教育巴巴 > 高中教案 > 数学教案 >

高中数学教案模板表格范文

时间: 新华 数学教案

编写教案有助于教师更好地把握教学目标和教学内容,提高教学质量和效果。这里分享一些高中数学教案模板表格范文下载,供大家写高中数学教案模板表格范文参考。

高中数学教案模板表格范文篇1

说教材:

1、地位、作用和特点:

《》是高中数学课本第册(修)的第章“”的第节内容,高中数学课本说课稿。

本节是在学习了之后编排的。通过本节课的学习,既可以对的知识进一步巩固和深化,又可以为后面学习打下基础,所以是本章的重要内容。此外,《》的知识与我们日常生活、生产、科学研究有着密切的联系,因此学习这部分有着广泛的现实意义。

教学目标:

根据《教学大纲》的要求和学生已有的知识基础和认知能力,确定以下教学目标:

(1)知识目标:A、B、C

(2)能力目标:A、B、C

(3)德育目标:A、B

教学的重点和难点:

(1)教学重点:

(2)教学难点:

二、说教法:

基于上面的教材分析,我根据自己对研究性学习“启发式”教学模式和新课程改革的理论认识,结合本校学生实际,主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得最佳效果。另外还注意获得和交换信息渠道的综合、教学手段的综合和课堂内外的综合。并且在整个教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学过程真正成为学生的学习过程,以思维教学代替单纯的记忆教学。三是注重渗透数学思考方法(联想法、类比法、数形结合等一般科学方法)。让学生在探索学习知识的过程中,领会常见数学思想方法,培养学生的探索能力和创造性素质。四是注意在探究问题时留给学生充分的时间,以利于开放学生的思维。当然这就应在处理教学内容时能够做到叶老师所说“教就是为了不教”。因此,拟对本节课设计如下教学程序:

导入新课新课教学

反馈发展

三、说学法:

学生学习的过程实际上就是学生主动获取、整理、贮存、运用知识和获得学习能力的过程,因此,我觉得在教学中,指导学生学习时,应尽量避免单纯地、直露地向学生灌输某种学习方法。有效的能被学生接受的学法指导应是渗透在教学过程中进行的,是通过优化教学程序来增强学法指导的目的性和实效性。在本节课的教学中主要渗透以下几个方面的学法指导。

1、培养学生学会通过自学、观察、实验等方法获取相关知识,使学生在探索研究过程中分析、归纳、推理能力得到提高。

本节教师通过列举具体事例来进行分析,归纳出,并依

据此知识与具体事例结合、推导出,这正是一个分析和推理的全过程。

2、让学生亲自经历运用科学方法探索的过程。主要是努力创设应用科学方法探索、解决问题情境,让学生在探索中体会科学方法,如在讲授时,可通过

演示,创设探索规律的情境,引导学生以可靠的事实为基础,经过抽象思维揭示内在规律,从而使学生领悟到把可靠的事实和深刻的理论思维结合起来的特点。

3、让学生在探索性实验中自己摸索方法,观察和分析现象,从而发现“新”的问题或探索出“新”的规律。从而培养学生的发散思维和收敛思维能力,激发学生的创造动力。在实践中要尽可能让学生多动脑、多动手、多观察、多交流、多分析;老师要给学生多点拨、多启发、多激励,不断地寻找学生思维和操作上的闪光点,及时总结和推广。

4、在指导学生解决问题时,引导学生通过比较、猜测、尝试、质疑、发现等探究环节选择合适的概念、规律和解决问题方法,从而克服思维定势的消极影响,促进知识的正向迁移。如教师引导学生对比中,蕴含的本质差异,从而摆脱知识迁移的负面影响。这样,既有利于学生养成认真分析过程、善于比较的好习惯,又有利于培养学生通过现象发掘知识内在本质的能力。

四、教学过程:

(一)、课题引入:

教师创设问题情景(创设情景:A、教师演示实验。B、使用多媒体模拟一些比较有趣、与生活实践比较有关的事例。C、讲述数学科学史上的有关情况。)激发学生的探究欲望,引导学生提出接下去要研究的问题。

(二)、新课教学:

1、针对上面提出的问题,设计学生动手实践,让学生通过动手探索有关的知识,并引导学生进行交流、讨论得出新知,并进一步提出下面的问题。

2、组织学生进行新问题的实验方法设计—这时在设计上最好是有对比性、数学方法性的设计实验,指导学生实验、通过多媒体的辅助,显示学生的实验数据,模拟强化出实验情况,由学生分析比较,归纳总结出知识的结构。

(三)、实施反馈:

1、课堂反馈,迁移知识(最好迁移到与生活有关的例子)。让学生分析有关的问题,实现知识的升华、实现学生的再次创新。

2、课后反馈,延续创新。通过课后练习,学生互改作业,课后研实验,实现课堂内外的综合,实现创新精神的延续。

五、板书设计:

在教学中我把黑板分为三部分,把知识要点写在左侧,中间知识推导过程,右边实例应用。

六、说课综述:

以上是我对《》这节教材的认识和对教学过程的设计。在整个课堂中,我引导学生回顾前面学过的知识,并把它运用到对的认识,使学生的认知活动逐步深化,既掌握了知识,又学会了方法。

总之,对课堂的设计,我始终在努力贯彻以教师为主导,以学生为主体,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力、应用知识解决实际问题的能力和创造能力为指导思想。并且能从各种实际出发,充分利用各种教学手段来激发学生的学习兴趣,体现了对学生创新意识的培养。

高中数学教案模板表格范文篇2

人教版高中数学必修5教案

(一)课标要求

本章的中心内容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落实在解三角形的应用上。通过本章学习,学生应当达到以下学习目标:

(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题。

(2)能够熟练运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。

(二)编写意图与特色

1.数学思想方法的重要性

数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。

本章重视与内容密切相关的数学思想方法的教学,并且在提出问题、思考解决问题的策略等方面对学生进行具体示范、引导。本章的两个主要数学结论是正弦定理和余弦定理,它们都是关于三角形的边角关系的结论。在初中,学生已经学习了相关边角关系的定性的知识,就是“在任意三角形中有大边对大角,小边对小角”,“如果已知两个三角形的两条对应边及其所夹的角相等,那么这两个三角形全”等。

教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题:“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的问题。”设置这些问题,都是为了加强数学思想方法的教学。

2.注意加强前后知识的联系

加强与前后各章教学内容的联系,注意复习和应用已学内容,并为后续章节教学内容做好准备,能使整套教科书成为一个有机整体,提高教学效益,并有利于学生对于数学知识的学习和巩固。

本章内容处理三角形中的边角关系,与初中学习的三角形的边与角的基本关系,已知三角形的边和角相等判定三角形全等的知识有着密切联系。教科书在引入正弦定理内容时,让学生从已有的几何知识出发,提出探究性问题“在任意三角形中有大边对大角,小边对小角的边角关系.我们是否能得到这个边、角的关系准确量化的表示呢?”,在引入余弦定理内容时,提出探究性问题“如果已知三角形的两条边及其所夹的角,根据三角形全等的判定方法,这个三角形是大小、形状完全确定的三角形.我们仍然从量化的角度来研究这个问题,也就是研究如何从已知的两边和它们的夹角计算出三角形的另一边和两个角的`问题。”这样,从联系的观点,从新的角度看过去的问题,使学生对于过去的知识有了新的认识,同时使新知识建立在已有知识的坚实基础上,形成良好的知识结构。

《课程标准》和教科书把“解三角形”这部分内容安排在数学五的第一部分内容,

位置相对靠后,在此内容之前学生已经学习了三角函数、平面向量、直线和圆的方程等与本章知识联系密切的内容,这使这部分内容的处理有了比较多的工具,某些内容可以处理得更加简洁。比如对于余弦定理的证明,常用的方法是借助于三角的方法,需要对于三角形进行讨论,方法不够简洁,教科书则用了向量的方法,发挥了向量方法在解决问题中的威力。

在证明了余弦定理及其推论以后,教科书从余弦定理与勾股定理的比较中,提出了一个思考问题“勾股定理指出了直角三角形中三边平方之间的关系,余弦定理则指出了一般三角形中三边平方之间的关系,如何看这两个定理之间的关系?”,并进而指出,“从余弦定理以及余弦函数的性质可知,如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角;如果小于第三边的平方,那么第三边所对的角是钝角;如果大于第三边的平方,那么第三边所对的角是锐角.从上可知,余弦定理是勾股定理的推广.”

