数学复习高三教案
数学复习高三教案如何写?数学被用于许多不同的领域,包括科学、工程、医学和经济学。数学在这些领域的应用一般称为应用数学,有时会引起新的数学发现,促进新的数学学科的发展。下面是小编为大家带来的数学复习高三教案七篇,希望大家能够喜欢!
数学复习高三教案(篇1)
一、教学目标
知识与技能:
理解任意角的概念(包括正角、负角、零角)与区间角的概念。
过程与方法:
会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写。
情感态度与价值观:
1、提高学生的推理能力;
2、培养学生应用意识。
二、教学重点、难点:
教学重点:
任意角概念的理解;区间角的集合的书写。
教学难点:
终边相同角的集合的表示;区间角的集合的书写。
三、教学过程
(一)导入新课
1、回顾角的定义
①角的第一种定义是有公共端点的两条射线组成的图形叫做角。
②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
(二)教学新课
1、角的有关概念:
①角的定义:
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形。
②角的名称:
注意:
⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”;
⑵零角的终边与始边重合,如果α是零角α =0°;
⑶角的概念经过推广后,已包括正角、负角和零角。
⑤练习:请说出角α、β、γ各是多少度?
2、象限角的概念:
①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角。
例1、如图⑴⑵中的角分别属于第几象限角?
数学复习高三教案(篇2)
教学目的:
1 掌握平面向量数量积运算规律;
2 能利用数量积的5个重要性质及数量积运算规律解决有关问题;
3 掌握两个向量共线、垂直的几何判断,会证明两向量垂直,以及能解决一些简单问题
教学重点:平面向量数量积及运算规律
教学难点:平面向量数量积的应用
授课类型:新授课
课时安排:1课时
教 具:多媒体、实物投影仪
内容分析:
启发学生在理解数量积的运算特点的基础上,逐步把握数量积的运算律,引导学生注意数量积性质的相关问题的特点,以熟练地应用数量积的性质
教学过程:
一、复习引入:
1.两个非零向量夹角的概念
已知非零向量 与 ,作 = , = ,则∠aob=θ(0≤θ≤π)叫 与 的夹角
2.平面向量数量积(内积)的定义:已知两个非零向量 与 ,它们的夹角是θ,则数量| || |cos叫 与 的数量积,记作 ,即有 = | || |cos,
(0≤θ≤π) 并规定 与任何向量的数量积为0
3.“投影”的概念:作图
定义:| |cos叫做向量 在 方向上的投影
投影也是一个数量,不是向量;当为锐角时投影为正值;当为钝角时投影为负值;当为直角时投影为0;当 = 0时投影为 | |;当 = 180时投影为 | |
4.向量的数量积的几何意义:
数量积 等于 的长度与 在 方向上投影| |cos的乘积
5.两个向量的数量积的性质:
设 、 为两个非零向量, 是与 同向的单位向量
1 = =| |cos;2 = 0
3当 与 同向时, = | || |;当 与 反向时, = | || |
特别的 = | |2或
4cos = ;5| | ≤ | || |
6.判断下列各题正确与否:
1若 = ,则对任一向量 ,有 = 0 ( √ )
2若 ,则对任一非零向量 ,有 0 ( × )
3若 , = 0,则 = ( × )
4若 = 0,则 、 至少有一个为零 ( × )
5若 , = ,则 = ( × )
6若 = ,则 = 当且仅当 时成立 ( × )
7对任意向量 、 、 ,有( ) ( ) ( × )
8对任意向量 ,有 2 = | |2 ( √ )
数学复习高三教案(篇3)
教学准备
教学目标
1.掌握平面向量的数量积及其几何意义;
2.掌握平面向量数量积的重要性质及运算律;
3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;
4.掌握向量垂直的条件.
教学重难点
教学重点:平面向量的数量积定义
教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用
教学工具
投影仪
教学过程
一、复习引入:
1.向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ
五,课堂小结
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
六、课后作业
P107习题2.4A组2、7题
课后小结
(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?
(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。
(3)你在这节课中的表现怎样?你的体会是什么?
课后习题
作业
P107习题2.4A组2、7题
板书
略
数学复习高三教案(篇4)
一、教学目标:
知识与技能:理解指数函数的概念,掌握指数函数的图象和性质,培养学生实际应用函数的能力。
过程与方法:通过观察图象,分析、归纳、总结、自主建构指数函数的性质。领会数形结合的数学思想方法,培养学生发现、分析、解决问题的能力。
情感态度与价值观:在指数函数的学习过程中,体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
二、教学重点、难点:
教学重点:指数函数的概念、图象和性质。
教学难点:对底数的分类,如何由图象、解析式归纳指数函数的性质。
三、教学过程:
(一)创设情景
问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂x次后,得到的细胞分裂的个数y与x之间,构成一个函数关系,能写出x与y之间的函数关系式吗?
