握对数函数的图象性质.难点是利用指数函数的图象和性质得到对数函数的图象和性质.由于对数函数的概念是一个抽象的形式,学生不易理解,而且又是建立在指数与对数关系和反函数概念的基础上,故应成为教学的重点.

(3) 本节课的主线是对数函数是指数函数的反函数,所有的问题都应围绕着这条主线展开.而通过互为反函数的两个函数的关系由已知函数研究未知函数的性质,这种方法是第一次使用,学生不适应,把握不住关键,所以应是本节课的难点.

教法建议

(1) 对数函数在引入时,就应从学生熟悉的指数问题出发,通过对指数函数的认识逐步转化为对对数函数的认识,而且画对数函数图象时,既要考虑到对底数 的分类讨论而且对每一类问题也可以多选几个不同的底,画在同一个坐标系内,便于观察图象的特征,找出共性,归纳性质.

(2) 在本节课中结合对数函数教学的特点,一定要让学生动手做,动脑想,大胆猜,要以学生的研究为主,教师只是不断地反函数这条主线引导学生思考的方向.这样既增强了学生的参与意识又教给他们思考问题的方法,获取知识的途径,使学生学有所思,思有所得,练有所获,,从而提高学习兴趣.

高中数学教案范文集合篇6

一、教学目标

知识与技能:

理解任意角的概念(包括正角、负角、零角)与区间角的概念。

过程与方法:

会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。

情感态度与价值观:

1、提高学生的推理能力;

2、培养学生应用意识。

二、教学重点、难点:

教学重点:

任意角概念的理解;区间角的集合的书写。

教学难点:

终边相同角的集合的表示;区间角的集合的书写。

三、教学过程

(一)导入新课

1、回顾角的定义

①角的第一种定义是有公共端点的两条射线组成的图形叫做角。

②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

(二)教学新课

1、角的有关概念:

①角的定义:

角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。

②角的名称:

注意:

⑴在不引起混淆的情况下,“角α”或“∠α”可以简化成“α”;

⑵零角的终边与始边重合,如果α是零角α=0°;

⑶角的概念经过推广后,已包括正角、负角和零角。

⑤练习:请说出角α、β、γ各是多少度?

2、象限角的概念:

①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。

例1、如图⑴⑵中的角分别属于第几象限角?

高中数学教案范文集合篇7

一、教材分析

1、地位及作用

圆锥曲线是一个重要的几何模型,有许多几何性质,这些性质在日常生活、生产和科学技术中有着广泛的应用。同时,圆锥曲线也是体现数形结合思想的重要素材。

推导椭圆的标准方程的方法对双曲线、抛物线方程的推导具有直接的类比作用,为学习双曲线、抛物线内容提供了基本模式和理论基础。因此本节课具有承前启后的作用,是本章的重点内容。

2、教学内容与教材处理

椭圆的标准方程共两课时,第一课时所研究的是椭圆标准方程的建立及其简单运用,涉及的数学方法有观察、比较、归纳、猜想、推理验证等,我将以课堂教学的组织者、引导者、合作者的身份,组织学生动手实验、归纳猜想、推理验证,引导学生逐个突破难点,自主完成问题,使学生通过各种数学活动,掌握各种数学基本技能,初步学会从数学角度去观察事物和思考问题,产生学习数学的愿望和兴趣。

3、教学目标

根据教学大纲和学生已有的认知基础,我将本节课的教学目标确定如下:

1、知识目标

①建立直角坐标系,根据椭圆的定义建立椭圆的标准方程;

②能根据已知条件求椭圆的标准方程;

③进一步感受曲线方程的概念,了解建立曲线方程的基本方法,体会数形结合的数学思想。

2、能力目标

①让学生感知数学知识与实际生活的密切联系,培养解决实际问题的能力;

②培养学生的观察能力、归纳能力、探索发现能力;

③提高运用坐标法解决几何问题的能力及运算能力。

3、情感目标

①亲身经历椭圆标准方程的获得过程,感受数学美的熏陶;

②通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨;

③养成实事求是的科学态度和契而不舍的钻研精神,形成学习数学知识的积极态度。

4、重点难点

基于以上分析,我将本课的教学重点、难点确定为:

①重点:感受建立曲线方程的基本过程,掌握椭圆的标准方程及其推导方法;

②难点:椭圆的标准方程的推导。

二、教法设计

在教法上,主要采用探究性教学法和启发式教学法。以启发、引导为主,采用设疑的形式,逐步让学生进行探究性的学习。探究性学习就是充分利用了青少年学生富有创造性和好奇心,敢想敢为,对新事物具有浓厚的兴趣的特点。让学生根据教学目标的要求和题目中的已知条件,自觉主动地创造性地去分析问题、讨论问题、解决问题。

三、学法设计

通过创设情境,充分调动学生已有的学习经验,让学生经历“观察——猜想——证明——应用”的过程,发现新的知识,把学生的潜意识状态的好奇心变为自觉求知的创新意识。又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质。

四、学情分析

1、能力分析

①学生已初步掌握用坐标法研究直线和圆的方程;

②对含有两个根式方程的化简能力薄弱。

2、认知分析

①学生已初步熟悉求曲线方程的基本步骤;

②学生已经掌握直线和圆的方程及圆锥曲线的概念,对曲线的方程的概念有一定的了解;

③学生已经初步掌握研究直线和圆的基本方法。

3、情感分析

学生具有积极的学习态度,强烈的探究欲望,能主动参与研究。

五、教学程序

从建构主义的角度来看,数学学习是指学生自己建构数学知识的活动,在数学活动过程中,学生与教材及教师产生交互作用,形成了数学知识、技能和能力,发展了情感态度和思维品质。基于这一理论,我把这一节课的教学程序分成六个步骤来进行,下面我向各位作详细说明:

高中数学教案范文集合篇8

一、教学目标

(一)知识与技能

1、进一步熟练掌握求动点轨迹方程的基本方法。

2、体会数学实验的直观性、有效性,提高几何画板的操作能力。

(二)过程与方法

1、培养学生观察能力、抽象概括能力及创新能力。

2、体会感性到理性、形象到抽象的思维过程。

3、强化类比、联想的方法,领会方程、数形结合等思想。

(三)情感态度价值观

1、感受动点轨迹的动态美、和谐美、对称美

2、树立竞争意识与合作精神,感受合作交流带来的成功感,树立自信心,激发提出问题和解决问题的勇气

二、教学重点与难点

教学重点:运用类比、联想的方法探究不同条件下的轨迹

教学难点:图形、文字、符号三种语言之间的过渡

三、、教学方法和手段

【教学方法】观察发现、启发引导、合作探究相结合的教学方法。启发引导学生积极思考并对学生的思维进行调控,帮助学生优化思维过程,在此基础上,提供给学生交流的机会,帮助学生对自己的思维进行组织和澄清,并能清楚地、准确地表达自己的数学思维。

【教学手段】利用网络教室,四人一机,多媒体教学手段。通过上述教学手段,一方面:再现知识产生的过程,通过多媒体动态演示,突破学生在旧知和新知形成过程中的障碍(静态到动态);另一方面:节省了时间,提高了课堂教学的效率,激发了学生学习的兴趣。