3.重视加强意识和数学实践能力

学数学的最终目的是应用数学,而如今比较突出的两个问题是,学生应用数学的意识不强,创造能力较弱。学生往往不能把实际问题抽象成数学问题,不能把所学的数学知识应用到实际问题中去,对所学数学知识的实际背景了解不多,虽然学生机械地模仿一些常见数学问题解法的能力较强,但当面临一种新的问题时却办法不多,对于诸如观察、分析、归纳、类比、抽象、概括、猜想等发现问题、解决问题的科学思维方法了解不够。针对这些实际情况,本章重视从实际问题出发,引入数学课题,最后把数学知识应用于实际问题。

高中数学教案模板表格范文篇3

教学目标:

(1)掌握直线方程的一般形式,掌握直线方程几种形式之间的互化.

(2)理解直线与二元一次方程的关系及其证明

(3)培养学生抽象概括能力、分类讨论能力、逆向思维的习惯和形成特殊与一般辩证统一的观点.

教学重点、难点:直线方程的一般式.直线与二元一次方程(、不同时为0)的对应关系及其证明.

教学用具:计算机

教学方法:启发引导法,讨论法

教学过程:

下面给出教学实施过程设计的简要思路:

教学设计思路:

(一)引入的设计

前边学习了如何根据所给条件求出直线方程的方法,看下面问题:

问:说出过点(2,1),斜率为2的直线的方程,并观察方程属于哪一类,为什么?

答:直线方程是,属于二元一次方程,因为未知数有两个,它们的最高次数为一次.

肯定学生回答,并纠正学生中不规范的表述.再看一个问题:

问:求出过点,的直线的方程,并观察方程属于哪一类,为什么?

答:直线方程是(或其它形式),也属于二元一次方程,因为未知数有两个,它们的最高次数为一次.

肯定学生回答后强调“也是二元一次方程,都是因为未知数有两个,它们的最高次数为一次”.

启发:你在想什么(或你想到了什么)?谁来谈谈?各小组可以讨论讨论.

学生纷纷谈出自己的想法,教师边评价边启发引导,使学生的认识统一到如下问题:

【问题1】“任意直线的方程都是二元一次方程吗?”

(二)本节主体内容教学的设计

这是本节课要解决的第一个问题,如何解决?自己先研究研究,也可以小组研究,确定解决问题的思路.

学生或独立研究,或合作研究,教师巡视指导.

经过一定时间的研究,教师组织开展集体讨论.首先让学生陈述解决思路或解决方案:

思路一:…

思路二:…

……

教师组织评价,确定最优方案(其它待课下研究)如下:

按斜率是否存在,任意直线的位置有两种可能,即斜率存在或不存在.

当存在时,直线的截距也一定存在,直线的方程可表示为,它是二元一次方程.

当不存在时,直线的方程可表示为形式的方程,它是二元一次方程吗?

学生有的认为是有的认为不是,此时教师引导学生,逐步认识到把它看成二元一次方程的合理性:

平面直角坐标系中直线上点的坐标形式,与其它直线上点的坐标形式没有任何区别,根据直线方程的概念,方程解的形式也是二元方程的解的形式,因此把它看成形如的二元一次方程是合理的.

综合两种情况,我们得出如下结论:

在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的关于、的二元一次方程.

至此,我们的问题1就解决了.简单点说就是:直线方程都是二元一次方程.而且这个方程一定可以表示成或的形式,准确地说应该是“要么形如这样,要么形如这样的方程”.

同学们注意:这样表达起来是不是很啰嗦,能不能有一个更好的表达?

学生们不难得出:二者可以概括为统一的形式.

这样上边的结论可以表述如下:

在平面直角坐标系中,对于任何一条直线,都有一条表示这条直线的形如(其中、不同时为0)的二元一次方程.

启发:任何一条直线都有这种形式的方程.你是否觉得还有什么与之相关的问题呢?

【问题2】任何形如(其中、不同时为0)的二元一次方程都表示一条直线吗?

不难看出上边的结论只是直线与方程相互关系的一个方面,这个问题是它的另一方面.这是显然的吗?不是,因此也需要像刚才一样认真地研究,得到明确的结论.那么如何研究呢?

师生共同讨论,评价不同思路,达成共识:

回顾上边解决问题的思路,发现原路返回就是非常好的思路,即方程(其中、不同时为0)系数是否为0恰好对应斜率是否存在,即

(1)当时,方程可化为

这是表示斜率为、在轴上的截距为的直线.

(2)当时,由于、不同时为0,必有,方程可化为

这表示一条与轴垂直的直线.

因此,得到结论:

在平面直角坐标系中,任何形如(其中、不同时为0)的二元一次方程都表示一条直线.

为方便,我们把(其中、不同时为0)称作直线方程的一般式是合理的.

【动画演示】

演示“直线各参数”文件,体会任何二元一次方程都表示一条直线.

至此,我们的第二个问题也圆满解决,而且我们还发现上述两个问题其实是一个大问题的两个方面,这个大问题揭示了直线与二元一次方程的对应关系,同时,直线方程的一般形式是对直线特殊形式的抽象和概括,而且抽象的层次越高越简洁,我们还体会到了特殊与一般的转化关系.

(三)练习巩固、总结提高、板书和作业等环节的设计

高中数学教案模板表格范文篇4

教学过程:

一、复习引入:

1.简介数集的发展,复习最大公约数和最小公倍数,质数与和数;

2.教材中的章头引言;

3.集合论的创始人——康托尔(德国数学家)(见附录);

4.“物以类聚”,“人以群分”;

5.教材中例子(P4)。

二、讲解新课:

阅读教材第一部分,问题如下:

(1)有那些概念?是如何定义的?

(2)有那些符号?是如何表示的?

(3)集合中元素的特性是什么?

(一)集合的有关概念:由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的。我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。集合中的每个对象叫做这个集合的元素。

定义:一般地,某些指定的对象集在一起就成为一个集合。

1、集合的概念

(1)集合:某些指定的对象集在一起就形成一个集合(简称集)

(2)元素:集合中每个对象叫做这个集合的元素

2、常用数集及记法

(1)非负整数集(自然数集):全体非负整数的集合,记作N,N={0,1,2,…}

(2)正整数集:非负整数集内排除0的集,记作N__或N+,N__={1,2,3,…}

(3)整数集:全体整数的集合,记作Z,Z={0,±1,±2,…}

(4)有理数集:全体有理数的集合,记作Q,Q={整数与分数}

(5)实数集:全体实数的集合,记作R,R={数轴上所有点所对应的数}

注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0

(2)非负整数集内排除0的集,记作N__或N+

Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z__

3、元素对于集合的隶属关系

(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A

(2)不属于:如果a不是集合A的元素,就说a不属于A,记作aA

4、集合中元素的特性

(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可

(2)互异性:集合中的元素没有重复

(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)

5、⑴集合通常用大写的拉丁字母表示,如A、B、C、P、Q……

元素通常用小写的拉丁字母表示,如a、b、c、p、q……

⑵“∈”的开口方向,不能把a∈A颠倒过来写。

高中数学教案模板表格范文篇5

一.课标要求:

1.分类加法计数原理、分步乘法计数原理

通过实例,总结出分类加法计数原理、分步乘法计数原理;能根据具体问题的特征,选择分类加法计数原理或分步乘法计数原理解决一些简单的实际问题;

2.排列与组合

通过实例,理解排列、组合的概念;能利用计数原理推导排列数公式、组合数公式,并能解决简单的实际问题;

