数学教案高三2023
数学教案高三都有哪些?数学属于形式科学,不是自然科学。不同的数学哲学家对数学的确切范围和定义有一系列的看法。下面是小编为大家带来的数学教案高三2023七篇,希望大家能够喜欢!
数学教案高三2023【篇1】
一、教学内容分析
圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象。恰当地利用定义来解题,许多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。
二、学生学习情况分析
我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。
三、设计思想
由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情。在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率。
四、教学目标
1、深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义__问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。
2、通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。
3、借助多媒体辅助教学,激发学习数学的兴趣。
五、教学重点与难点:
教学重点
1、对圆锥曲线定义的理解
2、利用圆锥曲线的定义求“最值”
3、“定义法”求轨迹方程
教学难点:
巧用圆锥曲线定义__
数学教案高三2023【篇2】
教学目标
(1)正确理解加法原理与乘法原理的意义,分清它们的条件和结论;
(2)能结合树形图来帮助理解加法原理与乘法原理;
(3)正确区分加法原理与乘法原理,哪一个原理与分类有关,哪一个原理与分步有关;
(4)能应用加法原理与乘法原理解决一些简单的应用问题,提高学生理解和运用两个原理的能力;
(5)通过对加法原理与乘法原理的学习,培养学生周密思考、细心分析的良好习惯。
教学建议
一、知识结构
二、重点难点分析
本节的重点是加法原理与乘法原理,难点是准确区分加法原理与乘法原理。
加法原理、乘法原理本身是容易理解的,甚至是不言自明的。这两个原理是学习排列组合内容的基础,贯穿整个内容之中,一方面它是推导排列数与组合数的基础;另一方面它的结论与其思想在方法本身又在解题时有许多直接应用。
两个原理回答的,都是完成一件事的所有不同方法种数是多少的问题,其区别在于:运用加法原理的前提条件是,做一件事有n类方案,选择任何一类方案中的任何一种方法都可以完成此事,就是说,完成这件事的各种方法是相互独立的;运用乘法原理的前提条件是,做一件事有n个骤,只要在每个步骤中任取一种方法,并依次完成每一步骤就能完成此事,就是说,完成这件事的各个步骤是相互依存的。简单的说,如果完成一件事情的所有方法是属于分类的问题,每次得到的是最后结果,要用加法原理;如果完成一件事情的方法是属于分步的问题,每次得到的该步结果,就要用乘法原理。
三、教法建议
关于两个计数原理的教学要分三个层次:
第一是对两个计数原理的认识与理解.这里要求学生理解两个计数原理的意义,并弄清两个计数原理的区别.知道什么情况下使用加法计数原理,什么情况下使用乘法计数原理.(建议利用一课时).
第二是对两个计数原理的使用.可以让学生做一下习题(建议利用两课时):
①用0,1,2,……,9可以组成多少个8位号码;
②用0,1,2,……,9可以组成多少个8位整数;
③用0,1,2,……,9可以组成多少个无重复数字的4位整数;
④用0,1,2,……,9可以组成多少个有重复数字的4位整数;
⑤用0,1,2,……,9可以组成多少个无重复数字的4位奇数;
⑥用0,1,2,……,9可以组成多少个有两个重复数字的4位整数等等.
第三是使学生掌握两个计数原理的综合应用,这个过程应该贯彻整个教学中,每个排列数、组合数公式及性质的推导都要用两个计数原理,每一道排列、组合问题都可以直接利用两个原理求解,另外直接计算法、间接计算法都是两个原理的一种体现.教师要引导学生认真地分析题意,恰当的分类、分步,用好、用活两个基本计数原理.
数学教案高三2023【篇3】
【考纲要求】
了解双曲线的定义,几何图形和标准方程,知道它的简单性质。
【自学质疑】
1.双曲线的轴在轴上,轴在轴上,实轴长等于,虚轴长等于,焦距等于,顶点坐标,焦点坐标
2.又曲线的左支上一点到左焦点的距离是7,则这点到双曲线的右焦点的距离是
3.经过两点的双曲线的标准方程是。
4.双曲线的渐近线方程是,则该双曲线的离心率等于。
5.与双曲线有公共的渐近线,且经过点的双曲线的方程为
【例题精讲】
1.双曲线的离心率等于,且与椭圆有公共焦点,求该双曲线的方程。
2.已知椭圆具有性质:若是椭圆上关于原点对称的两个点,点是椭圆上任意一点,当直线的斜率都存在,并记为时,那么之积是与点位置无关的定值,试对双曲线写出具有类似特性的性质,并加以证明。
3.设双曲线的半焦距为,直线过两点,已知原点到直线的距离为,求双曲线的离心率。
【矫正巩固】
1.双曲线上一点到一个焦点的距离为,则它到另一个焦点的距离为。
2.与双曲线有共同的渐近线,且经过点的双曲线的一个焦点到一条渐近线的距离是。
3.若双曲线上一点到它的右焦点的距离是,则点到轴的距离是
4.过双曲线的左焦点的直线交双曲线于两点,若。则这样的直线一共有条。
【迁移应用】
1.已知双曲线的焦点到渐近线的距离是其顶点到渐近线距离的2倍,则该双曲线的离心率
2.已知双曲线的焦点为,点在双曲线上,且,则点到轴的距离为。
3.双曲线的焦距为
4.已知双曲线的一个顶点到它的一条渐近线的距离为,则
5.设是等腰三角形,则以为焦点且过点的双曲线的离心率为.
6.已知圆。以圆与坐标轴的交点分别作为双曲线的一个焦点和顶点,则适合上述条件的双曲线的标准方程为
数学教案高三2023【篇4】
【简单复合函数的导数】
【高考要求】:简单复合函数的导数(B).
【学习目标】:1.了解复合函数的概念,理解复合函数的求导法则,能求简单的复合函数(仅限于形如f(ax+b))的导数.
2.会用复合函数的导数研究函数图像或曲线的特征.
3.会用复合函数的导数研究函数的单调性、极值、最值.
【知识复习与自学质疑】
1.复合函数的求导法则是什么?
2.(1)若,则________.(2)若,则_____.(3)若,则___________.(4)若,则___________.
3.函数在区间_____________________________上是增函数,在区间__________________________上是减函数.
4.函数的单调性是_________________________________________.
5.函数的极大值是___________.
6.函数的值,最小值分别是______,_________.
【例题精讲】
1.求下列函数的导数(1);(2).
2.已知曲线在点处的切线与曲线在点处的切线相同,求的值.
【矫正反馈】
1.与曲线在点处的切线垂直的一条直线是___________________.
2.函数的极大值点是_______,极小值点是__________.
(不好解)3.设曲线在点处的切线斜率为,若,则函数的周期是____________.
4.已知曲线在点处的切线与曲线在点处的切线互相垂直,为原点,且,则的面积为______________.
5.曲线上的点到直线的最短距离是___________.
【迁移应用】
1.设,,若存在,使得,求的取值范围.
2.已知,,若对任意都有,试求的取值范围.
【概率统计复习】
一、知识梳理
1.三种抽样方法的联系与区别:
类别共同点不同点相互联系适用范围
简单随机抽样都是等概率抽样从总体中逐个抽取总体中个体比较少
系统抽样将总体均匀分成若干部分;按事先确定的规则在各部分抽取在起始部分采用简单随机抽样总体中个体比较多
分层抽样将总体分成若干层,按个体个数的比例抽取在各层抽样时采用简单随机抽样或系统抽样总体中个体有明显差异
(1)从含有N个个体的总体中抽取n个个体的样本,每个个体被抽到的概率为
(2)系统抽样的步骤:①将总体中的个体随机编号;②将编号分段;③在第1段中用简单随机抽样确定起始的个体编号;④按照事先研究的规则抽取样本.
(3)分层抽样的步骤:①分层;②按比例确定每层抽取个体的个数;③各层抽样;④汇合成样本.
(4)要懂得从图表中提取有用信息
如:在频率分布直方图中①小矩形的面积=组距=频率②众数是矩形的中点的横坐标③中位数的左边与右边的直方图的面积相等,可以由此估计中位数的值
2.方差和标准差都是刻画数据波动大小的数字特征,一般地,设一组样本数据,,…,,其平均数为则方差,标准差
3.古典概型的概率公式:如果一次试验中可能出现的结果有个,而且所有结果都是等可能的,如果事件包含个结果,那么事件的概率P=
特别提醒:古典概型的两个共同特点:
○1,即试中有可能出现的基本事件只有有限个,即样本空间Ω中的元素个数是有限的;
○2,即每个基本事件出现的可能性相等。
4.几何概型的概率公式:P(A)=
特别提醒:几何概型的特点:试验的结果是无限不可数的;○2每个结果出现的可能性相等。
二、夯实基础
(1)某单位有职工160名,其中业务人员120名,管理人员16名,后勤人员24名.为了解职工的某种情况,要从中抽取一个容量为20的样本.若用分层抽样的方法,抽取的业务人员、管理人员、后勤人员的人数应分别为____________.
(2)某赛季,甲、乙两名篮球运动员都参加了
11场比赛,他们所有比赛得分的情况用如图2所示的茎叶图表示,
则甲、乙两名运动员得分的中位数分别为()
A.19、13B.13、19C.20、18D.18、20
(3)统计某校1000名学生的数学会考成绩,
得到样本频率分布直方图如右图示,规定不低于60分为
及格,不低于80分为优秀,则及格人数是;
优秀率为。
(4)在一次歌手大奖赛上,七位评委为歌手打出的分数如下:
9.48.49.49.99.69.49.7
去掉一个分和一个最低分后,所剩数据的平均值
和方差分别为()
A.9.4,0.484B.9.4,0.016C.9.5,0.04D.9.5,0.016
(5)将一颗骰子先后抛掷2次,观察向上的点数,则以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=27的内部的概率________.
(6)在长为12cm的线段AB上任取一点M,并且以线段AM为边的正方形,则这正方形的面积介于36cm2与81cm2之间的概率为()
三、高考链接
07、某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒
;第六组,成绩大于等于18秒且小于等于19秒.右图
是按上述分组方法得到的频率分布直方图.设成绩小于17秒
的学生人数占全班总人数的百分比为,成绩大于等于15秒
且小于17秒的学生人数为,则从频率分布直方图中可分析
出和分别为()
08、从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为()
分数54321
人数2010303010
09、在区间上随机取一个数x,的值介于0到之间的概率为().
08、现有8名奥运会志愿者,其中志愿者通晓日语,通晓俄语,通晓韩语.从中选出通晓日语、俄语和韩语的志愿者各1名,组成一个小组.
(Ⅰ)求被选中的概率;(Ⅱ)求和不全被选中的概率.
【核心考点算法初步复习】
1.(2011年天津)阅读图11的程序框图,运行相应的程序,则输出i的值为()
A.3B.4C.5D.6
2.(2011年全国)执行图12的程序框图,如果输入的N是6,那么输出的p是()
A.120B.720C.1440D.5040
3.执行如图13的程序框图,则输出的n=()
A.6B.5C.8D.7
4.(2011年湖南)若执行如图14所示的框图,输入x1=1,x2=2,x3=3,x-=2,则输出的数等于________.
5.(2011年浙江)若某程序图如图15所示,则该程序运行后输出的k值为________.
6.(2011年淮南模拟)某程序框图如图16所示,现输入如下四个函数,则可以输出的函数是()
A.f(x)=x2B.f(x)=1x
C.f(x)=exD.f(x)=sinx
7.运行如下程序:当输入168,72时,输出的结果是()
INPUTm,n
DO
r=mMODn
m=n
n=r
LOOPUNTILr=0
PRINTm
END
A.168B.72C.36D.24
8.在图17程序框图中,输入f1(x)=xex,则输出的函数表达式是________________.
9.(2011年安徽合肥模拟)如图18所示,输出的为()
A.10B.11C.12D.13
10.(2011年广东珠海模拟)阅读图19的算法框图,输出结果的值为()
A.1B.3C.12D.32
数学教案高三2023【篇5】
一:说教材
平面向量的数量积是两向量之间的乘法,而平面向量的坐标表示把向量之间的运算转化为数之间的运算。本节内容是在平面向量的坐标表示以及平面向量的数量积及其运算律的基础上,介绍了平面向量数量积的坐标表示,平面两点间的距离公式,和向量垂直的坐标表示的充要条件。为解决直线垂直问题,三角形边角的有关问题提供了很好的办法。本节内容也是全章重要内容之一。
二:说学习目标和要求
通过本节的学习,要让学生掌握
(1):平面向量数量积的坐标表示。
(2):平面两点间的距离公式。
(3):向量垂直的坐标表示的充要条件。
以及它们的一些简单应用,以上三点也是本节课的重点,本节课的难点是向量垂直的坐标表示的充要条件以及它的灵活应用。
三:说教法
在教学过程中,我主要采用了以下几种教学方法:
(1)启发式教学法
因为本节课重点的坐标表示公式的推导相对比较容易,所以这节课我准备让学生自行推导出两个向量数量积的坐标表示公式,然后引导学生发现几个重要的结论:如模的计算公式,平面两点间的距离公式,向量垂直的坐标表示的充要条件。
(2)讲解式教学法
主要是讲清概念,解除学生在概念理解上的疑惑感;例题讲解时,演示解题过程!
主要辅助教学的手段(powerpoint)
(3)讨论式教学法
主要是通过学生之间的相互交流来加深对较难问题的理解,提高学生的自学能力和发现、分析、解决问题以及创新能力。
四:说学法
学生是课堂的主体,一切教学活动都要围绕学生展开,借以诱发学生的学习兴趣,增强课堂上和学生的交流,从而达到及时发现问题,解决问题的目的。通过精讲多练,充分调动学生自主学习的积极性。如让学生自己动手推导两个向量数量积的坐标公式,引导学生推导4个重要的结论!并在具体的问题中,让学生建立方程的思想,更好的解决问题!
五:说教学过程
这节课我准备这样进行:
首先提出问题:要算出两个非零向量的数量积,我们需要知道哪些量?
继续提出问题:假如知道两个非零向量的坐标,是不是可以用这两个向量的坐标来表示这两个向量的数量积呢?
引导学生自己推导平面向量数量积的坐标表示公式,在此公式基础上还可以引导学生得到以下几个重要结论:
(1) 模的计算公式
(2)平面两点间的距离公式。
(3)两向量夹角的余弦的坐标表示
(4)两个向量垂直的标表示的充要条件
第二部分是例题讲解,通过例题讲解,使学生更加熟悉公式并会加以应用。
例题1是书上122页例1,此题是直接用平面向量数量积的坐标公式的题,目的是让学生熟悉这个公式,并在此题基础上,求这两个向量的夹角?目的是让学生熟悉两向量夹角的余弦的坐标表示公式例题2是直接证明直线垂直的题,虽然比较简单,但体现了一种重要的证明方法,这种方法要让学生掌握,其实这一例题也是两个向量垂直坐标表示的充要条件的一个应用:即两个向量的数量积是否为零是判断相应的两条直线是否垂直的重要方法之一。
例题3是在例2的基础上稍微作了一下改变,目的是让学生会应用公式来解决问题,并让学生在这要有建立方程的思想。
再配以练习,让学生能熟练的应用公式,掌握今天所学内容。
数学教案高三2023【篇6】
一、教学目标:
掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
二、教学重点:
向量的性质及相关知识的综合应用。
三、教学过程:
(一)主要知识:
1、掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。
(二)例题分析:略
四、小结:
1、进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题,
2、渗透数学建模的思想,切实培养分析和解决问题的能力。
数学教案高三2023【篇7】
1、教材分析
本节课位于数学必修一第一章第一节-----集合的第一课时,主要学习集合的基本概念与表示方法,在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握和使用数学语言的基础。例如,下一章讲函数的概念与性质,;在代数中用到的有数集、解集等;在几何中用到的有点集,都离不开集合。至于逻辑,可以说,从开始学习数学就离不开对逻辑知识的掌握和运用,基本的逻辑知识在日常生活、学习、工作中,也是认识问题、研究问题不可缺少的工具。这些可以帮助学生认识学习本章的意义,也是本章学习的基础。
2、教学目标
知识与技能目标
①通过实例了解集合的含义;
②知道常用数集及其专用记号;
③了解集合中元素的确定性、互异性、无序性;
④会用集合语言表示有关数学对象。
⑤能选择自然语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。
过程与方法目标
①通过实例抽象概括集合的共同特征,从而引出集合的概念是本节课的重要任务之一。因此教学时不仅要关注集合的基本知识的学习,同时还要关注学生抽象概括能力的培养。
②教学过程中应努力创造培养学生的思维能力,提高学生理解掌握概念的能力,训练学生分析问题和处理问题的能力
情感态度与价值观目标
培养数学的特有文化——简洁精炼,体会从感性到理性的思维过程。
3、教学重难点
重点:集合的基本概念与表示方法。
难点:运用集合的三种常用表示方法正确表示一些简单的集合
4、教学方法:实例归纳、学生的自主探究、主动参与与教师的引导相结合,充分体现学生在课堂中的主体作用和教师的主导作用。
5、教学手段:多媒体辅助教学——主要是利用多媒体展示图片来增加学生的学习兴趣和对集合知识的直观理解。
6、教学思路:创设情境,从具体实例引入新课
师生共同分析实例,得出集合含义,明确有关规定
师生共同分析例子,学习元素与集合的关系及记号
自主学习常用数集及其记号
自主学习集合的两种表示方法
课堂练习,小结与课后作业