【教学模式】重点中学实施素质教育的课堂模式"创设情境、激发情感、主动发现、主动发展"。

四、教学过程

1、创设情景,引入课题

生活中我们四处可见轨迹曲线的影子

【演示】这是美丽的城市夜景图

【演示】许多人认为天体运行的轨迹都是圆锥曲线,研究表明,天体数目越多,轨迹种类也越多

【演示】建筑中也有许多美丽的轨迹曲线

设计意图:让学生感受数学就在我们身边,感受轨迹曲线的动态美、和谐美、对称美,激发学习兴趣。

2、激发情感,引导探索

靠在墙角的梯子滑落了,如果梯子上站着一个人,我们不禁会想,这个人是直直的摔下去呢?还是划了一条优美的曲线飞出去呢?我们把这个问题转化为数学问题就是新教材高二上册88页20题,也就是这里的例题1;

例1、线段长为,两个端点和分别在轴和轴上滑动,求线段的中点的轨迹方程。

第一步:让学生借助画板动手验证轨迹

第二步:要求学生求出轨迹方程

法一:设,则

由得,

化简得

法二:设,由得

化简得

法三:设, 由点到定点的距离等于定长,

根据圆的定义得;

第三步:复习求轨迹方程的一般步骤

(1)建立适当的坐标系

(2)设动点的坐标M(x,y)

(3)列出动点相关的约束条件p(M)

(4)将其坐标化并化简,f(x,y)=0

(5)证明

其中,最关键的一步是根据题意寻求等量关系,并把等量关系坐标化

设计意图:在这里我借助几何画板的动画功能,先让学生直观地、形象地、动态地感受动点的轨迹是圆,接着要求学生求出轨迹方程,最后师生共同回顾求轨迹方程的一般步骤,达到熟练掌握直译法、定义法,体会从感性到理性、从形象到抽象的思维过程。

3、主动发现、主动发展

由上述例1可知,如果人站在梯子中间,则他会划了一段优美的圆弧飞出去。学生很自然就会想,如果人不是站在中间,而是随意站,结果会怎样呢?让学生动手探究M不是中点时的轨迹。

第一步:利用网络平台展示学生得到的轨迹(教师有意识的整合在一起)

设计意图:借助数学实验,把原本属于教师行为的设疑激趣还原于学生,让学生自己在实践过程中发现疑问,更容易激发学生学习的热情,促使他们主动学习。

第二步:分解动作,向学生提出3个问题:

问题1:当M位置不同时,线段BM与MA的大小关系如何?

问题2、体现BM与MA大小关系还有什么常见的形式?

问题3、你能类比例1把这种数量关系表达出来吗?

第三步:展示学生归纳、概括出来的数学问题

1、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足,求点M的轨迹方程。

2、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足,求点M的轨迹方程。

3、线段AB的长为2a,两个端点B和A分别在X轴和Y轴上滑动,点M为AB上的点,满足,求点M的轨迹方程。(说明是什么轨迹)

第四步:课堂完成学生归纳出来的问题1,问题2和3课后完成

4、合作探究、实现创新

改变A、点的运动方式,同样考虑中点的轨迹,教师进行适当的指导(这里固定A点,运动B点)

学生主要列出了以下几种运动方式:圆、椭圆、双曲线、抛物线,并且得出了一些相应的轨迹。

5、布置作业、实现拓展

1、把上述同学们探究得到的轨迹图形用文字、符号描述出来,(仿造例1),并求出轨迹方程。

2、已知A(4,0),点B是圆上一动点,AB中垂线与直线OB相交于点P,求点P的轨迹方程。

3、已知A(2,0),点B是圆上一动点,AB中垂线与直线OB相交于点P,求点P的轨迹方程。

4若把上述问题中垂线改为一般的垂线与直线OB相交于点P,请同学们利用画板验证点P 的轨迹。

以下是学生课后探究得到的一些轨迹图形

课后有学生问,如果X轴和Y轴不垂直会有什么结果?定长的线段在上面滑动怎么做出来?

可以说,学生的这些问题我之前并没有想过,给了我很大的触动,同时也促使我更进一步去研究几何画板,提高自己的能力。在这里,我体会到了教师不再只是一根根蜡烛,更像是一盏盏明灯,在照亮别人的同时也照亮自己。

以下是X轴和Y轴不垂直时的轨迹图形

五、教学设计说明:

(一)、教材

《平面动点的轨迹》是高二一节探究课,轨迹问题具有深厚的生活背景,求平面动点的轨迹方程涉及集合、方程、三角、平面几何等基础知识,其中渗透着运动与变化、方程的思想、数形结合的思想等,是中学数学的重要内容,也是历年高考数学考查的重点之一。

(二)、校情、学情

校情:我校是一所省一级达标校,省级示范性高中,学校的硬件设施比较完善,每间教室都具备多媒体教学的功能,另外有两间网络教室和一个学生电子阅室,并且能随时上网。

学情:大部分学生家里都有电脑,而且能随时上网。对学生进行了几何画板基本操作的培训,学生能较快的画出圆、椭圆、双曲线、抛物线等基本的圆锥曲线。学生对求轨迹方程的基本方法有了一定的掌握,但是对文字、图形、符号三种语言之间的转换还存在很大的差异,在合作交流意识方面,发展不均衡,有待加强。

(三)学法

观察、实验、交流、合作、类比、联想、归纳、总结

(四)、教学过程

1、创设情景,引入课题

2、激发情感,引导探索

由梯子滑落问题抽象、概括出数学问题

第一步:让学生借助画板动手验证轨迹

第二步:要求学生求出轨迹方程

第三步:复习求轨迹方程的一般步骤

3、主动发现、主动发展

探究M不是中点时的轨迹

第一步:利用网络平台展示学生得到的轨迹

第二步:分解动作,向学生提出3个问题:

第三步:展示学生归纳、概括出来的数学问题

4、合作探究、实现创新

改变A、点的运动方式,同样考虑中点的轨迹,教师进行适当的指导(这里固定A点,运动B点)

学生主要列出了以下几种运动方式:圆、椭圆、双曲线、抛物线,并且得出了一些相应的轨迹。

5、布置作业、实现拓展

(五)、教学特色:

借助网络、多媒体教学平台,让学生自己动手实验,发现问题并解决问题,同时把学生的学习情况及时的展现出来,做到大家一起学习,一起评价的效果。同时节省了时间,提高了课堂效率。

整个教学过程,体现了四个统一:既学习书本知识与投身实践的统一、书本学习与现代信息技术学习的统一、书本知识与资源拓展的统一、课堂学习与课外实践的统一。

本节课学生精神饱满、兴趣浓厚、合作积极,与我保持良好的互动,还不时产生一些争执,给我提出了一些新的问题,折射出我不足的方面,促进了我的进步与提高,师生间的教与学就像一面镜子,互相折射,共同进步。

高中数学教案范文集合篇9

教学内容

义务教育课程标准实验教科书(人教版)二年级上册第八单元第一课时

教学目标:

知识目标:

使学生通过观察、猜测、实验等活动,找出简单事物的排列数和组合数。

能力目标:

培养学生有顺序地、全面地思考问题的意识。

情感目标:

使学生感受到数学在现实生活中的应用价值,尝试用数学的方法来解决实际生活中的问题。

教学重点:

经历探索简单事物排列与组合规律的过程。教学难点:初步理解简单事物排列与组合的不同。教学环节

一、创设情境,导入新课

今天,我们来上一节数学活动课,大家乐意吗?(板书课题)现在大家来看一下我们的活动目标。(课件出示活动目标)

师:老师给大家带来了一个新朋友,课件出示圣诞老人画面,圣诞老人过生日了,想请大家参加他的生日聚会,但是他有要求。通过圣诞老人提出本节课任务。

二、合作学习,构建模型

(一)初步感知。课件出示:

第一关:摆一摆,猜密码。(用数字卡片

1、2能排成几个两位数自己动手摆一摆)让学生自己动手摆卡片后,指名汇报。

(二)合作探究。课件出示:

第二关:摆一摆,比一比(用数字卡片1、2、3能摆成几个不同的两位数)比比看,哪个组找的最多。

小组探讨,组长把大家的讨论结果记录在练习本上。(活动开始,教师巡视。)

以组为单位派代表汇报。

师:有的组摆出了4个不同的两位数,有的组摆出了6个不同的两位数,你们是怎么摆的?有什么好办法?