3.二项式定理

能用计数原理证明二项式定理;会用二项式定理解决与二项展开式有关的简单问题。

二.命题走向

本部分内容主要包括分类计数原理、分步计数原理、排列与组合、二项式定理三部分;考查内容:(1)两个原理;(2)排列、组合的概念,排列数和组合数公式,排列和组合的应用;(3)二项式定理,二项展开式的通项公式,二项式系数及二项式系数和。

排列、组合不仅是高中数学的重点内容,而且在实际中有广泛的应用,因此新高考会有题目涉及;二项式定理是高中数学的重点内容,也是高考每年必考内容,新高考会继续考察。

考察形式:单独的考题会以选择题、填空题的形式出现,属于中低难度的题目,排列组合有时与概率结合出现在解答题中难度较小,属于高考题中的中低档题目。

三.要点精讲

1.排列、组合、二项式知识相互关系表

2.两个基本原理

(1)分类计数原理中的分类;

(2)分步计数原理中的分步;

正确地分类与分步是学好这一章的关键。

3.排列

(1)排列定义,排列数

(2)排列数公式:系==n·(n-1)…(n-m+1);

(3)全排列列:=n!;

(4)记住下列几个阶乘数:1!=1,2!=2,3!=6,4!=24,5!=120,6!=720;

4.组合

(1)组合的定义,排列与组合的区别;

(2)组合数公式:Cnm==;

(3)组合数的性质

①Cnm=Cnn-m;②;③rCnr=n·Cn-1r-1;④Cn0+Cn1+…+Cnn=2n;⑤Cn0-Cn1+…+(-1)nCnn=0,即Cn0+Cn2+Cn4+…=Cn1+Cn3+…=2n-1;

5.二项式定理

(1)二项式展开公式:(a+b)n=Cn0an+Cn1an-1b+…+Cnkan-kbk+…+Cnnbn;

(2)通项公式:二项式展开式中第k+1项的通项公式是:Tk+1=Cnkan-kbk;

6.二项式的应用

(1)求某些多项式系数的和;

(2)证明一些简单的组合恒等式;

(3)证明整除性。

①求数的末位;

②数的整除性及求系数

;③简单多项式的整除问题;

(4)近似计算。当x充分小时,我们常用下列公式估计近似值:

①(1+x)n≈1+nx

;②(1+x)n≈1+nx+x2;

(5)证明不等式。

四.典例解析

题型1:计数原理

例1.完成下列选择题与填空题

(1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有种。

A.81B.64C.24D.4

(2)四名学生争夺三项冠军,获得冠军的可能的种数是()

A.81B.64C.24D.4

(3)有四位学生参加三项不同的竞赛,

①每位学生必须参加一项竞赛,则有不同的参赛方法有;

②每项竞赛只许有一位学生参加,则有不同的参赛方法有;

③每位学生最多参加一项竞赛,每项竞赛只许有一位学生参加,则不同的参赛方法有。

例2.(06江苏卷)今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有种不同的方法(用数字作答)。

点评:分步计数原理与分类计数原理是排列组合中解决问题的重要手段,也是基础方法,在高中数学中,只有这两个原理,尤其是分类计数原理与分类讨论有很多相通之处,当遇到比较复杂的问题时,用分类的方法可以有效的将之化简,达到求解的目的。

题型2:排列问题

例3.(1)(20__四川理卷13)

展开式中的系数为?_______________。

【点评】:此题重点考察二项展开式中指定项的系数,以及组合思想;

(2).20__湖南省长沙云帆实验学校理科限时训练

若n展开式中含项的系数与含项的系数之比为-5,则n等于()

A.4B.6C.8D.10

点评:合理的应用排列的公式处理实际问题,首先应该进入排列问题的情景,想清楚我处理时应该如何去做。

例4.(1)用数字0,1,2,3,4组成没有重复数字的五位数,则其中数字1,2相邻的偶数有个(用数字作答);

(2)电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有种不同的播放方式(结果用数值表示).

点评:排列问题不可能解决所有问题,对于较复杂的问题都是以排列公式为辅助。

题型三:组合问题

例5.荆州市20__届高中毕业班质量检测(Ⅱ)

(1)将4个相同的白球和5个相同的黑球全部放入3个不同的盒子中,每个盒子既要有白球,又要有黑球,且每个盒子中都不能同时只放入2个白球和2个黑球,则所有不同的放法种数为(C)A.3B.6C.12D.18

(2)将4个颜色互不相同的球全部放入编号为1和2的两个盒子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有()

A.10种B.20种C.36种D.52种

点评:计数原理是解决较为复杂的排列组合问题的基础,应用计数原理结合

例6.(1)某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,则不同的选派方案共有种;

(2)5名志愿者分到3所学校支教,每个学校至少去一名志愿者,则不同的分派方法共有()

(A)150种(B)180种(C)200种(D)280种

点评:排列组合的交叉使用可以处理一些复杂问题,诸如分组问题等;

题型4:排列、组合的综合问题

例7.平面上给定10个点,任意三点不共线,由这10个点确定的`直线中,无三条直线交于同一点(除原10点外),无两条直线互相平行。求:(1)这些直线所交成的点的个数(除原10点外)。(2)这些直线交成多少个三角形。

点评:用排列、组合解决有关几何计算问题,除了应用排列、组合的各种方法与对策之外,还要考虑实际几何意义。

例8.已知直线ax+by+c=0中的a,b,c是取自集合{-3,-2,-1,0,1,2,3}中的3个不同的元素,并且该直线的倾斜角为锐角,求符合这些条件的直线的条数。

点评:本题是1999年全国高中数学联赛中的一填空题,据抽样分析正确率只有0.37。错误原因没有对c=0与c≠0正确分类;没有考虑c=0中出现重复的直线。

题型5:二项式定理

例9.(1)(20__湖北卷)

在的展开式中,的幂的指数是整数的项共有

A.3项B.4项C.5项D.6项

(2)的展开式中含x的正整数指数幂的项数是

(A)0(B)2(C)4(D)6

点评:多项式乘法的进位规则。在求系数过程中,尽量先化简,降底数的运算级别,尽量化成加减运算,在运算过程可以适当注意令值法的运用,例如求常数项,可令.在二项式的展开式中,要注意项的系数和二项式系数的区别。

例10.(20__湖南文13)

记的展开式中第m项的系数为,若,则=____5______.

题型6:二项式定理的应用

例11.(1)求4×6n+5n+1被20除后的余数;

(2)7n+Cn17n-1+Cn2·7n-2+…+Cnn-1×7除以9,得余数是多少?

(3)根据下列要求的精确度,求1.025的近似值。①精确到0.01;②精确到0.001。

点评:(1)用二项式定理来处理余数问题或整除问题时,通常把底数适当地拆成两项之和或之差再按二项式定理展开推得所求结论;

(2)用二项式定理来求近似值,可以根据不同精确度来确定应该取到展开式的第几项。

五.思维总结

解排列组合应用题的基本规律

1.分类计数原理与分步计数原理使用方法有两种:①单独使用;②联合使用。

2.将具体问题抽象为排列问题或组合问题,是解排列组合应用题的关键一步。

3.对于带限制条件的排列问题,通常从以下三种途径考虑:

(1)元素分析法:先考虑特殊元素要求,再考虑其他元素;

(2)位置分析法:先考虑特殊位置的要求,再考虑其他位置;

(3)整体排除法:先算出不带限制条件的排列数,再减去不满足限制条件的排列数。

4.对解组合问题,应注意以下三点:

(1)对“组合数”恰当的分类计算,是解组合题的常用方法;

(2)是用“直接法”还是“间接法”解组合题,其原则是“正难则反”;

(3)设计“分组方案”是解组合题的关键所在。

高中数学教案模板表格范文篇6

教学目标

1使学生理解本章的知识结构,并通过本章的知识结构掌握本章的全部知识;

2对线段、射线、直线、角的概念及它们之间的关系有进一步的认识;

3掌握本章的全部定理和公理;

4理解本章的数学思想方法;

5了解本章的题目类型。

教学重点和难点

重点是理解本章的知识结构,掌握本章的全部定和公理;难点是理解本章的数学思想方法。

教学设计过程

一、本章的知识结构

二、本章中的概念

1直线、射线、线段的概念。

2线段的中点定义。

3角的两个定义。

4直角、平角、周角、锐角、钝角的概念。

5互余与互补的角。

三、本章中的公理和定理

1直线的公理;线段的公理。

2补角和余角的性质定理。

四、本章中的主要习题类型

1对直线、射线、线段的概念的理解。

例1下列说法中正确的是()。

A延长射线OPB延长直线CD

C延长线段CDD反向延长直线CD

解:C因为射线和直线是可以向一方或两方无限延伸的,所以任何延长射线或直线的说法都是错误的。而线段有两个端点,可以向两方延长。

例2如图1-57中的线段共有多少条?

