高中数学公开课教案设计
高中生在学习数学知识时,基础知识的薄弱能够决定未来数学成绩的高低。只有扎实的掌握数学基础知识,才能够有效的解决各种数学问题,在高考中获得理想的成绩。今天小编在这给大家整理了一些高中数学公开课教案设计,我们一起来看看吧!
高中数学公开课教案设计1
学习目标
1.掌握双曲线的范围、对称性、顶点、渐近线、离心率等几何性质
2.掌握标准方程中的几何意义
3.能利用上述知识进行相关的论证、计算、作双曲线的草图以及解决简单的实际问题
一、预习检查
1、焦点在x轴上,虚轴长为12,离心率为的双曲线的标准方程为.
2、顶点间的距离为6,渐近线方程为的双曲线的标准方程为.
3、双曲线的渐进线方程为.
4、设分别是双曲线的半焦距和离心率,则双曲线的一个顶点到它的一条渐近线的距离是.
二、问题探究
探究1、类比椭圆的几何性质写出双曲线的几何性质,画出草图并,说出它们的不同.
探究2、双曲线与其渐近线具有怎样的关系.
练习:已知双曲线经过,且与另一双曲线,有共同的渐近线,则此双曲线的标准方程是.
例1根据以下条件,分别求出双曲线的标准方程.
(1)过点,离心率.
(2)、是双曲线的左、右焦点,是双曲线上一点,且,,离心率为.
例2已知双曲线,直线过点,左焦点到直线的距离等于该双曲线的虚轴长的,求双曲线的离心率.
例3(理)求离心率为,且过点的双曲线标准方程.
三、思维训练
1、已知双曲线方程为,经过它的右焦点,作一条直线,使直线与双曲线恰好有一个交点,则设直线的斜率是.
2、椭圆的离心率为,则双曲线的离心率为.
3、双曲线的渐进线方程是,则双曲线的离心率等于=.
4、(理)设是双曲线上一点,双曲线的一条渐近线方程为、分别是双曲线的左、右焦点,若,则.
四、知识巩固
1、已知双曲线方程为,过一点(0,1),作一直线,使与双曲线无交点,则直线的斜率的集合是.
2、设双曲线的一条准线与两条渐近线交于两点,相应的焦点为,若以为直径的圆恰好过点,则离心率为.
3、已知双曲线的左,右焦点分别为,点在双曲线的右支上,且,则双曲线的离心率的值为.
4、设双曲线的半焦距为,直线过、两点,且原点到直线的距离为,求双曲线的离心率.
5、(理)双曲线的焦距为,直线过点和,且点(1,0)到直线的距离与点(-1,0)到直线的距离之和.求双曲线的离心率的取值范围.
高中数学公开课教案设计2
目标:
(1)使学生初步理解集合的概念,知道常用数集的概念及其记法
(2)使学生初步了解“属于”关系的意义
(3)使学生初步了解有限集、无限集、空集的意义
重点:集合的基本概念
教学过程:
1.引入
(1)章头导言
(2)集合论与集合论的-----康托尔(有关介绍可引用附录中的内容)
2.讲授新课
阅读教材,并思考下列问题:
(1)有那些概念?
(2)有那些符号?
(3)集合中元素的特性是什么?
(4)如何给集合分类?
(一)有关概念:
1、集合的概念
(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象.
(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合.
(3)元素:集合中每个对象叫做这个集合的元素.
集合通常用大写的拉丁字母表示,如A、B、C、……元素通常用小写的拉丁字母表示,如a、b、c、……
2、元素与集合的关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作
要注意“∈”的方向,不能把a∈A颠倒过来写.
3、集合中元素的特性
(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了.
(2)互异性:集合中的元素一定是不同的.
(3)无序性:集合中的元素没有固定的顺序.
4、集合分类
根据集合所含元素个属不同,可把集合分为如下几类:
(1)把不含任何元素的集合叫做空集Ф
(2)含有有限个元素的集合叫做有限集
(3)含有无穷个元素的集合叫做无限集
注:应区分,0等符号的含义
5、常用数集及其表示方法
(1)非负整数集(自然数集):全体非负整数的集合.记作N
(2)正整数集:非负整数集内排除0的集.记作N_或N+
(3)整数集:全体整数的集合.记作Z
(4)有理数集:全体有理数的集合.记作Q
(5)实数集:全体实数的集合.记作R
注:(1)自然数集包括数0.
(2)非负整数集内排除0的集.记作N_或N+,Q、Z、R等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z_
课堂练习:教材第5页练习A、B
小结:本节课我们了解集合论的发展,学习了集合的概念及有关性质
课后作业:第十页习题1-1B第3题
高中数学公开课教案设计3
【教学目标】
1. 知识与技能
(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:
(2)账务等差数列的通项公式及其推导过程:
(3)会应用等差数列通项公式解决简单问题。
2.过程与方法
在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。
3.情感、态度与价值观
通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。
【教学重点】
①等差数列的概念;②等差数列的通项公式
【教学难点】
①理解等差数列“等差”的特点及通项公式的含义;②等差数列的通项公式的推导过程.
【学情分析】
我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展.
【设计思路】
1.教法
①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性.
②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性.
③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点.
2.学法
引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法.
【教学过程】
一:创设情境,引入新课
1.从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?
2.水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?
3.我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10 000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?
教师:以上三个问题中的数蕴涵着三列数.
学生:
1:0,5,10,15,20,25,….
2:18,15.5,13,10.5,8,5.5.
3:10072,10144,10216,10288,10360.
(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型.通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力.
二:观察归纳,形成定义
①0,5,10,15,20,25,….
②18,15.5,13,10.5,8,5.5.
③10072,10144,10216,10288,10360.
思考1上述数列有什么共同特点?
思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?
思考3你能将上述的文字语言转换成数学符号语言吗?
教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念.
学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定.
教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义.
(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达.)
三:举一反三,巩固定义
1.判定下列数列是否为等差数列?若是,指出公差d.
(1)1,1,1,1,1;
(2)1,0,1,0,1;
(3)2,1,0,-1,-2;
(4)4,7,10,13,16.
教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题.
注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 .
(设计意图:强化学生对等差数列“等差”特征的理解和应用).
2思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?
(设计意图:强化等差数列的证明定义法)
四:利用定义,导出通项
1.已知等差数列:8,5,2,…,求第200项?
2.已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?
教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示.根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法.
(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力.学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识.鼓励学生自主解答,培养学生运算能力)
五:应用通项,解决问题
1判断100是不是等差数列2, 9,16,…的项?如果是,是第几项?
2在等差数列{an}中,已知a5=10,a12=31,求a1,d和an.
3求等差数列 3,7,11,…的第4项和第10项
教师:给出问题,让学生自己操练,教师巡视学生答题情况.
学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式
(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系.初步认识“基本量法”求解等差数列问题.)
六:反馈练习:教材13页练习1
七:归纳总结:
1.一个定义:
等差数列的定义及定义表达式
2.一个公式:
等差数列的通项公式
3.二个应用:
定义和通项公式的应用
教师:让学生思考整理,找几个代表发言,最后教师给出补充
(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念.)
【设计反思】
本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣.在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力.本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率.
高中数学公开课教案设计4
课题:指数与指数幂的运算
课型:新授课
教学方法:讲授法与探究法
教学媒体选择:多媒体教学
指数与指数幂的运算——学习者分析:
1.需求分析:在研究指数函数前,学生应熟练掌握指数与指数幂的运算,通过本节内容将指数的取值范围扩充到实数,为学习指数函数打基础.
2.学情分析:在中学阶段已经接触过正数指数幂的运算,但是这对我们研究指数函数是远远不够的,通过本节课使学生对指数幂的运算和理解更加深入.
指数与指数幂的运算——学习任务分析:
1.教材分析:本节的内容蕴含了许多重要的数学思想方法,如推广思想,逼近思想,教材充分关注与实际问题的联系,体现了本节内容的重要性和数学的实际应用价值.
2.教学重点:根式的概念及n次方根的性质;分数指数幂的意义及运算性质;分数指数幂与根式的互化.
3.教学难点:n次方根的性质;分数指数幂的意义及分数指数幂的运算.
指数与指数幂的运算——教学目标阐明:
1.知识与技能:理解根式的概念及性质,掌握分数指数幂的运算,能够熟练的进行分数指数幂与根式的互化.
2.过程与方法:通过探究和思考,培养学生推广和逼近的数学思想方法,提高学生的知识迁移能力和主动参与能力.
3.情感态度和价值观:在教学过程中,让学生自主探索来加深对n次方根和分数指数幂的理解,而具有探索能力是学习数学、理解数学、解决数学问题的重要方面.
教学流程图:
指数与指数幂的运算——教学过程设计:
一.新课引入:
(一)本章知识结构介绍
(二)问题引入
1.问题:当生物体死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内含量P与死亡年数t之间的关系:
(1)当生物死亡了5730年后,它体内的碳14含量P的值为
(2)当生物死亡了5730×2年后,它体内的碳14含量P的值为
(3)当生物死亡了6000年后,它体内的碳14含量P的值为
(4)当生物死亡了10000年后,它体内的碳14含量P的值为
2.回顾整数指数幂的运算性质
整数指数幂的运算性质:
3.思考:这些运算性质对分数指数幂是否适用呢?
【师】这就是我们今天所要学习的内容《指数与指数幂的运算》
【板书】2.1.1指数与指数幂的运算
二.根式的概念:
【师】下面我们来看几个简单的例子.口述平方根,立方根的概念引导学生总结n次方根的概念..
【板书】平方根,立方根,n次方根的符号,并举一些简单的方根运算,以便学生观察总结.
【师】现在我们请同学来总结n次方根的概念..
1.根式的概念
【板书】概念
即如果一个数的n次方等于a(n>1,且n∈N_),那么这个数叫做a的n次方根.
【师】通过刚才所举的例子不难看出n的奇偶以及a的正负都会影响a的n次方根,下面我们来共同完成这样一个表格.
【板书】表格
【师】通过这个表格,我们知道负数没有偶次方根.那么0的n次方根是什么?
【学生】0的n次方根是0.
【师】现在我们来对这个符号作一说明.
例1.求下列各式的值
【注】本题较为简单,由学生口答即可,此处过程省略.
三.n次方根的性质
【注】对于1提问学生a的取值范围,让学生思考便能得出结论.
【注】对于2,少举几个例子让学生观察,并起来说他们的结论.
1.n次方根的性质
四.分数指数幂
【师】这两个根式可以写成分数指数幂的形式,是因为根指数能整除被开方数的指数,那么请大家思考下面的问题.
思考:根指数不能整除被开方数的指数时还能写成分数指数幂的形式吗
【师】如果成立那么它的意义是什么,我们有这样的规定.
(一)分数指数幂的意义:
1.我们规定正数的正分数指数幂的意义是:
2.我们规定正数的负分数指数幂的意义是:
3.0的正分数指数幂等于0,0的负分数指数幂没有意义.
(二)指数幂运算性质的推广:
五.例题
例2.求值
【注】此处例2让学生上黑板做,例3待学生完成后老师在黑板板演,例4让学生黑板上做,然后纠正错误.
六.课堂小结
1.根式的定义;
2.n次方根的性质;
3.分数指数幂.
七.课后作业
P59习题2.1A组1.2.4.
八.课后反思
1.在第一节课的时候没有把重要的内容写在黑板上,而且运算性质中a,r,s的条件没有给出,另外课件中有一处错误.第二节课时改正了第一节课的错误.
2.有许多问题应让学生回答,不能自问自答.根式性质的思考没有讲清楚,应该给学生更多的时间来回答和思考问题,与之互动太少.
3.讲课过程中还有很多细节处理不好,并且讲课声音较小,没有起伏.
4.课前的章节知识结构很好,引入简单到位,亮点是概念后的表格.
高中数学公开课教案设计5
教学准备
教学目标
运用充分条件、必要条件和充要条件
教学重难点
运用充分条件、必要条件和充要条件
教学过程
一、基础知识
(一)充分条件、必要条件和充要条件
1.充分条件:如果A成立那么B成立,则条件A是B成立的充分条件。
2.必要条件:如果A成立那么B成立,这时B是A的必然结果,则条件B是A成立的必要条件。
3.充要条件:如果A既是B成立的充分条件,又是B成立的必要条件,则A是B成立的充要条件;同时B也是A成立的充要条件。
(二)充要条件的判断
1若成立则A是B成立的充分条件,B是A成立的必要条件。
2.若且BA,则A是B成立的充分且不必要条件,B是A成立必要且非充分条件。
3.若成立则A、B互为充要条件。
证明A是B的充要条件,分两步:_
(1)充分性:把A当作已知条件,结合命题的前提条件推出B;
(2)必要性:把B当作已知条件,结合命题的前提条件推出A。
二、范例选讲
例1.(充分必要条件的判断)指出下列各组命题中,p是q的什么条件?
(1)在△ABC中,p:A>B q:BC>AC;
(2)对于实数x、y,p:x+y≠8 q:x≠2或y≠6;
(3)在△ABC中,p:SinA>SinB q:tanA>tanB;
(4)已知x、y∈R,p:(x-1)2+(y-2)2=0 q:(x-1)(y-2)=0
解:(1)p是q的充要条件 (2)p是q的充分不必要条件
(3)p是q的既不充分又不必要条件 (4)p是q的充分不必要条件
练习1(变式1)设f(x)=x2-4x(x∈R),则f(x)>0的一个必要而不充分条件是( C )
A、x<0 B、x<0或x>4 C、│x-1│>1 D、│x-2│>3
例2.填空题
(3)若A是B的充分条件,B是C的充要条件,D是C的必要条件,则A是D的 条件.
答案:(1)充分条件 (2)充要、必要不充分 (3)A=> B <=> C=> D故填充分。
练习2(变式2)若命题甲是命题乙的充分不必要条件,命题丙是命题乙的必要不充分条件,命题丁是命题丙的充要条件,则命题丁是命题甲的( )
A、充分不必要条件 B、必要不充分条件 C、充要条件 D、既不充分又不必要条件
例4.(证明充要条件)设x、y∈R,求证:|x+y|=|x|+∣y∣成立的充要条件是xy≥0.
证明:先证必要性:即|x+y|=|x|+∣y∣成立则xy≥0,
由|x+y|=|x|+∣y∣及x、y∈R得(x+y)2=(|x|+∣y∣)2即|xy|=xy,∴ xy≥0;
再证充分性即:xy≥0则|x+y|=|x|+∣y∣
若xy≥0即xy>0或xy=0
下面分类证明
(Ⅰ)若x>0,y>0则|x+y|=x+y=|x|+∣y∣
(Ⅱ)若x<0,y<0则|x+y|=(-x)+(-y)=|x|+∣y∣
(Ⅲ)若xy=0,不妨设x=0则|x+y|=∣y∣=|x|+∣y∣
综上所述: |x+y|=|x|+∣y∣
∴|x+y|=|x|+∣y∣成立的充要条件是xy≥0.
例5.已知抛物线y=-x2+mx-1 点A(3,0) B(0,3),求抛物线与线段AB有两个不同交点的充要条件.
解:线段AB:y=-x+3(0≤x≤3)-----------(1)
抛物线: y=-x2+mx-1---------------(2)
(1)代入(2)得:x2-(1+m)x+4=0--------(3)
抛物线y=-x2+mx-1与线段AB有两个不同交点,等价于方程(3)在[0,3]上有两个不同的解.