(鼓励方法的多样化,对各组的不同方法进行肯定和表扬。)结合发言,引导学生进行评价,选出优胜组。

师生共同归纳:用数字排列组成数,要按照一定的顺序确定十位上的数,然后考虑个位上有哪些数可以与其搭配。

(三)握一握。课件出示:小精灵说的话。

恭喜你们成功的度过了前两关,现在,我们握手祝贺一下。师:每两人握一次手,三人一共握几次手?(小组活动,教师巡视)活动后,小组指名汇报。

师:究竟是几次呢?请大家互相握握看吧!请一个组的同学上台演示,其他同学一起数数。

(四)课件出示:

师:圣诞老人决定奖励你们两件上衣、两条裤子,那么一共有几种搭配方法呢?(课件出示图片。)

学生拿出学具卡片,小组活动解决问题。汇报交流,说说自己为什么这样设计。

三、分层练习,巩固新知

(一)付钱问题。

课件出示:99页做一做2题

小组讨论,小组长统计本组学生答题情况,并由小组代表汇报。

(二)拍照站法。

小丽、小芳、小美在风景如画的郊外游玩,三人想站成一排拍照留念,她们有几种站法?

小组讨论后,由一组学生上台演示,其他学生数一数。

高中数学教案范文集合篇10

教学目标:1、理解集合的概念和性质.

2、了解元素与集合的表示方法.

3、熟记有关数集.

4、培养学生认识事物的能力.

教学重点:集合概念、性质

教学难点:集合概念的理解

教学过程:

1、定义:

集合:一般地,某些指定的对象集在一起就成为一个集合(集).元素:集合中每个对象叫做这个集合的元素.

由此上述例中集合的元素是什么?

例(1)的元素为1、3、5、7,

例(2)的元素为到两定点距离等于两定点间距离的点,

例(3)的元素为满足不等式3x-2>x+3的实数x,

例(4)的元素为所有直角三角形,

例(5)为高一·六班全体男同学.

一般用大括号表示集合,{?}如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}。则上几例可表示为??

为方便,常用大写的拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(1)确定性;(2)互异性;(3)无序性.

3、元素与集合的关系:隶属关系

元素与集合的关系有“属于∈”及“不属于?(?也可表示为)两种。如A={2,4,8,16},则4∈A,8∈A,32?A.

集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A记作a?A,相反,a不属于集A记作a?A(或)

注:1、集合通常用大写的拉丁字母表示,如A、B、C、P、Q??

元素通常用小写的拉丁字母表示,如a、b、c、p、q??

2、“∈”的开口方向,不能把a∈A颠倒过来写。

4

注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。

(2)非负整数集内排除0的集。记作N_或N+。Q、Z、R等其它数集内排除0

的集,也是这样表示,例如,整数集内排除0的集,表示成Z_

请回答:已知a+b+c=m,A={xax2+bx+c=m},判断1与A的关系。

1.1.2集合间的基本关系

教学目标:1.理解子集、真子集概念;

2.会判断和证明两个集合包含关系;

3.理解“?”、“?”的含义;≠

4.会判断简单集合的相等关系;

5.渗透问题相对的观点。

教学重点:子集的概念、真子集的概念

教学难点:元素与子集、属于与包含间区别、描述法给定集合的运算教学过程:

观察下面几组集合,集合A与集合B具有什么关系?

(1)A={1,2,3},B={1,2,3,4,5}.

(2)A={__>3},B={x3x-6>0}.

(3)A={正方形},B={四边形}.

(4)A=?,B={0}.

(5)A={银川九中高一(11)班的女生},B={银川九中高一(11)班的学生}。

1.子集

定义:一般地,对于两个集合A与B,如果集合A中的任何一个元素都是集合B的元素,我们就说集合A包含于集合B,或集合B包含集合A,记作A?B(或B?A),即若任意x?A,有x?B,则A?B(或A?B)。

这时我们也说集合A是集合B的子集(subset)。

如果集合A不包含于集合B,或集合B不包含集合A,就记作A?B(或B?A),即:若存在x?A,有x?B,则A?B(或B?A)

说明:A?B与B?A是同义的,而A?B与B?A是互逆的。

规定:空集?是任何集合的子集,即对于任意一个集合A都有??A。

(2)除去?与A本身外,集合A的其它子集与集合A的关系如何?

3.真子集:

由“包含”与“相等”的关系,可有如下结论:

(1)A?A(任何集合都是其自身的子集);

(2)若A?B,而且A?B(即B中至少有一个元素不在A中),则称集合A是集合B的真子集(propersubset),记作A≠B。(空集是任何非空集合的真

子集)

(3)对于集合A,B,C,若A?B,B?C,即可得出A?C;对A?B,B?C,同样≠≠

?有A≠C,即:包含关系具有“传递性”。

4.证明集合相等的方法:

?

第3/7页

(1)证明集合A,B中的元素完全相同;(具体数据)

(2)分别证明A?B和B?A即可。(抽象情况)

对于集合A,B,若A?B而且B?A,则A=B。

1.1.3集合的基本运算

教学目的:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并

集与交集;

(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补

集;

(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽

象概念的作用。

教学重点:集合的交集与并集、补集的概念;

教学难点:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”;

【知识点】

1.并集

一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)

记作:A∪B读作:“A并B”

即:A∪B={__∈A,或x∈B}

Venn图表示:

第4/7页

A与B的所有元素来表示。A与B的交集。

2.交集

一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。

记作:A∩B读作:“A交B”

即:A∩B={x∈A,且x∈B}

交集的Venn图表示

说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。

拓展:求下列各图中集合A与B的并集与交集

A

说明:当两个集合没有公共元素时,两个集合的交集是空集,不能说两个集合没有交集

3.补集

全集:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集(Universe),通常记作U。

补集:对于全集U的一个子集A,由全集U中所有不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集(complementaryset),简称为集合A的补集,

记作:CUA

即:CUA={__∈U且x∈A}

第5/7页

补集的Venn图表示

说明:补集的概念必须要有全集的限制

4.求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分

交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴进而用集合语言表达,增强数形结合的思想方法。

5.集合基本运算的一些结论:

A∩B?A,A∩B?B,A∩A=A,A∩?=?,A∩B=B∩A

A?A∪B,B?A∪B,A∪A=A,A∪?=A,A∪B=B∪A

(CUA)∪A=U,(CUA)∩A=?

若A∩B=A,则A?B,反之也成立

若A∪B=B,则A?B,反之也成立

若x∈(A∩B),则x∈A且x∈B

若x∈(A∪B),则x∈A,或x∈B

¤例题精讲:

【例1】设集合U?R,A?{x?1?x?5},B?{x3?x?9},求A?B,?U(A?B).解:在数轴上表示出集合A、B

【例2】设A?{x?Zx?6},B??1,2,3?,C??3,4,5,6?,求:

(1)A?(B?C);(2)A??A(B?C).