解:15条,它们是:线段AB,AD,AF,AC,AE,AG,BD,BF,DF,CE,CG,EG,BC,DE,FG。

2线段的和、差、倍、分。

例3已知线段AB,延长AB到C,使AC=2BC,反向延长AB到D使AD=BC,那么线段AD是线段AC的()。

A.B.C.D.

解:B如图1-58,因为AD是BC的二分之一,BC又是AC的二分之一,所以AD是AC的四分之一。

例4如图1-59,B为线段AC上的一点,AB=4cm,BC=3cm,M,N分别为AB,BC的中点,求MN的长。

解:因为AB=4,M是AB的中点,所以MB=2,又因为N是BC的中点,所以BN=1.5。则MN=2+1.5=3.5

3角的概念性质及角平分线。

例5如图1-60,已知AOC是一条直线,OD是∠AOB的平分线,OE是∠BOC的平分线,求∠EOD的.度数。

解:因为OD是∠AOB的平分线,所以∠BOD=∠AOB;又因为OE是∠BOC的平分线,所以∠BOE=∠BOC;又∠AOB+∠BOC=180°,

所以∠BOE+∠BOD=(∠AOB+∠BOC)÷2=90°。

则∠EOD=90°。

例6如图1-61,已知∠AOB=∠COD=90°,又∠AOD=150°,那么∠AOC与∠COB的度数的比是多少?

解:因为∠AOB=90°,又∠AOD=150°,所以∠BOD=60°。

又∠COD=90°,所以∠COB=30°。

则∠AOC=60°,(同角的余角相等)

∠AOC与∠COB的度数的比是2∶1。

4互余与互补角的性质。

例7如图1-62,直线AB,CD相交于O,∠BOE=90°,若∠BOD=45°,求∠COE,∠COA,∠AOD的度数。

解:因为COD为直线,∠BOE=90°,∠BOD=45°,

所以∠COE=180°-90°-45°=45°

又AOB为直线,∠BOE=90°,∠COE=45°

故∠COA=180°-90°-45°=45°,

而AOB为直线,∠BOD=45°,

因此∠AOD=180°-45°=135°。

例8一个角是另一个角的3倍,且小有的余角与大角的余角之差为20°,求这两个角的度数。

解:设第一个角为x°,则另一个角为3x°,

依题义列方程得:(90-x)-(90-3x)=20,解得:x=10,3x=30。

答:一个角为10°,另一个角为30°。

5度分秒的换算及和、差、倍、分的计算。

例9(1)将4589°化成度、分、秒的形式。

(2)将80°34′45″化成度。

(3)计算:(36°55′40″-23°56′45″)。

解:(1)45°53′24″。

(2)约为8058°。

(3)约为9°44′11″(第一步,做减法后得12°58′55″;再做乘法后得36°174′165″,可以先不进位,做除法后得9°44′11″)

五、本章中所学到的数学思想

1运动变化的观点:几何图形不是孤立和静止的,也应看作不断发展和变化的,如线段向一个方向延长,就发展成为射线;射线向另一方向延长就发展成直线。又如射线饶它的端点旋转就形成角;角的终边不断旋转就变化成直角、平角和周角。从图形的运动中可以看到变化,从变化中看到联系和区别及特性。

2数形结合的思想:在几何的知识中经常遇到计算问题,对形的研究离不开数。正如数学家华罗庚所说:“数缺形时少直观,形缺数时难如微”。本章的知识中,将线段的长度用数量表示,利用方程的方法解决余角与补角的问题。因此我们对几何的学习不能与代数的学习截然分开,在形的问题难以解决时,发挥数的功能,在数的问题遇到困难时,画出与它相关的图形,都会给问题的解决带来新的思路。从几何的起始课,就注意数形结合,就会养成良好的思维习惯。

3联系实际,从实际事物中抽象出数学模型。数学的产生来源于生产和生活实践,因此学习数学不能脱离实际生活,尤其是几乎何的学习更离不开实际生活。一方面要让学生知道本章的主要内容是线和角,都在生活中有大量的原型存在,另一方面又要引导学生将所学的知识去解决某些简单的实际问题,这才是理论联系实际的观点。

六、本章的疑点和误点分析

概念在应用中的混淆。

例10判断正误:

(1)在∠AOB的边OA的延长线上取一点D。

(2)大于90°的角是钝角。

(3)任何一个角都可以有余角。

(4)∠A是锐角,则∠A的所有余角都相等。

(5)两个锐角的和一定小于平角。

(6)直线MN是平角。

(7)互补的两个角的和一定等于平角。

(8)如果一个角的补角是锐角,那么这个角就没有余角。

(9)钝角一定大于它的补角。

(10)经过三点一定可以画一条直线。

解:(1)错。因为角的两边是射线,而射线是可以向一方无限延伸的,所以就不能再说射线的延长线了。

(2)错。钝角的定义是:大于直角且小于平角的角,叫做钝角。

(3)错。余角的定义是:如果两个角的和是一个直角,这两个角互为余角。因此大于直角的角没有余角。

(4)对.∠A的所有余角都是90°-∠A。

(5)对.若∠A<90°,∠B<90°则∠A+∠B<90°+90°=180°.

(6)错。平角是一个角就要有顶点,而直线上没有表示平角顶点的点。如果在直线上标出表示角的顶点的点,就可以了。

(7)对。符合互补的角的定义。

(8)对。如果一个角的补角是锐角,那么这个角一定是钝角,而钝角是没有余角的。

(9)对。因为钝角的补角是锐角,钝角一定大于锐角。

(10)错。这个题应该分情况讨论:如果这三点在同一条直线上,这个结论是正确的。如果这三个点不在同一条直线上,那么过这三个点就不能画一条直线。

板书设计

回顾与反思

(一)知识结构(四)主要习题类型(五)本章的数学思想

略例11

·2

(二)本章概念·3

略·(六)疑误点分析

(三)本章的公理和定理·

例9

高中数学教案模板表格范文篇7

如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的`公比,公比通常用字母q表示。

(1)等比数列的通项公式是:An=A1×q^(n-1)

若通项公式变形为an=a1/q-q^n(n∈N-),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q-q^x上的一群孤立的点。

(2)任意两项am,an的关系为an=am·q^(n-m)

(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。

(5)等比求和:Sn=a1+a2+a3+.......+an

①当q≠1时,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)

②当q=1时,Sn=n×a1(q=1)

记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

高中数学教案模板表格范文篇8

教学目标:

(1)了解坐标法和解析几何的意义,了解解析几何的基本问题.

(2)进一步理解曲线的方程和方程的曲线.

(3)初步掌握求曲线方程的方法.

(4)通过本节内容的教学,培养学生分析问题和转化的能力.

教学重点、难点:求曲线的方程.

教学用具:计算机.

教学方法:启发引导法,讨论法.

教学过程:

【引入】

1.提问:什么是曲线的方程和方程的曲线.

学生思考并回答.教师强调.

2.坐标法和解析几何的意义、基本问题.

对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:

(1)根据已知条件,求出表示平面曲线的方程.

(2)通过方程,研究平面曲线的性质.

事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先研究如何求出曲线方程,再研究如何用方程研究曲线.本节课就初步研究曲线方程的求法.

【问题】

如何根据已知条件,求出曲线的方程.

【实例分析】

例1:设 、 两点的坐标是 、(3,7),求线段 的垂直平分线 的方程.

首先由学生分析:根据直线方程的知识,运用点斜式即可解决.

解法一:易求线段 的中点坐标为(1,3),

由斜率关系可求得l的斜率为

于是有

即l的方程为

分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线 的方程?根据是什么,有证明吗?

(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).

证明:(1)曲线上的点的坐标都是这个方程的解.

设 是线段 的垂直平分线上任意一点,则

将上式两边平方,整理得

这说明点 的坐标 是方程 的解.

(2)以这个方程的解为坐标的点都是曲线上的点.

设点 的坐标 是方程①的任意一解,则

到 、 的距离分别为

所以 ,即点 在直线 上.

综合(1)、(2),①是所求直线的方程.

至此,证明完毕.回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设 是线段 的垂直平分线上任意一点,最后得到式子 ,如果去掉脚标,这不就是所求方程 吗?可见,这个证明过程就表明一种求解过程,下面试试看:

解法二:设 是线段 的垂直平分线上任意一点,也就是点 属于集合

由两点间的距离公式,点所适合的条件可表示为

将上式两边平方,整理得

果然成功,当然也不要忘了证明,即验证两条是否都满足.显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证.

这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.

让我们用这个方法试解如下问题:

例2:点 与两条互相垂直的直线的距离的积是常数 求点 的轨迹方程.

分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系.然后仿照例1中的解法进行求解.

求解过程略.

【概括总结】通过学生讨论,师生共同总结:

分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:

首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:

(1)建立适当的坐标系,用有序实数对例如 表示曲线上任意一点 的坐标;

(2)写出适合条件 的点 的集合

;

(3)用坐标表示条件 ,列出方程 ;

(4)化方程 为最简形式;

(5)证明以化简后的方程的解为坐标的点都是曲线上的点.

一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常情况下证明可省略,不过特殊情况要说明.

上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.

下面再看一个问题:

例3:已知一条曲线在 轴的上方,它上面的每一点到 点的距离减去它到 轴的距离的差都是2,求这条曲线的方程.

【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系.

解:设点 是曲线上任意一点, 轴,垂足是 (如图2),那么点 属于集合

由距离公式,点 适合的条件可表示为

将①式 移项后再两边平方,得

化简得

由题意,曲线在 轴的上方,所以 ,虽然原点 的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为 ,它是关于 轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.

【练习巩固】

题目:在正三角形 内有一动点 ,已知 到三个顶点的距离分别为 、 、 ,且有 ,求点 轨迹方程.

分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设 、 的坐标为 、 ,则 的坐标为 , 的坐标为 .

根据条件 ,代入坐标可得

化简得

由于题目中要求点 在三角形内,所以 ,在结合①式可进一步求出 、 的范围,最后曲线方程可表示为

【小结】师生共同总结:

(1)解析几何研究研究问题的方法是什么?

(2)如何求曲线的方程?

(3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应注意什么?

【作业】课本第72页练习1,2,3;

高中数学教案模板表格范文篇9

教学内容:

简单的排列组合

教学目标:

1.使学生通过观察、猜测、实验、验证等活动,找出简单事件的排列数或组合数。

2.培养学生有序地、全面地思考问题的意识和习惯。

教学过程:

1.借助操作活动或学生易于理解的事例来帮助学生找出组合数。师生共同分析练习二十五第1题。让学生小组讨论,充分发表自己的意见。

2.利用直观图示帮助学生有序地、不重不漏地找出早餐搭配的组合数。

3、出示练习二十五第3题。

学生看题后,四人小组讨论出有多少种求组合数的方法。

4、学生汇报。

(1)图示表示法(两种)。引导学生用画简图的方式来表示抽象的数学知识。

(2)其他的方法,例如聪聪或明明分别可以和每一个小朋友合影(分步时,可以把确定聪聪作为第一步,也可以把确定明明作为第一步),教学时充分发挥学生的创造性。至于学生用哪种方法求出来,都没关系。但要引导学生思考如何才能不重不漏,发展学生有序地思考问题的意识和能力。

(3)学生自己用图示表示时,可以很开放,比如,可以用正方形表示聪聪,圆形表示明明,并分别在正方形和圆形里标上序号。实际这是发展学生用数学化的符号表示具体事件的能力的一个体现。

(4)如果学生用简图的方式来表示有困难,也可以让学生回忆一下二年级上册的例子或借助学具卡片摆一摆。

2.“做一做”

(1)练习二十五第7题。

通过活动的方式让学生不重不漏地把所有取钱的情况写出来。

(2)练习二十五第9题。

用两种图示法表示两两组合的方式(比较简单的两种方式)。在教学中也要允许有的学生把所有的情况逐一罗列出来,只要他通过自己的方法探索出所有的组合数,都是应该鼓励的。

高中数学教案模板表格范文篇10

教学目标:明确等差数列的定义,掌握等差数列的通项公式,会解决知道an,a1,d,n中的三个,求另外一个的问题;培养学生观察能力,进一步提高学生推理、归纳能力,培养学生的&39;应用意识.

教学重点:1.等差数列的概念的理解与掌握.2.等差数列的通项公式的推导及应用.教学难点:等差数列“等差”特点的理解、把握和应用.教学过程:

Ⅰ.复习回顾上两节课我们共同学习了数列的定义及给出数列的两种方法——通项公式和递推公式.这两个公式从不同的角度反映数列的特点,下面我们看这样一些例子

Ⅱ.讲授新课10,8,6,4,2,…;21,21,22,22,23,23,24,24,252,2,2,2,2,…首先,请同学们仔细观察这些数列有什么共同的&39;特点?是否可以写出这些数列的通项公式?(引导学生积极思考,努力寻求各数列通项公式,并找出其共同特点)它们的共同特点是:从第2项起,每一项与它的前一项的“差”都等于同一个常数.也就是说,这些数列均具有相邻两项之差“相等”的特点.具有这种特点的数列,我们把它叫做等差数列.

1.定义等差数列:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示.

2.等差数列的通项公式等差数列定义是由一数列相邻两项之间关系而得.若一等差数列{an}的首项是a1,公差是d,则据其定义可得:(n-1)个等式若将这n-1个等式左右两边分别相加,则可得:an-a1=(n-1)d即:an=a1+(n-1)d当n=1时,等式两边均为a1,即上述等式均成立,则对于一切n∈N-时上述公式都成立,所以它可作为数列{an}的通项公式.看来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项.由通项公式可类推得:am=a1+(m-1)d,即:a1=am-(m-1)d,则:an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d.如:a5=a4+d=a3+2d=a2+3d=a1+4d

请同学们来思考这样一个问题.如果在a与b中间插入一个数A,使a、A、b成等差数列,那么A应满足什么条件?由等差数列定义及a、A、b成等差数列可得:A-a=b-A,即:a=.反之,若A=,则2A=a+b,A-a=b-A,即a、A、b成等差数列.总之,A=a,A,b成等差数列.如果a、A、b成等差数列,那么a叫做a与b的等差中项.例题讲解[

例1]在等差数列{an}中,已知a5=10,a15=25,求a25.

思路一:根据等差数列的已知两项,可求出a1和d,然后可得出该数列的通项公式,便可求出a25.

思路二:若注意到已知项为a5与a15,所求项为a25,则可直接利用关系式an=am+(n-m)d.这样可简化运算.思路三:若注意到在等差数列{an}中,a5,a15,a25也成等差数列,则利用等差中项关系式,便可直接求出a25的值.