学生回答:y与x之间的关系式,可以表示为y=2x。
问题2:一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约是原来的84%。求出这种物质的剩留量随时间(单位:年)变化的函数关系。设最初的质量为1,时间变量用x表示,剩留量用y表示。
学生回答:y与x之间的关系式,可以表示为y=0.84x。
引导学生观察,两个函数中,底数是常数,指数是自变量。
1.指数函数的定义
一般地,函数y?a?a?0且a?1?叫做指数函数,其中x是自变量,函数的定义域是R。x
问题:指数函数定义中,为什么规定“a?0且a?1”如果不这样规定会出现什么情况?
(1)若a<0会有什么问题?
x1则在实数范围内相应的函数值不存在)2(2)若a=0会有什么问题?(对于x0,a无意义)
(3)若a=1又会怎么样?(1x无论x取何值,它总是1,对它没有研究的必要。)
师:为了避免上述各种情况的发生,所以规定a?0且a?1。
练1:指出下列函数那些是指数函数:
?1?(1)y?4x(2)y?x4(3)y??4x(4)y???4?(5(转载于:,n的大小:
设计意图:这是指数函数性质的简单应用,使学生在解题过程中加深对指数函数的图像及性质的理解和记忆。
(五)课堂小结
(六)布置作业
数学复习高三教案(篇5)
三角函数的周期性
一、学习目标与自我评估
1 掌握利用单位圆的几何方法作函数 的图象
2 结合 的图象及函数周期性的定义了解三角函数的周期性,及最小正周期
3 会用代数方法求 等函数的周期
4 理解周期性的几何意义
二、学习重点与难点
“周期函数的概念”, 周期的求解。
三、学法指导
1、 是周期函数是指对定义域中所有 都有
,即 应是恒等式。
2、周期函数一定会有周期,但不一定存在最小正周期。
四、学习活动与意义建构
五、重点与难点探究
例1、若钟摆的高度 与时间 之间的函数关系如图所示
(1)求该函数的周期;
(2)求 时钟摆的高度。
例2、求下列函数的周期。
(1) (2)
总结:(1)函数 (其中 均为常数,且
的周期T= 。
(2)函数 (其中 均为常数,且
的周期T= 。
例3、求证: 的周期为 。
例4、(1)研究 和 函数的图象,分析其周期性。(2)求证: 的周期为 (其中 均为常数,
且
总结:函数 (其中 均为常数,且
的周期T= 。
例5、(1)求 的周期。
(2)已知 满足 ,求证: 是周期函数
课后思考:能否利用单位圆作函数 的图象。
六、作业:
七、自主体验与运用
1、函数 的周期为 ( )
A、 B、 C、 D、
2、函数 的最小正周期是 ( )
A、 B、 C、 D、
3、函数 的最小正周期是 ( )
A、 B、 C、 D、
4、函数 的周期是 ( )
A、 B、 C、 D、
5、设 是定义域为R,最小正周期为 的函数,
若 ,则 的值等于 ( )
A、1 B、 C、0 D、
6、函数 的最小正周期是 ,则
7、已知函数 的最小正周期不大于2,则正整数
的最小值是
8、求函数 的最小正周期为T,且 ,则正整数
的值是
9、已知函数 是周期为6的奇函数,且 则
10、若函数 ,则
11、用周期的定义分析 的周期。
12、已知函数 ,如果使 的周期在 内,求
正整数 的值
13、一机械振动中,某质子离开平衡位置的位移 与时间 之间的
函数关系如图所示:
(1) 求该函数的周期;
(2) 求 时,该质点离开平衡位置的位移。
14、已知 是定义在R上的函数,且对任意 有
成立,
(1) 证明: 是周期函数;
(2) 若 求 的值。
数学复习高三教案(篇6)
两角差的余弦公式
【使用说明】 1、复习教材P124-P127页,40分钟时间完成预习学案
2、有余力的学生可在完成探究案中的部分内容。
【学习目标】
知识与技能:理解两角差的余弦公式的推导过程及其结构特征并能灵活运用。
过程与方法:应用已学知识和方法思考问题,分析问题,解决问题的能力。
情感态度价值观: 通过公式推导引导学生发现数学规律,培养学生的创新意识和学习数学的兴趣。
.【重点】通过探索得到两角差的余弦公式以及公式的灵活运用
【难点】两角差余弦公式的推导过程
预习自学案
一、知识链接
1. 写出 的三角函数线 :
2. 向量 , 的数量积,
①定义:
②坐标运算法则:
3. , ,那么 是否等于 呢?