【例3】已知集合A?{x?2?x?4},B?{__?m},且A?B?A,求实数m的取值范围.

_且x?N}【例4】已知全集U?{__?10,,A?{2,4,5,8},B?{1,3,5,8},求

CU(A?B),CU(A?B),(CUA)?(CUB),(CUA)?(CUB),并比较它们的关系.

高中数学教案范文集合篇11

高中一年级的新同学们,当你们踏进高中校门,漫步在优美的校园时,看见老师严谨而热心的教学和师兄、师姐深切的关怀时,我想你们会暗暗决心:争取学好高中阶段的各门学科。在新的高考制度“3+综合”普遍吹散全国大地之时,代表人们基本素质的“3”科中,数学是最能体现一个人的思维能力,判断能力、反应敏捷能力和聪明程度的学科。数学直接影响着国民的基本素质和生活质量,良好的数学修养将为人的一生可持续发展奠定基础,高中阶段则应可能充分反映学习者对数学的不同需求,使每个学生都能学习适合他们自己的数学。

一、高中数学课的设置

高中数学内容丰富,知识面广泛,高一年级上学期学习第一册(上):第一章集合与简易逻辑;第二章函数;第三章数列。高一年级下学期学习第一册(下):第四章三角函数;第五章平面向量。高二年级上学期学习第二册(上):第六章不等式;第七章直线和圆的方程;第八章圆锥曲线方程。高二年级下学期学习第二册(下):第九章直线、平面、简单几何体;第十章排列、组合和概率。高二结束将有数学“会考”。高三年级文科生学习第三册(选修1):第一章统计;第二章极限与导数。高三年级理科生学习第三册(选修2):第一章概率与统计;第二章极限;第三章导数;第四章复数。高三还将进行全面复习,并有重要的“高考”。

二、初中数学与高中数学的差异。

1、知识差异。初中数学知识少、浅、难度容易、知识面笮。高中数学知识广泛,将对初中的数学知识推广和引伸,也是对初中数学知识的完善。如:初中学习的角的概念只是“0-1800”范围内的,但实际当中也有7200和“-300”等角,为此,高中将把角的概念推广到任意角,可表示包括正、负在内的所有大小角。又如:高中要学习《立体几何》(第九章直线、平面、简单几何体),将在三维空间中求角和距离等。

还将学习“排列组合”知识,以便解决排队方法种数等问题。如:①三个人排成一行,有几种排队方法,(=6种);②四人进行乒乓球双打比赛,有几种比赛场次?(答:=3种)高中将学习统计这些排列的数学方法。初中中对一个负数开平方无意义,但在高中规定了i2=--1,就使-1的平方根为±i.即可把数的概念进行推广,使数的概念扩大到复数范围等。这些知识同学们在以后的学习中将逐渐学习到。

2、学习方法的差异。

(1)初中课堂教学量小、知识简单,通过教师课堂教慢的速度,争取让全面同学理解知识点和解题方法,课后老师布置作业,然后通过大量的课堂内、外练习、课外指导达到对知识的反反复复理解,直到学生掌握。而高中数学的学习随着课程开设多(有九们课学生同时学习),每天至少上六节课,自习时间三节课,这样各科学习时间将大大减少,而教师布置课外题量相对初中减少,这样集中数学学习的时间相对比初中少,数学教师将相初中那样监督每个学生的作业和课外练习,就能达到相初中那样把知识让每个学生掌握后再进行新课。

(2)模仿与创新的区别。

初中学生模仿做题,他们模仿老师思维推理教多,而高中模仿做题、思维学生有,但随着知识的难度大和知识面广泛,学生不能全部模仿,即就是学生全部模仿训练做题,也不能开拓学生自我思维能力,学生的数学成绩也只能是一般程度。现在高考数学考察,旨在考察学生能力,避免学生高分低能,避免定势思维,提倡创新思维和培养学生的创造能力培养。初中学生大量地模仿使学生带来了不利的思维定势,对高中学生带来了保守的、僵化的思想,封闭了学生的丰富反对创造精神。如学生在解决:比较a与2a的大小时要不就错、要不就答不全面。大多数学生不会分类讨论。

3、学生自学能力的差异

初中学生自学那能力低,大凡考试中所用的解题方法和数学思想,在初中教师基本上已反复训练,老师把学生要学生自己高度深刻理解的问题,都集中表现在他的耐心的讲解和大量的训练中,而且学生的听课只需要熟记结论就可以做题(不全是),学生不需自学。但高中的知识面广,知识要全部要教师训练完高考中的习题类型是不可能的,只有通过较少的、较典型的一两道例题讲解去融会贯通这一类型习题,如果不自学、不靠大量的阅读理解,将会使学生失去一类型习题的解法。另外,科学在不断的发展,考试在不断的改革,高考也随着全面的改革不断的深入,数学题型的开发在不断的多样化,近年来提出了应用型题、探索型题和开放型题,只有靠学生的自学去深刻理解和创新才能适应现代科学的发展。

其实,自学能力的提高也是一个人生活的需要,他从一个方面也代表了一个人的素养,人的一生只有18---24年时间是有导师的学习,其后半生,最精彩的人生是人在一生学习,靠的自学最终达到了自强。

4、思维习惯上的差异

初中学生由于学习数学知识的范围小,知识层次低,知识面笮,对实际问题的思维受到了局限,就几何来说,我们都接触的是现实生活中三维空间,但初中只学了平面几何,那么就不能对三维空间进行严格的逻辑思维和判断。代数中数的范围只限定在实数中思维,就不能深刻的解决方程根的类型等。高中数学知识的多元化和广泛性,将会使学生全面、细致、深刻、严密的分析和解决问题。也将培养学生高素质思维。提高学生的思维递进性。

5、定量与变量的差异

初中数学中,题目、已知和结论用常数给出的较多,一般地,答案是常数和定量。学生在分析问题时,大多是按定量来分析问题,这样的思维和问题的解决过程,只能片面地、局限地解决问题,在高中数学学习中我们将会大量地、广泛地应用代数的可变性去探索问题的普遍性和特殊性。如:求解一元二次方程时我们采用对方程ax2+bx+c=0(a≠0)的求解,讨论它是否有根和有根时的所有根的情形,使学生很快的掌握了对所有一元二次方程的解法。另外,在高中学习中我们还会通过对变量的分析,探索出分析、解决问题的思路和解题所用的数学思想。

三、如何学好高中数学

良好的开端是成功的一半,高中数学课即将开始与初中知识有联系,但比初中数学知识系统。高一数学中我们将学习函数,函数是高中数学的重点,它在高中数学中是起着提纲的作用,它融汇在整个高中数学知识中,其中有数学中重要的数学思想方法;如:函数与方程思想、数形结合思想等,它也是高考的重点,近年来,高考压轴题都以函数题为考察方法的。高考题中与函数思想方法有关的习题占整个试题的60%以上。

1、有良好的学习兴趣

两千多年前孔子说过:“知之者不如好之者,好之者不如乐之者。”意思说,干一件事,知道它,了解它不如爱好它,爱好它不如乐在其中。“好”和“乐”就是愿意学,喜欢学,这就是兴趣。兴趣是最好的老师,有兴趣才能产生爱好,爱好它就要去实践它,达到乐在其中,有兴趣才会形成学习的主动性和积极性。在数学学习中,我们把这种从自发的感性的乐趣出发上升为自觉的理性的“认识”过程,这自然会变为立志学好数学,成为数学学习的成功者。那么如何才能建立好的学习数学兴趣呢?

(1)课前预习,对所学知识产生疑问,产生好奇心。

(2)听课中要配合老师讲课,满足感官的兴奋性。听课中重点解决预习中疑问,把老师课堂的提问、停顿、教具和模型的演示都视为欣赏音乐,及时回答老师课堂提问,培养思考与老师同步性,提高精神,把老师对你的提问的评价,变为鞭策学习的动力。

(3)思考问题注意归纳,挖掘你学习的潜力。

(4)听课中注意老师讲解时的数学思想,多问为什么要这样思考,这样的方法怎样是产生的?

(5)把概念回归自然。所有学科都是从实际问题中产生归纳的,数学概念也回归于现实生活,如角的概念、至交坐标系的产生、极坐标系的产生都是从实际生活中抽象出来的。只有回归现实才能使对概念的理解切实可靠,在应用概念判断、推理时会准确。

2、建立良好的学习数学习惯。

习惯是经过重复练习而巩固下来的稳重持久的`条件反射和自然需要。建立良好的学习数学习惯,会使自己学习感到有序而轻松。高中数学的良好习惯应是:多质疑、勤思考、好动手、重归纳、注意应用。学生在学习数学的过程中,要把教师所传授的知识翻译成为自己的特殊语言,并永久记忆在自己的脑海中。另外还要保证每天有一定的自学时间,以便加宽知识面和培养自己再学习能力。

3、有意识培养自己的各方面能力

数学能力包括:逻辑推理能力、抽象思维能力、计算能力、空间想象能力和分析解决问题能力共五大能力。这些能力是在不同的数学学习环境中得到培养的。在平时学习中要注意开发不同的学习场所,参与一切有益的学习实践活动,如数学第二课堂、数学竞赛、智力竞赛等活动。

平时注意观察,比如,空间想象能力是通过实例净化思维,把空间中的实体高度抽象在大脑中,并在大脑中进行分析推理。其它能力的培养都必须学习、理解、训练、应用中得到发展。特别是,教师为了培养这些能力,会精心设计“智力课”和“智力问题”比如对习题的解答时的一题多解、举一反三的训练归类,应用模型、电脑等多媒体教学等,都是为数学能力的培养开设的好课型,在这些课型中,学生务必要用全身心投入、全方位智力参与,最终达到自己各方面能力的全面发展。

四、其它注意事项

1、注意化归转化思想学习。

人们学习过程就是用掌握的知识去理解、解决未知知识。数学学习过程都是用旧知识引出和解决新问题,当新的知识掌握后再利用它去解决更新知识。初中知识是基础,如果能把新知识用旧知识解答,你就有了化归转化思想了。可见,学习就是不断地化归转化,不断地继承和发展更新旧知识。

2、学会数学教材的数学思想方法。

数学教材是采用蕴含披露的方式将数学思想溶于数学知识体系中,因此,适时对数学思想作出归纳、概括是十分必要的。概括数学思想一般可分为两步进行:一是揭示数学思想内容规律,即将数学对象其具有的属性或关系抽取出来,二是明确数学思想方法知识的联系,抽取解决全体的框架。实施这两步的措施可在课堂的听讲和课外的自学中进行。

课堂学习是数学学习的主战场。课堂中教师通过讲解、分解教材中的数学思想和进行数学技能地训练,使高中学生学习所得到丰富的数学知识,教师组织的科研活动,使教材中的数学概念、定理、原理得到最大程度的理解、挖掘。如初中学习的相反数概念教学中,教师的课堂教学往往有以下理解:①从定义角度求3、-5的相反数,相反数是的数是_____.②从数轴角度理解:什么样的两点表示数是互为相反数的。(关于原点对称的点)③从绝对值角度理解:绝对值_______的两个数是互为相反数的。④相加为零的两个数互为相反数吗?这些不同角度的教学会开阔学生思维,提高思维品质。望同学们把握好课堂这个学习的主战场。

五、学数学的几个建议。

1、记数学笔记,特别是对概念理解的不同侧面和数学规律,教师为备战高考而加的课外知识。

2、建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。

3、记忆数学规律和数学小结论。

4、与同学建立好关系,争做“小老师”,形成数学学习“互助组”。

5、争做数学课外题,加大自学力度。

6、反复巩固,消灭前学后忘。

7、学会总结归类。可:①从数学思想分类②从解题方法归类③从知识应用上分类

同学们在高中有优美的学习环境,有一群乐于事业的热心教师,全体教师经验丰富,他们甘愿为你们做铺路石直至你们走进高等学校大门。我们数学组的全体教师一定会使你们成为数学学习的成功。

高中数学教案范文集合篇12

一、设计思想

本节课是数列的起始课,着重研究数列的概念,明确数列与函数的关系,用函数的思想看待数列。通过引导学生通过对实例的分析体会数列的有关概念,并与集合类比,通过类比,学生能认识到数列的明确性、有序性和可重复性的特点。在体会数列与集合的区别中,学生意识到数列中的每一项与所在位置有关,并通研究数列的表示法,学生意识到数列中还有潜在的自变量——序号,从而发现数列也是一种特殊的函数,能用函数的观点重新看待数列。

二、教学目标

1.通过自然界和生活中实例,学生意识到有序的数是存在的,能概况出数列的概念,并能辨析出数列和集合的区别;

2.通过思考数列的表示,学生意识到可以用表达式简洁的表达数列,能分析出数列的项是与序号相关,需要借助于序号来表示数列的项;

3.在用表达式表示数列的过程中,学生发现项与序号的对应关系,认识到数列是一种特殊的函数,能用函数的观点重新研究数列;

4.通过对一列数的观察,能用联系的观点看待数列,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.

5.从现实出发,学生能抽象出现实生活中的数列

重点:理解数列的概念,认识数列是反映自然规律的基本数学模型难点:认识数列是一种特殊的函数,发现数列与函数之间的关系

三、教学过程

活动一:生活中实例,概括出数列的概念

1.背景引入:

观察以下情境:

情境1:各年树木的枝干数:1,1,2,3,5,8,...情境2:某彗星出现的年份:1740,1823,1906,1989,2072,...

情境3:细胞分裂的个数:1,2,4,8,16,...情境4:A同学最近6次考试的名次17,18,5,8,10,8

情境5:奇虎360最近一个周每日的收盘价:

问题1:以上各情境中都有一系列的数,你看了这些数,有什么感受?

或者有什么共同特征?

共同特点:

(1)排成一列,可以表达信息

(2)顺序不能交换,否则意义不一样.

设计思想:通过例子,学生感受到数列在现实生活中是大量存在的,一列数的顺序是蕴含信息的,从而感受到数列的有序性。

2.数列的概念

(1)数列、项的定义:

通过上述的例子,让学生思考以上一列数据共同的特征,从而归纳出数列的定义:

按照一定次序排列的一列数称为数列,数列中的每一个数叫做这个数列的项。问题2:能否用准确的语言给我描述一下情境4中的数列?

设计思想:通过让学生描述,学生再次体会数列中除了数之外,还蕴含着重要的信息:序号。

问题3:这两个数都是8,表示的含义是否一样?

不一样,第四项,第六项,即每一项结合序号才有意义,所以,描述数列的项时必须包含位置信息,即序号。

排在第一位的叫首项,排在第二位的叫第二项……排在第n位的数

问题4:根据对数列的理解,你能否举出数列的例子?

答:我校高一年级各班的人数。

问题5:能否抽象出数列的一般形式?

a1,a2,a3,...,an,...,记为?an?

(2)数列与集合的区别

问题6:数列是集合吗?

通过与集合的特点进行对比,更清楚的数列的特点。

让学生与前一章学习的集合做比较,可以更清楚的了解到数列的本质性的定义。也符合建构主义的旧知基础上形成新知的有效学习。

(3)数列的分类?能不能不讲?

活动二:思考数列的表示——通项公式

3.通项公式的概念

问题7:对于上述情境中的数列,有没有更简洁的表示方式?

学生活动:学生可能会用序号n来表示,问学生为什么用n来表示,引出通项公式的概念

一般地,如果数列?an?的第n项与序号n之间的关系可以用一个公式来表示.那么这个公式叫做这个数列的通项公式.

4.通项公式的存在性

问题8:是否任意一个数列都能写出通项公式?

写出通项公式

活动三:用函数的观点看待数列

5.数列也是函数

问题9:在数列?an?中,对于每一个正整数n(或n??1,2,...,k?),是不是都有一个数an与之对应?

问题10:数列是不是函数?

通过前铺垫,学生观察数列的项与它数列中的序号之间的对应关系,让学生理解数列是函数。

把序号看作看作自变量,数列中的项看作随之变动的量,用函数的观点来深化数列的概念。

6.用函数的观点看待数列

问题11:所以,除了用解析式表示数列,还有哪些方法?

再从函数的表示方法过渡到数列的三种表示方法:列表法,图象法,通项公式法。学生通过观察发现数列的图象是一些离散的点。

例2.已知数列?an?的通项公式,写出这个数列的前5项,并作出它的图象:(?1)nn(1)an?;(2).an?nn?12

问题12:数列的图象的特点是什么?

数列的图象是一些孤立的点。

通过学生观察数列的项与它数列中的序号之间的对应关系,让学生理解数列是以特殊的函数,再从函数的表示方法过度到数列的三种表示方法:列表法,图象法,数列的通项。学生通过观察发现数列的图象是一些离散的点。最后通过通项求数列的项,进而升华到观察数列的前几项写出数列的通项。

【课堂小结】

1.数列的概念;

2.求数列的通项公式的要领.

高中数学教案范文集合篇13

一:说教材

平面向量的数量积是两向量之间的乘法,而平面向量的坐标表示把向量之间的运算转化为数之间的运算。本节内容是在平面向量的坐标表示以及平面向量的数量积及其运算律的基础上,介绍了平面向量数量积的坐标表示,平面两点间的距离公式,和向量垂直的坐标表示的充要条件。为解决直线垂直问题,三角形边角的有关问题提供了很好的办法。本节内容也是全章重要内容之一。

二:说学习目标和要求

通过本节的学习,要让学生掌握

(1):平面向量数量积的坐标表示。

(2):平面两点间的距离公式。

(3):向量垂直的坐标表示的充要条件。

以及它们的一些简单应用,以上三点也是本节课的重点,本节课的难点是向量垂直的坐标表示的充要条件以及它的灵活应用。

三:说教法

在教学过程中,我主要采用了以下几种教学方法:

(1)启发式教学法

因为本节课重点的坐标表示公式的推导相对比较容易,所以这节课我准备让学生自行推导出两个向量数量积的坐标表示公式,然后引导学生发现几个重要的结论:如模的计算公式,平面两点间的距离公式,向量垂直的坐标表示的充要条件。

(2)讲解式教学法

主要是讲清概念,解除学生在概念理解上的疑惑感;例题讲解时,演示解题过程!

主要辅助教学的手段(powerpoint)

(3)讨论式教学法

主要是通过学生之间的相互交流来加深对较难问题的理解,提高学生的自学能力和发现、分析、解决问题以及创新能力。

四:说学法

学生是课堂的主体,一切教学活动都要围绕学生展开,借以诱发学生的学习兴趣,增强课堂上和学生的交流,从而达到及时发现问题,解决问题的目的。通过精讲多练,充分调动学生自主学习的积极性。如让学生自己动手推导两个向量数量积的坐标公式,引导学生推导4个重要的结论!并在具体的问题中,让学生建立方程的思想,更好的解决问题!

五:说教学过程

这节课我准备这样进行:

首先提出问题:要算出两个非零向量的数量积,我们需要知道哪些量?

继续提出问题:假如知道两个非零向量的坐标,是不是可以用这两个向量的坐标来表示这两个向量的数量积呢?

引导学生自己推导平面向量数量积的坐标表示公式,在此公式基础上还可以引导学生得到以下几个重要结论:

(1) 模的计算公式

(2)平面两点间的距离公式。

(3)两向量夹角的余弦的坐标表示

(4)两个向量垂直的标表示的充要条件

第二部分是例题讲解,通过例题讲解,使学生更加熟悉公式并会加以应用。

例题1是书上122页例1,此题是直接用平面向量数量积的坐标公式的题,目的是让学生熟悉这个公式,并在此题基础上,求这两个向量的夹角?目的是让学生熟悉两向量夹角的余弦的坐标表示公式例题2是直接证明直线垂直的题,虽然比较简单,但体现了一种重要的证明方法,这种方法要让学生掌握,其实这一例题也是两个向量垂直坐标表示的充要条件的一个应用:即两个向量的数量积是否为零是判断相应的两条直线是否垂直的重要方法之一。

例题3是在例2的基础上稍微作了一下改变,目的是让学生会应用公式来解决问题,并让学生在这要有建立方程的思想。

再配以练习,让学生能熟练的应用公式,掌握今天所学内容。

高中数学教案范文集合篇14

一、学习目标与自我评估

1 掌握利用单位圆的几何方法作函数 的图象

2 结合 的图象及函数周期性的定义了解三角函数的周期性,及最小正周期

3 会用代数方法求 等函数的周期

4 理解周期性的几何意义

二、学习重点与难点

“周期函数的概念”, 周期的求解。

三、学法指导

1、 是周期函数是指对定义域中所有 都有,即 应是恒等式。

2、周期函数一定会有周期,但不一定存在最小正周期。

四、学习活动与意义建构

五、重点与难点探究

例1、若钟摆的高度 与时间 之间的函数关系如图所示

(1)求该函数的周期;

(2)求 时钟摆的高度。

例2、求下列函数的周期。

(1) (2)

总结:(1)函数 (其中 均为常数,且的周期T= 。

(2)函数 (其中 均为常数,且的周期T= 。

例3、求证: 的周期为 。

例4、(1)研究 和 函数的图象,分析其周期性。(2)求证: 的周期为 (其中 均为常数,

总结:函数 (其中 均为常数,且__的周期T= 。

例5、(1)求 的周期。

(2)已知 满足 ,求证: 是周期函数

课后思考:能否利用单位圆作函数 的图象。

六、作业:

七、自主体验与运用

1、函数 的周期为 ( )

A、 B、 C、 D、

2、函数 的最小正周期是 ( )

A、 B、 C、 D、

3、函数 的最小正周期是 ( )

A、 B、 C、 D、

4、函数 的周期是 ( )

A、 B、 C、 D、

5、设 是定义域为R,最小正周期为 的函数,若 ,则 的值等于 (  )

A、1 B、 C、0 D、

6、函数 的最小正周期是 ,则

7、已知函数 的最小正周期不大于2,则正整数

的最小值是

8、求函数 的最小正周期为T,且 ,则正整数的值是

9、已知函数 是周期为6的奇函数,且 则

10、若函数 ,则

11、用周期的定义分析 的周期。

12、已知函数 ,如果使 的周期在 内,求正整数 的值

13、一机械振动中,某质子离开平衡位置的位移 与时间 之间的函数关系如图所示:

(1) 求该函数的周期;

(2) 求 时,该质点离开平衡位置的位移。

14、已知 是定义在R上的函数,且对任意 有成立,

(1) 证明: 是周期函数;

(2) 若 求 的值。

高中数学教案范文集合篇15

自我介绍:;我姓鞠,今后我将和大家一起学习高中数学课程,手机;讨论数学:;相信大家对于高中学习都充满着好奇,和初中相比,高;我们不急于上新课,我想和大家聊一聊数学,一起来思;一、为什么要学习数学?;数学是科学的大门和钥匙;马克思说:一种科学只有在成功地运用数学时,才算达;著名数学家华罗庚在《人民日报》精彩描述:数学在“;大家知道海王星是怎高中数学开学第一课

自我介绍:

我姓鞠,今后我将和大家一起学习高中数学课程,手机:????,QQ:????。告诉我的通讯方式是希望能拓宽与大家交流的平台。希望能与大家在课堂中相识,在生活中相知,不仅能成为你们知识的传授者,方法的指引者,更希望成为你们情感上的依赖者,成为朋友。

讨论数学:

相信大家对于高中学习都充满着好奇,和初中相比,高中课程与初中课程有很大的不同。今天这节课

我们不急于上新课,我想和大家聊一聊数学,一起来思考为什么要学习数学及如何学好数学这两个问题。

一、为什么要学习数学?

数学是科学的大门和钥匙。

马克思说:一种科学只有在成功地运用数学时,才算达到完善的地步。

著名数学家华罗庚在《人民日报》精彩描述:数学在“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁”等方面无处不有重要贡献。

大家知道海王星是怎么发现的,冥王星又是怎么被请出十大行星行列的???

其实在我们的周围有很多事情都是可以用数学可以来解决的,无非很多人都没有用数学的眼光来看待。

当然,我们学习的数学只是数学学科体系中很基础,很小的一部分。现在课本上学的未必能直接应用于生活,主要是为以后学习更高层次的理科打好基础,同时,也为了掌握一些数学的思考方法以及分析问题解决问题的思维方式。哲学家培根说过:“读诗使人灵秀,读历史使人明智,学逻辑使人周密,学哲学使人善辩,学数学使人聪明?”,也有人形象地称数学是思维的体操。下面我们通过具体的例子来体验一下某些数学思想方法和思维方式。

故事一:据说国际象棋是古印度的一位宰相发明的。国王很欣赏他的这项发明,问他的宰相要什么赏赐。聪明的宰相说,“我所要的从一粒谷子(没错,是1粒,不是1两或1斤)开始。在这个有64格的棋盘上,第一格里放1粒谷子,第二格里放2粒,第三格里放4粒,即每下一格粒数加倍,??如此下去,一直放满到棋盘上的64格。这就是我所要的赏赐。”国王觉得宰相要的实在不多,就叫人按宰相的要求赏赐。但后来发现即使把全国所有的谷子抬来也远远不够。

数学游戏:两人相继轮流往长方形桌子上放同样大小的硬币,硬币一定要平放在桌面上,后放的硬币不能压在先放的硬币上,放最后一颗的硬币的人算赢。应该先放还是后放才有必胜的把握。

数学思想:退到最简单、最特殊的地方。

故事二:聪明的渡边:20世纪40年代末,手写工具突破性进展圆珠笔问世,它以价廉、方便、书写流利在社会上广泛流传,但写到20万字时就会因圆珠磨小而漏油,影响了销售。工程师们从圆珠质量入手,从改进油墨性能入手进行改良,但收效甚微。于是厂家打出广告:解决此问题获奖金50万元。当时山地制笔厂的青年工人渡边看到女儿把圆珠笔用到快漏油时就不用这一现象中受到启发,很好地解决了这一问题,你认为他会怎么做呢?

渡边的成功之处就在于思维角度新,从问题的侧面轻巧取胜。也正体现了数学学习中经常用到的发散式思维。在数学学习中,既要有集中式思维又要有发散式思维。集中式思维是一种常用思维渠道,即为对问题的归纳,联系思维方式,表现为对解题方法的模仿和继承;而发散式思维即对问题开拓、创新,表现为对问题举一反三,触类旁通。在解决具体问题中,我们应该将两种思维方式相结合。

学数学有利于培养人的思维品质:结构意识、整体意识、抽象意识、化归意识、优化意识、反思意识,尽管数学在培养学生的这些思维品质方面和其他学科存在着交集,但数学在其中的地位是无法被代替的。总之,学习数学可以使人思考问题更合乎逻辑,更有条理,更严密精确,更深入简洁,更善于创造??

二、如何学好高中数学

与初中数学相比,高中数学更注重提高数学思维能力,要求同学们在学习数学和运用数学解决问题时,不断地经历直观感知、观察发现、归纳类比、空间想象、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等思维过程。高一数学一开始便在必修1中触及集合语言、函数模型,在必修2中涉及空间立体图形、坐标法、文字符号图形语言的转换,相对初中数学而言,抽象程度高,逻辑推理强,知识难度大,同学们会感到难学,认为数学神秘莫测,有些章节如听天书,从而可能会产生畏惧感。我认为学好高中数学要注意以下几点:

第一:培养数学兴趣

只有爱好某项事业或专业才能对它产生兴趣,才能激发学习、工作和自觉性与积极性;很难说哪个人天生爱好数学,爱好都是在生活和学习中逐渐产生的。如果你认为数学枯燥、乏味,那么你不可能真正学好数学,只有在学习中,逐渐发现数学的简单美、对称美以及数学高度的严谨与和谐,才能在学习过程中喜欢这门学科,才能产生兴趣。爱因斯坦说:兴趣是最好的老师;在诸多非智力因素中,兴趣处于一种特殊的地位,她可以激发一定的情感,唤起某种动机,培养人的意志,也可以改变人的态度。

第二:要改变一个观念。

有人会说自己的基础不好。那我问下什么是基础?今天所学的知识就是明天的基础。明天学习的知识就是后天的基础。所以要学好每一天的内容,那么你打的基础就是最扎实的了。所以现在你们是在同一个起跑线上的,无所谓基础好不好。今后的学习中,我会照顾大多数同学的数学基础。

第三:养成良好的学习习惯

㈠课前预习。怎样预习呢?就是自己在上课之前把内容先看一边,把自己不懂的地方做个记号或者打个问号,以至于上课的时候重点听,这样才能够很快提高自己的水平。但是预习不是很随便的把课本看一边,预习有个目标,那就是通过预习可以把书本后面的练习题可以自己独立的完成。一中的同学预习就已经有好几个层次了,先是课本,再是精编,再是高考题典,上课对于他们来说是第一轮高考复习。

㈡上课认真听讲。上课的时候准备课本,一只笔,一本草稿。做不做笔记你们自己决定,不过我不大提倡数学课做笔记的。不过有一点,有些知识点比较重要,课本上又没有的,我要求你们把它写在课本上的相应的空白地方。还有如果你觉得某个例题比较新或者比较重要,也可以把它记在书本的相应位置上,这样以后复习起来就一目了然了。那么草稿要来干什么的呢?课堂上你可以自己演算还有做课堂练习。

㈢关于作业。绝对不允许有抄作业的情况发生。如果我发现有谁抄作业,那么既然他这样喜欢抄,我就要你把当天的作业多抄几遍给我。那有人会问,碰到不会做的题目怎么办?有两个办法:一、向同学请教,请教做题目的思路,而不是整个过程和答案。同学之间也要相互帮助,如果你让他抄袭你的作业这样不是帮助他而是害他,这个道理大家应该明白吧。我非常提倡同学之间的相互讨论问题的,这样才能够相互促进提高。二、向老师请教,要养成多想多问的习惯。

㈣准备一本笔记本,作为自己的问题集。把平时自己不懂的和不大理解的还有易错的记录下来,并且要及时的消化,不懂的地方问老师。这是一个很好的办法,到考试的时候就可以有重点、有针对性的自己复习了。我高中的时候就是采用这样的方法把数学成绩提高。

好的开始是成功的一半,新的学期开始了,请大家调整好自己的思想,找到学习的原动力。播种一种思想,收获一种行为;播种一种行为,收获一种习惯;播种一种习惯,收获一种性格;播种一种性格,收获一种命运。愿每位同学都有个好的开始。

高中数学教案范文集合篇16

一.教学目标:

1.知识与技能

(1)理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集

(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集

(3)能使用venn图表达集合的运算,体会直观图示对理解抽象概念的作用

2.过程与方法

学生通过观察和类比,借助venn图理解集合的基本运算

3.情感.态度与价值观

(1)进一步树立数形结合的思想

(2)进一步体会类比的作用

(3)感受集合作为一种语言,在表示数学内容时的简洁和准确

二.教学重点.难点

重点:交集与并集,全集与补集的概念

难点:理解交集与并集的概念,符号之间的区别与联系

三.学法与教学用具

1.学法:学生借助venn图,通过观察、类比、思考、交流和讨论等,理解集合的基本运算

2.教学用具:投影仪

四.教学思路

(一)创设情景,揭示课题

问题1:我们知道,实数有加法运算。类比实数的加法运算,集合是否也可以“相加”呢?

请同学们考察下列各个集合,你能说出集合c与集合a、b之间的关系吗?

引导学生通过观察,类比、思考和交流,得出结论。教师强调集合也有运算,这就是我们本节课所要学习的内容。

(二)研探新知

l.并集

—般地,由所有属于集合a或属于集合b的元素所组成的集合,称为集合a与b的并集

记作:a∪b

读作:a并b

其含义用符号表示为:

用venn图表示如下:

请同学们用并集运算符号表示问题1中a,b,c三者之间的关系

练习、检查和反馈

(1)设a={4,5,6,8),b={3,5,7,8),求a∪b

(2)设集合

让学生独立完成后,教师通过检查,进行反馈,并强调:

(1)在求两个集合的并集时,它们的公共元素在并集中只能出现一次

(2)对于表示不等式解集的集合的运算,可借助数轴解题

2.交集

(1)思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?

请同学们考察下面的问题,集合a、b与集合c之间有什么关系?

②b={是新华中学20--年9月入学的高一年级同学},c={是新华中学20--年9月入学的高一年级女同学}

教师组织学生思考、讨论和交流,得出结论,从而得出交集的定义;

一般地,由属于集合a且属于集合b的所有元素组成的集合,称为a与b的交集

记作:a∩b

读作:a交b

其含义用符号表示为:

接着教师要求学生用venn图表示交集运算

(2)练习、检查和反馈

①设平面内直线上点的集合为,直线上点的集合为,试用集合的运算表示的位置关系

②学校里开运动会,设a={是参加一百米跑的同学},b={是参加二百米跑的同学},c={是参加四百米跑的同学},学校规定,在上述比赛中,每个同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释集合运算a∩b与a∩c的含义

学生独立练习,教师检查,作个别指导,并对学生中存在的问题进行反馈和纠正

(三)学生自主学习,阅读理解

1.教师引导学生阅读教材第10~11页中有关补集的内容,并思考回答下例问题:

(1)什么叫全集?

(2)补集的含义是什么?用符号如何表示它的含义?用venn图又表示?

(3)已知集合

(4)设s={是至少有一组对边平行的四边形},a={是平行四边形},b={是菱形},c={是矩形},求。

在学生阅读、思考的过程中,教师作个别指导,待学生经过阅读和思考完后,请学生回答上述问题,并及时给予评价

(四)归纳整理,整体认识

1.通过对集合的学习,同学对集合这种语言有什么感受?

2.并集、交集和补集这三种集合运算有什么区别?

(五)作业

1.课外思考:对于集合的基本运算,你能得出哪些运算规律?

2.请你举出现实生活中的一个实例,并说明其并集,交集和补集的现实含义

3.书面作业:教材第12页习题1.1a组第7题和b组第4题

高中数学教案范文集合篇17

【摘要】鉴于大家对数学网十分关注,小编在此为大家整理了此文空间几何体的三视图和直观图高一数学教案,供大家参考!

本文题目:空间几何体的三视图和直观图高一数学教案

第一课时 1.2.1中心投影与平行投影1.2.2空间几何体的三视图

教学要求:能画出简单几何体的三视图;能识别三视图所表示的空间几何体.

教学重点:画出三视图、识别三视图.

教学难点:识别三视图所表示的空间几何体.

教学过程:

一、新课导入:

1.讨论:能否熟练画出上节所学习的几何体?工程师如何制作工程设计图纸?

2.引入:从不同角度看庐山,有古诗:横看成岭侧成峰,远近高低各不同。不识庐山真面目,只缘身在此山中。对于我们所学几何体,常用三视图和直观图来画在纸上.

三视图:观察者从不同位置观察同一个几何体,画出的空间几何体的图形;

直观图:观察者站在某一点观察几何体,画出的空间几何体的图形.

用途:工程建设、机械制造、日常生活.

二、讲授新课:

1.教学中心投影与平行投影:

①投影法的提出:物体在光线的照射下,就会在地面或墙壁上产生影子。人们将这种自然现象加以科学的抽象,总结其中的规律,提出了投影的方法。

②中心投影:光由一点向外散射形成的投影。其投影的大小随物体与投影中心间距离的变化而变化,所以其投影不能反映物体的实形.

③平行投影:在一束平行光线照射下形成的投影.分正投影、斜投影.

讨论:点、线、三角形在平行投影后的结果.

2.教学柱、锥、台、球的三视图:

定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图

讨论:三视图与平面图形的关系?画出长方体的三视图,并讨论所反应的长、宽、高

结合球、圆柱、圆锥的模型,从正面(自前而后)、侧面(自左而右)、上面(自上而下)三个角度,分别观察,画出观察得出的各种结果.正视图、侧视图、俯视图.

③试画出:棱柱、棱锥、棱台、圆台的三视图.(

④讨论:三视图,分别反应物体的哪些关系(上下、左右、前后)?哪些数量(长、宽、高)

正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;

俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;

侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。

⑤讨论:根据以上的三视图,如何逆向得到几何体的形状.

(试变化以上的三视图,说出相应几何体的摆放)

3.教学简单组合体的三视图:

①画出教材P16图(2)、(3)、(4)的三视图.

②从教材P16思考中三视图,说出几何体.

4.练习:

①画出正四棱锥的三视图.

画出右图所示几何体的三视图.

③右图是一个物体的正视图、左视图和俯视图,试描述该物体的形状.

5.小结:投影法;三视图;顺与逆

三、巩固练习: 练习:教材P171、2、3、4

第二课时1.2.3空间几何体的直观图

教学要求:掌握斜二测画法;能用斜二测画法画空间几何体的直观图.

教学重点:画出直观图.

67722