[例2](1)求等差数列8,5,2…的第20项.分析:由给出的三项先找到首项a1,求出公差d,写出通项公式,然后求出所要项

答案:这个数列的第20项为-49.(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?分析:要想判断-401是否为这数列的一项,关键要求出通项公式,看是否存在正整数n,可使得an=-401.∴-401是这个数列的第100项.

Ⅲ.课堂练习

1.(1)求等差数列3,7,11,……的&39;第4项与第10项.

(2)求等差数列10,8,6,……的第20项.(3)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由.2.在等差数列{an}中,

(1)已知a4=10,a7=19,求a1与d;

(2)已知a3=9,a9=3,求a12.

Ⅳ.课时小结通过本节学习,首先要理解与掌握等差数列的定义及数学表达式:an-an-1=d(n≥2).其次,要会推导等差数列的通项公式:an=a1+(n-1)d(n≥1),并掌握其基本应用.最后,还要注意一重要关系式:an=am+(n-m)d的理解与应用以及等差中项。

Ⅴ.课后作业课本P39习题1,2,3,4

高中数学教案模板表格范文篇11

一、教学目标

掌握用向量方法建立两角差的余弦公式.通过简单运用,使学生初步理解公式的结构及其功能,为建立其它和(差)公式打好基础.

二、教学重、难点

1.教学重点:通过探索得到两角差的余弦公式;

2.教学难点:探索过程的组织和适当引导,这里不仅有学习积极性的问题,还有探索过程必用的基础知识是否已经具备的问题,运用已学知识和方法的能力问题,等等.

三、学法与教学用具

1.学法:启发式教学

2.教学用具:多媒体

四、教学设想:

(一)导入:我们在初中时就知道?,,由此我们能否得到大家可以猜想,是不是等于呢?

根据我们在第一章所学的&39;知识可知我们的猜想是错误的!下面我们就一起探讨两角差的余弦公式

(二)探讨过程:

在第一章三角函数的学习当中我们知道,在设角的终边与单位圆的交点为,等于角与单位圆交点的横坐标,也可以用角的余弦线来表示,大家思考:怎样构造角和角?(注意:要与它们的正弦线、余弦线联系起来.)

展示多媒体动画课件,通过正、余弦线及它们之间的几何关系探索与__之间的关系,由此得到,认识两角差余弦公式的结构.

思考:我们在第二章学习用向量的知识解决相关的几何问题,两角差余弦公式我们能否用向量的知识来证明?

提示:

1、结合图形,明确应该选择哪几个向量,它们是怎样表示的?

2、怎样利用向量的数量积的概念的计算公式得到探索结果?

展示多媒体课件

比较用几何知识和向量知识解决问题的不同之处,体会向量方法的作用与便利之处.

思考:再利用两角差的余弦公式得出

(三)例题讲解

例1、利用和、差角余弦公式求、的值.

解:分析:把、构造成两个特殊角的和、差.

点评:把一个具体角构造成两个角的和、差形式,有很多种构造方法,例如:,要学会灵活运用.

例2、已知,是第三象限角,求的值.

解:因为,由此得

又因为是第三象限角,所以

所以

点评:注意角、的象限,也就是符号问题.

(四)小结:本节我们学习了两角差的余弦公式,首先要认识公式结构的特征,了解公式的推导过程,熟知由此衍变的两角和的余弦公式.在解题过程中注意角、的象限,也就是符号问题,学会灵活运用.

高中数学教案模板表格范文篇12

一、 知识梳理

1.三种抽样方法的联系与区别:

类别 共同点 不同点 相互联系 适用范围

简单随机抽样 都是等概率抽样 从总体中逐个抽取 总体中个体比较少

系统抽样 将总体均匀分成若干部分;按事先确定的规则在各部分抽取 在起始部分采用简单随机抽样 总体中个体比较多

分层抽样 将总体分成若干层,按个体个数的比例抽取 在各层抽样时采用简单随机抽样或系统抽样 总体中个体有明显差异

(1)从含有N个个体的总体中抽取n个个体的样本,每个个体被抽到的概率为

(2)系统抽样的步骤: ①将总体中的个体随机编号;②将编号分段;③在第1段中用简单随机抽样确定起始的个体编号;④按照事先研究的规则抽取样本.

(3)分层抽样的步骤:①分层;②按比例确定每层抽取个体的个数;③各层抽样;④汇合成样本.

(4) 要懂得从图表中提取有用信息

如:在频率分布直方图中①小矩形的面积=组距 =频率②众数是矩形的中点的横坐标③中位数的左边与右边的直方图的面积相等,可以由此估计中位数的值

2.方差和标准差都是刻画数据波动大小的数字特征,一般地,设一组样本数据 , ,…, ,其平均数为 则方差 ,标准差

3.古典概型的概率公式:如果一次试验中可能出现的结果有 个,而且所有结果都是等可能的,如果事件 包含 个结果,那么事件 的概率P=

特别提醒:古典概型的两个共同特点:

○1 ,即试中有可能出现的基本事件只有有限个,即样本空间Ω中的元素个数是有限的;

○2 ,即每个基本事件出现的可能性相等。

4. 几何概型的概率公式: P(A)=

特别提醒:几何概型的特点:试验的结果是无限不可数的;○2每个结果出现的可能性相等。

二、夯实基础

(1)某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种情况,要从中抽取一个容量为20的样本.若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为____________.

(2)某赛季,甲、乙两名篮球运动员都参加了

11场比赛,他们所有比赛得分的情况用如图2所示的茎叶图表示,

则甲、乙两名运动员得分的中位数分别为( )

A.19、13 B.13、19 C.20、18 D.18、20

(3)统计某校1000名学生的数学会考成绩,

得到样本频率分布直方图如右图示,规定不低于60分为

及格,不低于80分为优秀,则及格人数是 ;优秀率为 。

(4)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:

9.4 8.4 9.4 9.9 9.6 9.4 9.7

去掉一个分和一个最低分后,所剩数据的平均值和方差分别为( )

A.9.4, 0.484 B.9.4, 0.016 C.9.5, 0.04 D.9.5, 0.016

(5)将一颗骰子先后抛掷2次,观察向上的点数,则以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=27的内部的概率________.

(6)在长为12cm的线段AB上任取一点M,并且以线段AM为边的正方形,则这正方形的面积介于36cm2与81cm2之间的概率为( )

三、高考链接

07、某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒; 第六组,成绩大于等于18秒且小于等于19秒.右图

是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为 ,成绩大于等于15秒且小于17秒的学生人数为 ,则从频率分布直方图中可分析出 和 分别为( )

08、从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( )

分数 5 4 3 2 1

人数 20 10 30 30 10

09、在区间 上随机取一个数x, 的值介于0到 之间的概率为( ).

08、现有8名奥运会志愿者,其中志愿者 通晓日语, 通晓俄语, 通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.

(Ⅰ)求 被选中的概率;(Ⅱ)求 和 不全被选中的概率.

高中数学教案模板表格范文篇13

教学目标

1、明确等差数列的定义。

2、掌握等差数列的通项公式,会解决知道中的三个,求另外一个的问题

3、培养学生观察、归纳能力。

教学重点

1、等差数列的概念;

2、等差数列的通项公式

教学难点

等差数列“等差”特点的理解、把握和应用

教具准备

投影片1张

教学过程

(I)复习回顾

师:上两节课我们共同学习了数列的定义及给出数列的两种方法通项公式和递推公式。这两个公式从不同的角度反映数列的特点,下面看一些例子。(放投影片)

(Ⅱ)讲授新课

师:看这些数列有什么共同的特点?

1,2,3,4,5,6;①

10,8,6,4,2,…;②

生:积极思考,找上述数列共同特点。

对于数列①(1≤n≤6);(2≤n≤6)

对于数列②-2n(n≥1)(n≥2)

对于数列③(n≥1)(n≥2)

共同特点:从第2项起,第一项与它的前一项的差都等于同一个常数。

师:也就是说,这些数列均具有相邻两项之差“相等”的特点。具有这种特点的数列,我们把它叫做等差数。

一、定义:

等差数列:一般地,如果一个数列从第2项起,每一项与空的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示。

如:上述3个数列都是等差数列,它们的公差依次是1,-2。

二、等差数列的通项公式

师:等差数列定义是由一数列相邻两项之间关系而得。若一等差数列的首项是,公差是d,则据其定义可得:

若将这n-1个等式相加,则可得:

即:即:即:……

由此可得:师:看来,若已知一数列为等差数列,则只要知其首项和公差d,便可求得其通项。

如数列①(1≤n≤6)

数列②:(n≥1)

数列③:(n≥1)

由上述关系还可得:即:则:=如:

三、例题讲解

例1:(1)求等差数列8,5,2…的第20项

(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

解:(1)由n=20,得(2)由得数列通项公式为:由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立解之得n=100,即-401是这个数列的第100项。

(Ⅲ)课堂练习

生:(口答)课本P118练习3

(书面练习)课本P117练习1

师:组织学生自评练习(同桌讨论)

(Ⅳ)课时小结

师:本节主要内容为:

①等差数列定义。

即(n≥2)

②等差数列通项公式(n≥1)

推导出公式:

(V)课后作业

一、课本P118习题3.21,2

二、1、预习内容:课本P116例2P117例4

2、预习提纲:

①如何应用等差数列的定义及通项公式解决一些相关问题?

②等差数列有哪些性质?

高中数学教案模板表格范文篇14

教学目标:

1、在新学期能够以积极的学习态度投入到学习中去,并用高昂的兴趣参与学习。

2、熟悉新学期音乐课的要求,并能够有意识的遵守,以良好的学习习惯规范自己在课堂中的表现。

教学重点:

养成良好的学习习惯

教学过程:

一.师生互相问好,拉近彼此的距离。

二.师生共同演绎节目,学生表演,老师表演,增进彼此感情,与孩子打成一片。

三.讲述新学期音乐课要求:

1、按时按顺序进入教室,不迟到,不早退。

2、进入教室不得高声喧哗打闹,保持安静状态。

3、认真保持教室卫生,不乱扔果皮纸屑,不随地吐痰。

4、课堂上发言积极有序,有礼有节,争做文明小学生。

5、做到爱护公共物品,轻拿轻放,损坏照价赔偿。

6、上课保持良好的状态,以积极的态度认真学习。

四、习惯养成训练,听音乐做出相关要求:

1、起立、坐下

2、安静

3、师生问好

4、请坐好

5、同桌面对

五、分组选拨,并对小组长提出要求

1、四人一小组

2、讲述课堂要求,小组合作学习,评价真实客观,学会欣赏别人;正当优秀小组,小组团结合作,富有创新;组长根据组员的表现,从纪律、学习习惯、上课表现上进行评价计分,获得3分就可获得一张绿卡。

小结:

希望第一节课能让师生互相留下印象,更好的进行今后的音乐教学,把音乐课上的更加的有声有色。

高中数学教案模板表格范文篇15

【高考要求】:三角函数的有关概念(B).

【教学目标】:理解任意角的概念;理解终边相同的角的意义;了解弧度的意义,并能进行弧度与角度的互化.

理解任意角三角函数(正弦、余弦、正切)的定义;初步了解有向线段的概念,会利用单位圆中的三角函数线表示任意角的正弦、余弦、正切.

【教学重难点】:终边相同的角的意义和任意角三角函数(正弦、余弦、正切)的定义.

【知识复习与自学质疑】

一、问题.

1、角的概念是什么?角按旋转方向分为哪几类?

2、在平面直角坐标系内角分为哪几类?与终边相同的角怎么表示?

3、什么是弧度和弧度制?弧度和角度怎么换算?弧度和实数有什么样的关系?

4、弧度制下圆的弧长公式和扇形的面积公式是什么?

5、任意角的三角函数的定义是什么?在各象限的符号怎么确定?

6、你能在单位圆中画出正弦、余弦和正切线吗?

7、同角三角函数有哪些基本关系式?

二、练习.

1.给出下列命题:

(1)小于的角是锐角;(2)若是第一象限的角,则必为第一象限的角;

(3)第三象限的角必大于第二象限的角;(4)第二象限的角是钝角;

(5)相等的角必是终边相同的角;终边相同的角不一定相等;

(6)角2与角的终边不可能相同;

(7)若角与角有相同的终边,则角(的终边必在轴的非负半轴上。其中正确的命题的序号是

2.设P点是角终边上一点,且满足则的值是

3.一个扇形弧AOB的面积是1,它的周长为4,则该扇形的中心角=弦AB长=

4.若则角的终边在象限。

5.在直角坐标系中,若角与角的终边互为反向延长线,则角与角之间的关系是

6.若是第三象限的角,则-,的终边落在何处?

【交流展示、互动探究与精讲点拨】

例1.如图,分别是角的终边.

(1)求终边落在阴影部分(含边界)的所有角的集合;

(2)求终边落在阴影部分、且在上所有角的集合;

(3)求始边在OM位置,终边在ON位置的所有角的集合.

例2.(1)已知角的终边在直线上,求的值;

(2)已知角的终边上有一点A,求的值。

例3.若,则在第象限.

例4.若一扇形的周长为20,则当扇形的圆心角等于多少弧度时,这个扇形的面积最大?最大面积是多少?

【矫正反馈】

1、若锐角的终边上一点的坐标为,则角的弧度数为.

2、若,又是第二,第三象限角,则的取值范围是.

3、一个半径为的扇形,如果它的周长等于弧所在半圆的弧长,那么该扇形的圆心角度数是弧度或角度,该扇形的面积是.

4、已知点P在第三象限,则角终边在第象限.

5、设角的终边过点P,则的值为.

6、已知角的终边上一点P且,求和的值.

【迁移应用】

1、经过3小时35分钟,分针转过的角的弧度是.时针转过的角的弧度数是.

2、若点P在第一象限,则在内的取值范围是.

3、若点P从(1,0)出发,沿单位圆逆时针方向运动弧长到达Q点,则Q点坐标为.

4、如果为小于360的正角,且角的7倍数的角的终边与这个角的终边重合,求角的值.

高中数学教案模板表格范文篇16

一、说教材

(1)说教材的内容和地位

本次说课的内容是人教版高一数学必修一第一单元第一节《集合》(第一课时)。集合这一课里,首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。然后,介绍了集合的常用表示方法,集合元素的特征以及常用集合的表示。把集合的初步知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握以及使用数学语言的基础。从知识结构上来说是为了引入函数的定义。因此在高中数学的模块中,集合就显得格外的举足轻重了。

(2)说教学目标

根据教材结构和内容以及教材地位和作用,考虑到学生已有的认知结构与心理特征,依据新课标制定如下教学目标:

1.知识与技能:掌握集合的基本概念及表示方法。了解"属于"关系的意义,掌握集合元素的特征。

2.过程与方法:通过情景设置提出问题,揭示课题,培养学生主动探究新知的习惯。并通过"自主、合作与探究"实现"一切以学生为中心"的理念。

3.情感态度与价值观:感受数学的人文价值,提高学生的学习数学的兴趣,由集合的学习感受数学的简洁美与和谐统一美。同时通过自主探究领略获取新知识的喜悦。

(3)说教学重点和难点

依据课程标准和学生实际,我确定本课的教学重点为

教学重点:集合的基本概念及元素特征。

教学难点:掌握集合元素的三个特征,体会元素与集合的属于关系。

二、说教法和学法

接下来则是说教法、学法

教法与学法是互相联系和统一的,不能孤立去研究。什么样的教法必带来相应的学法,以遵循启发性原则为出发点,就本节课而言,我采用"生活实例与数学实例"相结合,"师生互动与课堂布白"相辅助的方法。通过不同层次的练习体验,凭借有趣、实用的教学手段,突出重点,突破难点。然而,学生是学习的主人,以学生为主体,创造条件让学生参与探究活动,()不仅提高了学生探究能力,更让学生获得学习的技能和激发学生的学习兴趣。因此,本次活动采用的学法有自主探究、观察发现、合作交流、归纳总结等。

总之,不管采取什么教法和学法,每节课都应不断研究学生的学习心理机制,不断优化教师本身的教学行为,自始至终以学生为主体,为学生创造和谐的课堂氛围。

三、说教学过程

接着我来说一下最重要的部分,本节课的教学过程:

这节课的流程主要分为六个环节:创设情境(引入目标)、自主探究(感知目标)、讨论辨析(理解目标)、变式训练(巩固目标)、课堂小结(自我评价)、作业布置(反馈矫正)。上述六个环节由浅入深,层层递进。多层次、多角度地加深对概念的理解。提高学生学习的兴趣,以达到良好的教学效果。

第一环节:创设问题情境,引入目标

课堂开始我将提出两个问题:

问题1:班级有20名男生,16名女生,问班级一共多少人?