下面我们就探讨两角差的余弦公式
二、教材导读
1.、两角差的余弦公式的推导思路
如图,建立单位圆O
(1)利用单位圆上的三角函数线
设
则
又OM=OB+BM
=OB+CP
=OA_____ +AP_____
=
从而得到两角差的余弦公式:
____________________________________
(2)利用两点间距离公式
如图,角 的终边与单位圆交于A( )
角 的终边与单位圆交于B( )
角 的终边与单位圆交于P( )
点T( )
AB与PT关系如何?
从而得到两角差的余弦公式:
____________________________________
(3) 利用平面向量的知识
用 表示向量 ,
=( , ) =( , )
则 . =
设 与 的夹角为
①当 时:
=
从而得出
②当 时显然此时 已经不是向量 的夹角,在 范围内,是向量夹角的补角.我们设夹角为 ,则 + =
此时 =
从而得出
2、两角差的余弦公式
____________________________
三、预习检测
1. 利用余弦公式计算 的值.
2. 怎样求 的值
你的疑惑是什么?
________________________________________________________
______________________________________________________
探究案
例1. 利用差角余弦公式求 的值.
例2.已知 , 是第三象限角,求 的值.
训练案
一、 基础训练题
1、
2、
3、
二、综合题
数学复习高三教案(篇7)
教学目标
(1)掌握复数的有关概念,如虚数、纯虚数、复数的实部与虚部、两复数相等、复平面、实轴、虚轴、共轭复数、共轭虚数的概念。
(2)正确对复数进行分类,掌握数集之间的从属关系;
(3)理解复数的几何意义,初步掌握复数集c和复平面内所有的点所成的集合之间的一一对应关系。
(4)培养学生数形结合的数学思想,训练学生条理的逻辑思维能力.
教学建议
(一)教材分析
1、知识结构
本节首先介绍了复数的有关概念,然后指出复数相等的充要条件,接着介绍了有关复数的几何表示,最后指出了有关共轭复数的概念.
2、重点、难点分析
(1)正确复数的实部与虚部
对于复数 ,实部是 ,虚部是 .注意在说复数 时,一定有 ,否则,不能说实部是 ,虚部是 ,复数的实部和虚部都是实数。
说明:对于复数的定义,特别要抓住 这一标准形式以及 是实数这一概念,这对于解有关复数的问题将有很大的帮助。
(2)正确地对复数进行分类,弄清数集之间的关系
分类要求不重复、不遗漏,同一级分类标准要统一。根据上述原则,复数集的分类如下:
注意分清复数分类中的界限:
①设 ,则 为实数
② 为虚数
③ 且 。
④ 为纯虚数 且
(3)不能乱用复数相等的条件解题.用复数相等的条件要注意:
①化为复数的标准形式
②实部、虚部中的字母为实数,即
(4)在讲复数集与复平面内所有点所成的集合一一对应时,要注意:
①任何一个复数 都可以由一个有序实数对( )唯一确定.这就是说,复数的实质是有序实数对.一些书上就是把实数对( )叫做复数的.
②复数 用复平面内的点z( )表示.复平面内的点z的坐标是( ),而不是( ),也就是说,复平面内的纵坐标轴上的单位长度是1,而不是 .由于 =0+1· ,所以用复平面内的点(0,1)表示 时,这点与原点的距离是1,等于纵轴上的单位长度.这就是说,当我们把纵轴上的点(0,1)标上虚数 时,不能以为这一点到原点的距离就是虚数单位 ,或者 就是纵轴的单位长度.
③当 时,对任何 , 是纯虚数,所以纵轴上的点( )( )都是表示纯虚数.但当 时, 是实数.所以,纵轴去掉原点后称为虚轴.
由此可见,复平面(也叫高斯平面)与一般的坐标平面(也叫笛卡儿平面)的区别就是复平面的虚轴不包括原点,而一般坐标平面的原点是横、纵坐标轴的公共点.
④复数z=a+bi中的z,书写时小写,复平面内点z(a,b)中的z,书写时大写.要学生注意.
(5)关于共轭复数的概念
设 ,则 ,即 与 的实部相等,虚部互为相反数(不能认为 与 或 是共轭复数).