问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛?

这里我会让学生以小组讨论的.形式进行讨论问题,事实上小组合作的形式是本节课主要形式。

待学生讨论完毕以后我将作归纳总结:问题2已无法用学过的知识加以解释,这是与集合有关的问题,因此需用集合的语言加以描述(同时我将板书标题:集合)。

安排这一过程的意图是为了从实际问题引入,让学生了解数学来源于实际。从而激发学生参与课堂学习的欲望。

很自然地进入到第二环节:自主探究

让学生阅读教材,并思考下列问题:

(1)有那些概念?

(2)有那些符号?

(3)集合中元素的特性是什么?

安排这一过程的意图是给学生提供活动空间,让主体主动建构自己的知识结构。培养学生的探究能力。

让学生自主探究之后将进入第三环节:讨论辨析

小组合作探究(1)

让学生观察下列实例

(1)1~20以内的所有质数;

(2)所有的正方形;

(3)到直线的距离等于定长的所有的点;

(4)方程的所有实数根;

通过以上实例,辨析概念:

(1)集合含义:一般地,某些指定的对象集在一起就成为一个集合,也简称集。而集合中的每个对象叫做这个集合的元素。

(2)表示方法:集合通常用大括号{}或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。

小组合作探究(2)——集合元素的特征

问题3:任意一组对象是否都能组成一个集合?集合中的元素有什么特征?

问题4:某单位所有的"帅哥"能否构成一个集合?由此说明什么?

集合中的元素必须是确定的

问题5:在一个给定的集合中能否有相同的元素?由此说明什么?

集合中的元素是不重复出现的

问题6:咱班的全体同学组成一个集合,调整座位后这个集合有没有变化?由此说明什么?集合中的元素是没有顺序的

我如此设计的意图是因为:问题是数学的心脏,感受问题是学习数学的根本动力。

小组合作探究(3)——元素与集合的关系

问题7:设集合A表示"1~20以内的所有质数",那么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A中?

问题8:如果元素a是集合A中的元素,我们如何用数学化的语言表达?

a属于集合A,记作a∈A

问题9:如果元素a不是集合A中的元素,我们如何用数学化的语言表达?

a不属于集合A,记作aA

小组合作探究(4)——常用数集及其表示方法

问题10:自然数集,正整数集,整数集,有理数集,实数集等一些常用数集,分别用什么符号表示?

自然数集(非负整数集):记作N

正整数集:

整数集:记作Z

有理数集:记作Q实数集:记作R

设计意图:由于不同的人对同一问题有不同的体验和理解。让学生通过合作交流相互得到启发,从而不断完善自己的知识结构。

第四环节:理论迁移变式训练

1.下列指定的对象,能构成一个集合的是

①很小的数

②不超过30的非负实数

③直角坐标平面内横坐标与纵坐标相等的点

④π的近似值

⑤所有无理数

A、②③④⑤B、①②③⑤C、②③⑤D、②③④

第五环节:课堂小结,自我评价

1.这节课学习的主要内容是什么?

2.这节课主要解释了什么数学思想?

设计意图:引导学生对所学知识、思想方法进行小结,形成知识系统。教师用激励性的语言加一点评,让学生的思想敞亮的发挥出来。

第六环节:作业布置,反馈矫正

1.必做题课本习题1.1—1、2、3.

2.选做题已知集合A={a+2,(a+1)2,a2+3a+3},且1∈A,求实数a的值。

设计意图:充分考虑到学生的差异性,让所有学生都有成功的情感体验。

四、板书设计

好的板书就像一份微型教案,为了让学生直观易懂的看笔记,板书应设计得有条理性、概括性、指导性,所以我设计的板书如下:

集合

1.集合的概念

2.集合元素的特征

(学生板演)

3.常见集合的表示

4.范例研究

高中数学教案模板表格范文篇17

一:说教材

平面向量的数量积是两向量之间的乘法,而平面向量的坐标表示把向量之间的运算转化为数之间的运算。本节内容是在平面向量的坐标表示以及平面向量的数量积及其运算律的基础上,介绍了平面向量数量积的坐标表示,平面两点间的距离公式,和向量垂直的坐标表示的充要条件。为解决直线垂直问题,三角形边角的有关问题提供了很好的办法。本节内容也是全章重要内容之一。

二:说学习目标和要求

通过本节的学习,要让学生掌握

(1):平面向量数量积的坐标表示。

(2):平面两点间的距离公式。

(3):向量垂直的坐标表示的充要条件。

以及它们的一些简单应用,以上三点也是本节课的重点,本节课的难点是向量垂直的坐标表示的充要条件以及它的灵活应用。

三:说教法

在教学过程中,我主要采用了以下几种教学方法:

(1)启发式教学法

因为本节课重点的坐标表示公式的推导相对比较容易,所以这节课我准备让学生自行推导出两个向量数量积的坐标表示公式,然后引导学生发现几个重要的结论:如模的计算公式,平面两点间的距离公式,向量垂直的坐标表示的充要条件。

(2)讲解式教学法

主要是讲清概念,解除学生在概念理解上的疑惑感;例题讲解时,演示解题过程!

主要辅助教学的手段(powerpoint)

(3)讨论式教学法

主要是通过学生之间的相互交流来加深对较难问题的理解,提高学生的自学能力和发现、分析、解决问题以及创新能力。

四:说学法

学生是课堂的主体,一切教学活动都要围绕学生展开,借以诱发学生的学习兴趣,增强课堂上和学生的交流,从而达到及时发现问题,解决问题的目的。通过精讲多练,充分调动学生自主学习的积极性。如让学生自己动手推导两个向量数量积的坐标公式,引导学生推导4个重要的结论!并在具体的问题中,让学生建立方程的思想,更好的解决问题!

五:说教学过程

这节课我准备这样进行:

首先提出问题:要算出两个非零向量的数量积,我们需要知道哪些量?

继续提出问题:假如知道两个非零向量的坐标,是不是可以用这两个向量的坐标来表示这两个向量的数量积呢?

引导学生自己推导平面向量数量积的坐标表示公式,在此公式基础上还可以引导学生得到以下几个重要结论:

(1) 模的计算公式

(2)平面两点间的距离公式。

(3)两向量夹角的余弦的坐标表示

(4)两个向量垂直的标表示的充要条件

第二部分是例题讲解,通过例题讲解,使学生更加熟悉公式并会加以应用。

例题1是书上122页例1,此题是直接用平面向量数量积的坐标公式的题,目的是让学生熟悉这个公式,并在此题基础上,求这两个向量的夹角?目的是让学生熟悉两向量夹角的余弦的坐标表示公式例题2是直接证明直线垂直的题,虽然比较简单,但体现了一种重要的证明方法,这种方法要让学生掌握,其实这一例题也是两个向量垂直坐标表示的充要条件的一个应用:即两个向量的数量积是否为零是判断相应的两条直线是否垂直的重要方法之一。

例题3是在例2的基础上稍微作了一下改变,目的是让学生会应用公式来解决问题,并让学生在这要有建立方程的思想。

再配以练习,让学生能熟练的应用公式,掌握今天所学内容。

66952