教师可以提一下当 时的特殊情况,即实轴上的点关于实轴本身对称,例如:5和-5也是互为共轭复数.当 时, 与 互为共轭虚数.可见,共轭虚数是共轭复数的特殊情行.
(6)复数能否比较大小
教材最后指出:“两个复数,如果不全是实数,就不能比较它们的大小”,要注意:
①根据两个复数相等地定义,可知在 两式中,只要有一个不成立,那么 .两个复数,如果不全是实数,只有相等与不等关系,而不能比较它们的大小.
②命题中的“不能比较它们的大小”的确切含义是指:“不论怎样定义两个复数间的一个关系‘<’,都不能使这关系同时满足实数集中大小关系地四条性质”:
(i)对于任意两个实数a, b来说,a<b, a=b, b<a这三种情形有且仅有一种成立;
(ii)如果a<b,b<c,那么a<c;
(iii)如果a<b,那么a+c<b+c;
(iv)如果a<b,c>0,那么ac<bc.(不必向学生讲解)
(二)教法建议
1.要注意知识的连续性:复数 是二维数,其几何意义是一个点 ,因而注意与平面解析几何的联系.
2.注意数形结合的数形思想:由于复数集与复平面上的点的集合建立了一一对应关系,所以用“形”来解决“数”就成为可能,在本节要注意复数的几何意义的讲解,培养学生数形结合的数学思想.
3.注意分层次的教学:教材中最后对于“两个复数,如果不全是实数就不能本节它们的大小”没有证明,如果有学生提出来了,在课堂上不要给全体学生证明,可以在课下给学有余力的学生进行解答.
复数的有关概念
教学目标
1.了解复数的实部,虚部;
2.掌握复数相等的意义;
3.了解并掌握共轭复数,及在复平面内表示复数.
教学重点
复数的概念,复数相等的充要条件.
教学难点
用复平面内的点表示复数m.
教学用具:直尺
课时安排:1课时
教学过程:
一、复习提问:
1.复数的定义。
2.虚数单位。
二、讲授新课
1.复数的实部和虚部:
复数 中的a与b分别叫做复数的实部和虚部。
2.复数相等
如果两个复数 与 的实部与虚部分别相等,就说这两个复数相等。
即: 的充要条件是 且 。
例如: 的充要条件是 且 。
例1: 已知 其中 ,求x与y.
解:根据复数相等的意义,得方程组:
∴
例2:m是什么实数时,复数 ,
(1) 是实数,(2)是虚数,(3)是纯虚数.
解:
(1) ∵ 时,z是实数,
∴ ,或 .
(2) ∵ 时,z是虚数,
∴ ,且
(3) ∵ 且 时, z是纯虚数. ∴
3.用复平面(高斯平面)内的点表示复数
复平面的定义
建立了直角坐标系表示复数的平面,叫做复平面.
复数 可用点 来表示.(如图)其中x轴叫实轴,y轴 除去原点的部分叫虚轴,表示实数的点都在实轴上,表示纯虚数的点都在虚轴上。原点只在实轴x上,不在虚轴上.
4.复数的几何意义:
复数集c和复平面所有的点的集合是一一对应的.
5.共轭复数
(1)当两个复数实部相等,虚部互为相反数时,这两个复数叫做互为共轭复数。(虚部不为零也叫做互为共轭复数)
(2)复数z的共轭复数用 表示.若 ,则: ;
(3)实数a的共轭复数仍是a本身,纯虚数的共轭复数是它的相反数.
(4)复平面内表示两个共轭复数的点z与 关于实轴对称.
三、练习 1,2,3,4.
四、小结:
1.在理解复数的有关概念时应注意:
(1)明确什么是复数的实部与虚部;
(2)弄清实数、虚数、纯虚数分别对实部与虚部的要求;
(3)弄清复平面与复数的几何意义;
(4)两个复数不全是实数就不能比较大小。
2.复数集与复平面上的点注意事项:
(1)复数 中的z,书写时小写,复平面内点z(a,b)中的z,书写时大写。
(2)复平面内的点z的坐标是(a,b),而不是(a,bi),也就是说,复平面内的纵坐标轴上的单位长度是1,而不是i。
(3)表示实数的点都在实轴上,表示纯虚数的点都在虚轴上。
(4)复数集c和复平面内所有的点组成的集合一一对应:
五、作业 1,2,3,4,
六、板书设计:
§8,2 复数的有关概念
1定义: 例1 3定义: 4几何意义:
…… …… …… ……
2定义: 例2 5共轭复数: