数学教案高二2023
数学教案高二都有哪些?小学数学是通过教材,教小朋友们关于数的认识,四则运算,图形和长度的计算公式,单位转换一系列的知识,为初中和日常生活的计算打下良好的数学基础。下面是小编为大家带来的数学教案高二2023七篇,希望大家能够喜欢!
数学教案高二2023【篇1】
立体几何初步
1、柱、锥、台、球的结构特征
(1)棱柱:
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:
定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如五棱台
几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
(4)圆柱:
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:
定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
数学教案高二2023【篇2】
一、学习目标与自我评估
1 掌握利用单位圆的几何方法作函数 的图象
2 结合 的图象及函数周期性的定义了解三角函数的周期性,及最小正周期
3 会用代数方法求 等函数的周期
4 理解周期性的几何意义
二、学习重点与难点
“周期函数的概念”, 周期的求解。
三、学法指导
1、 是周期函数是指对定义域中所有 都有
,即 应是恒等式。
2、周期函数一定会有周期,但不一定存在最小正周期。
四、学习活动与意义建构
五、重点与难点探究
例1、若钟摆的高度 与时间 之间的函数关系如图所示
(1)求该函数的周期;
(2)求 时钟摆的高度。
例2、求下列函数的周期。
(1) (2)
总结:(1)函数 (其中 均为常数,且
的周期T= 。
(2)函数 (其中 均为常数,且
的周期T= 。
例3、求证: 的周期为 。
例4、(1)研究 和 函数的图象,分析其周期性。(2)求证: 的周期为 (其中 均为常数,
且
总结:函数 (其中 均为常数,且
的周期T= 。
例5、(1)求 的周期。
(2)已知 满足 ,求证: 是周期函数
课后思考:能否利用单位圆作函数 的图象。
六、作业:
七、自主体验与运用
1、函数 的周期为 ( )
A、 B、 C、 D、
2、函数 的最小正周期是 ( )
A、 B、 C、 D、
3、函数 的最小正周期是 ( )
A、 B、 C、 D、
4、函数 的周期是 ( )
A、 B、 C、 D、
5、设 是定义域为R,最小正周期为 的函数,
若 ,则 的值等于 ( )
A、1 B、 C、0 D、
6、函数 的最小正周期是 ,则
7、已知函数 的最小正周期不大于2,则正整数
的最小值是
8、求函数 的最小正周期为T,且 ,则正整数
的值是
9、已知函数 是周期为6的奇函数,且 则
10、若函数 ,则
11、用周期的定义分析 的周期。
12、已知函数 ,如果使 的周期在 内,求
正整数 的值
13、一机械振动中,某质子离开平衡位置的位移 与时间 之间的
函数关系如图所示:
(1) 求该函数的周期;
(2) 求 时,该质点离开平衡位置的位移。
14、已知 是定义在R上的函数,且对任意 有
成立,
(1) 证明: 是周期函数;
(2) 若 求 的值。
数学教案高二2023【篇3】
【使用说明】 1、复习教材P124-P127页,40分钟时间完成预习学案
2、有余力的学生可在完成探究案中的部分内容。
【学习目标】
知识与技能:理解两角差的余弦公式的推导过程及其结构特征并能灵活运用。
过程与方法:应用已学知识和方法思考问题,分析问题,解决问题的能力。
情感态度价值观: 通过公式推导引导学生发现数学规律,培养学生的创新意识和学习数学的兴趣。
.【重点】通过探索得到两角差的余弦公式以及公式的灵活运用
【难点】两角差余弦公式的推导过程
预习自学案
一、知识链接
1. 写出 的三角函数线 :
2. 向量 , 的数量积,
①定义:
②坐标运算法则:
3. , ,那么 是否等于 呢?
下面我们就探讨两角差的余弦公式
二、教材导读
1.、两角差的余弦公式的推导思路
如图,建立单位圆O
(1)利用单位圆上的三角函数线
设
则
又OM=OB+BM
=OB+CP
=OA_____ +AP_____
=
从而得到两角差的余弦公式:
____________________________________
(2)利用两点间距离公式
如图,角 的终边与单位圆交于A( )
角 的终边与单位圆交于B( )
角 的终边与单位圆交于P( )
点T( )
AB与PT关系如何?
从而得到两角差的余弦公式:
____________________________________
(3) 利用平面向量的知识
用 表示向量 ,
=( , ) =( , )
则 . =
设 与 的夹角为
①当 时:
=
从而得出
②当 时显然此时 已经不是向量 的夹角,在 范围内,是向量夹角的补角.我们设夹角为 ,则 + =
此时 =
从而得出
2、两角差的余弦公式
____________________________
三、预习检测
1. 利用余弦公式计算 的值.
2. 怎样求 的值
你的疑惑是什么?
________________________________________________________
______________________________________________________
探究案
例1. 利用差角余弦公式求 的值.
例2.已知 , 是第三象限角,求 的值.
训练案
一、 基础训练题
1、
2、 ¬¬¬¬¬¬¬¬¬¬¬
3、
二、综合题
--------------------------------------------------
数学教案高二2023【篇4】
一、教材分析
1.教材背景
作为曲线内容学习的开始,“曲线与方程”这一小节思想性较强,约需三课时,第一课时介绍曲线与方程的概念;第二课时讲曲线方程的求法;第三课时侧重对所求方程的检验.
本课为第二课时
主要内容有:解析几何与坐标法;求曲线方程的方法(直译法)、步骤及例题探求.
2.本课地位和作用
承前启后,数形结合
曲线和方程,既是直线与方程的自然延伸,又是圆锥曲线学习的必备,是后面平面曲线学习的理论基础,是解几中承上启下的关键章节.
“曲线”与“方程”是点的轨迹的两种表现形式.“曲线”是轨迹的几何形式,“方程”是轨迹的代数形式;求曲线方程是用方程研究曲线的先导,是解析几何所要解决的两大类问题的首要问题.体现了坐标法的本质——代数化处理几何问题,是数形结合的典范.
后继性、可探究性
求曲线方程实质上就是求曲线上任意一点(x,y)横纵坐标间的等量关系,但曲线轨迹常无法事先预知类型,通过多媒体演示可以生动展现运动变化特点,但如何获得曲线的方程呢?通过创设情景,激发学生兴趣,充分发挥其主体地位的作用,学习过程具有较强的探究性.
同时,本课内容又为后面的轨迹探求提供方法的准备,并且以后还会继续完善轨迹方程的求解方法.
数学建模与示范性作用
曲线的方程是解析几何的核心.求曲线方程的过程类似于数学建模的过程,它贯穿于解析几何的始终,通过本课例题与变式,要总结规律,掌握方法,为后面圆锥曲线等的轨迹探求提供示范.
数学的文化价值
解析几何的发明是变量数学的第一个里程碑,也是近代数学崛起的两大标志之一,是较为完整和典型的重大数学创新史例.解析几何创始人特别是笛卡儿的事迹和精神——对科学真理和方法的追求、质疑的科学精神等都是富有启发性和激励性的教育材料.可以根据学生实际情况,条件允许时指导学生课后收集相关资料,通过分析、整理,写出研究报告.
3.学情分析
我所授课班级的学生数学基础比较好,思维活跃,在刚刚学习了“曲线的方程和方程的曲线”后,学生对这种必须同时具备纯粹性和完备性的概念有了初步的认识,对用代数方法研究几何问题的科学性、准确性和优越性等已有了初步了解,对具体(平面)图形与方程间能否对应、怎样对应的学习已经有了自然的求知欲望.
二、目标分析
1.教学目标
知识技能目标
理解坐标法的作用及意义.
掌握求曲线方程的一般方法和步骤,能根据所给条件,选择适当坐标系求曲线方程.
过程性目标
通过学生积极参与,亲身经历曲线方程的获得过程,体验坐标法在处理几何问题中的优越性,渗透数形结合的数学思想.
通过自主探索、合作交流,学生历经从“特殊——一般——特殊”的认知模式,完善认知结构.
通过层层深入,培养学生发散思维的能力,深化对求曲线方程本质的理解.
情感、态度与价值观目标
通过合作学习,学生间、师生间的相互交流,感受探索的乐趣与成功的喜悦,体会数学的理性与严谨,逐步养成质疑的科学精神.
展现人文数学精神,体现数学文化价值及其在在社会进步、人类文明发展中的重要作用.
2.教学重点和难点
重点:求曲线方程的方法、步骤
难点:几何条件的代数化
依据:求曲线方程是解几研究的两大类问题之一,既是重点也是难点,是高考解答题取材的源泉.主要包括两种类型求曲线的方程:一是已知曲线形状时常用待定系数法;二是动点轨迹方程探求,本课的重点主要是探索动点的曲线方程.
曲线与方程是贯穿平面解几的知识,是解析几何的核心.求曲线方程是几何问题得以代数研究的先决,求曲线方程的过程类似数学建模的过程,是课堂上必须突破的难点.
三、教学方法及教材处理
1.教学方法:探究发现教学法.
遵循以学生为主体,教师为主导,发展为主旨的现代教育原则,以问题的提出、问题的解决为主线,始终在学生知识的“最近发展区”设置问题,通过学生主动探索、积极参与、共同交流与协作,在教师的引导和合作下,学生“跳一跳”就能摘得果实,于问题的分析和解决中实现知识的建构和发展,通过不断探究、发现,让学习过程成为心灵愉悦的主动认知过程,使师生的生命活力在课堂上得到充分的发挥.
2.学法指导
学生学法:互相讨论、探索发现
由于学生在尝试问题解决的过程中常会在新旧知识联系、策略选择、思想方法运用等方面遇到一定的困难,需要教师指导.作为学生活动的组织者、引导者、参与者,教师要帮助学生重温与问题解决有关的旧知,给予学生思考的时间和表达的机会,共同对(解题)过程进行反思等,在师生(生生)互动中,给予学生启发和鼓励,在心理上、认知上予以帮助.
这样,在学法上确立的教法,能帮助学生更好地获得完整的认知结构,使学生思维、能力等得到和谐发展.
3.设计理念:
求曲线方程就是将曲线上点的几何表示形式转化为代数表示形式。在这转化过程中,学生通过积极参与、勇于探索的学习方式,让学生的学习过程成为教师指导下的再创造,这也正是建构主义理论的本质要求;遵循学生认知规律,尊重学生个体差异,立足教材,通过对例题的再创造,体现理论联系实际、循序渐进和因材施教的教学原则,让不同层次的学生得到不同层度的发展;通过激发兴趣,强调自主探索与合作交流,让学生逐步地从学会走向会学,由被动走向主动,由课堂走向社会,为学生的终身学习和终身发展奠定良好的基础,也是当前新课程所追求的基本理念.
四、教学过程(教学设计)
根据本课教学内容几何特性外化的特点,抓住形成轨迹的动点具备的几何条件,运用坐标化的手段及等价转化与数形结合的思想方法,突破难点,突出重点.本课的教学设计思路是:
创设情景——从感性的轨迹(图形)认识,到解决生活上的实例,激发学生的求知欲望,抓住学生迫切一试的认知心理,自然引入坐标法的意义及曲线方程的求法.
例题探求——例题一体现知识的承前启后.通过例题一的呈现,学生借助已有的知识经验,自主探求获得问题的求解,在教师的引导下,让学生感受求曲线方程的含义及求解步骤;例题二及变式解决建系难点,建系的开放性,对学生是一种挑战,也是一种创造;两个例题由浅入深,循序渐进,体现因材施教.至此,学生已能初步了解求曲线方程的一般方法和步骤了.
归纳步骤——学生亲身经历求曲线方程的过程,让学生归纳(用自己的语言)、表述求解的步骤,体现从“特殊——一般”认知规律,逐步实现教学目标.
变式练习——通过对例题的变式,由学生求解、回答变式后的含义,深化对认知结构的理解,初步体会数学的理性与严谨,逐步养成质疑与反思的习惯.
反馈练习——利用学生探索而发展来的认知水平,运用获得的知识解决情景创设中的实际问题,一方面可以考察学生运用所学数学知识解决实际问题的意识和能力;另一方面是学生思维的自然顺应,自然释放,是“一般——特殊”的过程.全面完成教学目标.
数学教案高二2023【篇5】
一教材分析
(1)地位和作用
向量是近代数学中重要和基本的概念之一,有着深刻的几何背景,是解决几何问题的有力工具.向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以转化为向量的加(减)法,数乘向量,数量积运算(运算率),从而把图形的基本性质转化为向量的运算体系.向量是沟通代数,几何与三角函数的一种工具,有着极其丰富的实际背景,在数学和物理学科中具有广泛的应用.
平面向量的基本概念是在学生了解了物理学中的有关力,位移等矢量的概念的基础上进一步对向量的深入学习.为学习向量的知识体系奠定了知识和方法基础.
(2)教学结构的调整
课本在这一部分内容的教学为一课时,首先从小船航行的距离和方向两个要素出发,抽象出向量的概念,并重点说明了向量与数量的区别.然后介绍了向量的几何表示,向量的长度,零向量,单位向量,平行向量,共线向量,相等向量等基本概念.为使学生更好地掌握这些基本概念,同时深化其认知过程和探究过程.在教学中我将教学的顺序做如下的调整:将本节教学中认知过程的教学内容适当集中,以突出这节课的主题;例题,习题部分主要由学生依照概念自行分析,独立完成.
(3)重点,难点,关键
由于本节课是本章内容的第一节课,是学生学习本章的基础.为了本章后面知识的学习,首先必须掌握向量的概念,要抓住向量的本质:大小与方向.所以向量,相等向量的概念,向量的几何表示是这节课的重点.本节课是为高一后半学期学生设计的,尽管此时的学生已经有了一定的学习方法和习惯,但根据以往的教学经验,多数学生对向量的认识还比较单一,仅仅考虑其大小,忽略其方向,这对学生的理解能力要求比较高,所以我认为向量概念也是这节课的难点.而解决这一难点的关键是多用复杂的几何图形中相等的有向线段让学生进行辨认,加深对向量的理解.
二教学目标的确定
根据本课教材的特点,新大纲对本节课的教学要求,学生身心发展的合理需要,我从三个方面确定了以下教学目标:
(1)基础知识目标:理解向量,零向量,单位向量,共线向量,平行向量,相等向量的概念,会用字母表示向量,能读写已知图中的向量.会根据图形判定向量是否平行,共线,相等.
(2)能力训练目标:培养学生观察、归纳、类比、联想等发现规律的一般方法,培养学生观察问题,分析问题,解决问题的能力。
(3)情感目标:让学生在民主、和谐的共同活动中感受学习的乐趣。
三教学方法的选择
Ⅰ教学方法
本节课我采用了”启发探究式的教学方法,根据本课教材的特点和学生的实际情况在教学中突出以下两点:
(1)由教材的特点确立类比思维为教学的主线.
从教材内容看平面向量无论从形式还是内容都与物理学中的有向线段,矢量的概念类似.因此在教学中运用类比作为思维的主线进行教学.让学生充分体会数学知识与其他学科之间的联系以及发生与发展的过程.
(2)由学生的特点确立自主探索式的学习方法
通常学生对于概念课学起来很枯燥,不感兴趣,因此要考虑学生的情感需要,找一些学生感兴趣的题材来激发学生的学习兴趣,另外,学生都有表现自己的欲望,希望得到老师和其他同学的认可,要多表扬,多肯定来激励他们的学习热情.考虑到我校学生的基础较好,思维较为活跃,对自主探索式的学习方法也有一定的认识,所以在教学中我通过创设问题情境,启发引导学生运用科学的思维方法进行自主探究.将学生的独立思考,自主探究,交流讨论等探索活动贯穿于课堂教学的全过程,突出学生的主体作用.
Ⅱ教学手段
本节课中,除使用常规的教学手段外,我还使用了多媒体投影仪和计算机来辅助教学.多媒体投影为师生的交流和讨论提供了平台;计算机演示的作图过程则有助于渗透数形结合思想,更易于对概念的理解和难点的突破.
四教学过程的设计
Ⅰ知识引入阶段---提出学习课题,明确学习目标
(1) 创设情境——引入概念
数学学习应该与学生的生活融合起来,从学生的生活经验和已有的知识背景出发,让他们在生活中去发现数学、探究数学、认识并掌握数学。
由生活中具体的向量的实例引入:大海中船只的航线,中国象棋中”马”,”象”的走法等.这些符合高中学生思维活跃,想象力丰富的特点,有利于激发学生的学习兴趣.
(2) 观察归纳——形成概念
由实例得出有向线段的概念,有向线段的三个要素:起点,方向,长度.明确知道了有向线段的起点,方向和长度,它的终点就确定.再有目的的进行设计,引导学生概括总结出本课新的知识点:向量的概念及其几何表示。
(3) 讨论研究——深化概念
在得到概念后进行归纳,深化,之后向学生提出以下三个问题:
①向量的要素是什么?
②向量之间能否比较大小?
③向量与数量的区别是什么?
同时指出这就是本节课我们要研究和学习的主题.
Ⅱ知识探索阶段---探索平面向量的平行向量.相等向量等概念
(1) 总结反思——提高认识
方向相同或相反的非零向量叫平行向量,也即共线向量,并且规定0与任一向量平行.长度相等且方向相同的向量叫相等向量,规定零向量与零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要条件.
(2)即时训练—巩固新知
为了使学生达到对知识的深化理解,从而达到巩固提高的效果,我特地设计了一组即时训练题,通过学生的观察尝试,讨论研究,教师引导来巩固新知识。
[练习1]判断下列命题是否正确,若不正确,请简述理由.
数学教案高二2023【篇6】
一、教材分析
1、教材的地位和作用:
数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。
2、教学目标
根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标
a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。
b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。
c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。
3、教学重点和难点
根据教学大纲的要求我确定本节课的教学重点为:
①等差数列的概念。
②等差数列的通项公式的推导过程及应用。
由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。
二、学情分析对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。
二、教法分析
针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。
三、学法指导在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。
四、教学程序
本节课的教学过程由(一)复习引入(二)新课探究(三)应用例解(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。
(一)复习引入:
1.从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的______ 。(N﹡;解析式)
通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。
2. 小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为: 100,98,96,94,92 ① >
3. 小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为 5,10,15,20,25 ②
通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。
(二) 新课探究 n
1、由引入自然的给出等差数列的概念:
如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:
① “从第二项起”满足条件; f
②公差d一定是由后项减前项所得;
③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );
在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:
an+1-an=d (n≥1) ;h4z+0"6vG
同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。
1. 9 ,8,7,6,5,4,……;√ d=-1
2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01
3. 0,0,0,0,0,0,…….; √ d=0
4. 1,2,3,2,3,4,……;×
5. 1,0,1,0,1,……×
其中第一个数列公差<0, 第二个数列公差>0,第三个数列公差=0
由此强调:公差可以是正数、负数,也可以是0
2、第二个重点部分为等差数列的通项公式
在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项 ,公差d,由学生研究分组讨论a4 的通项公式。通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。
若一等差数列{an }的首项是a1,公差是d,
则据其定义可得:
a2 - a1 =d 即: a2 =a1 +d
a3 – a2 =d 即: a3 =a2 +d = a1 +2d
a4 – a3 =d 即: a4 =a3 +d = a1 +3d
……
猜想: a40 = a1 +39d
进而归纳出等差数列的通项公式:
an=a1+(n-1)d
此时指出: 这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:
a2 – a1 =d
a3 – a2 =d
a4 – a3 =d
……
an+1 – an=d
将这(n-1)个等式左右两边分别相加,就可以得到 an– a1= (n-1) d即 an= a1+(n-1) d (1)
当n=1时,(1)也成立,
所以对一切n∈N﹡,上面的公式都成立
因此它就是等差数列{an}的通项公式。
在迭加法的证明过程中,我采用启发式教学方法。
利用等差数列概念启发学生写出n-1个等式。
对照已归纳出的通项公式启发学生想出将n-1个等式相加。证出通项公式。
在这里通过该知识点引入迭加法这一数学思想,逐步达到“注重方法,凸现思想” 的教学要求
接着举例说明:若一个等差数列{an}的首项是1,公差是2,得出这个数列的通项公式是:an=1+(n-1)×2 , 即an=2n-1 以此来巩固等差数列通项公式运用
同时要求画出该数列图象,由此说明等差数列是关于正整数n一次函数,其图像是均匀排开的无穷多个孤立点。用函数的思想来研究数列,使数列的性质显现得更加清楚。
(三)应用举例
这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。
例1 (1)求等差数列8,5,2,…的第20项;第30项;第40项
(2)-401是不是等差数列-5,-9,-13,
…的项?如果是,是第几项?
在第一问中我添加了计算第30项和第40项以加强巩固等差数列通项公式;第二问实际上是求正整数解的问题,而关键是求出数列的通项公式an
例2 在等差数列{an}中,已知a5=10,a12 =31,求首项a1与公差d。
在前面例1的基础上将例2当作练习作为对通项公式的巩固
例3 是一个实际建模问题
建造房屋时要设计楼梯,已知某大楼第2层的楼底离地面的高度为3米,第三层离地面5.8米,若楼梯设计为等高的16级台阶,问每级台阶高为多少米?
这道题我采用启发式和讨论式相结合的教学方法。启发学生注意每级台阶“等高”使学生想到每级台阶离地面的高度构成等差数列,引导学生将该实际问题转化为数学模型------等差数列:(学生讨论分析,分别演板,教师评析问题。问题可能出现在:项数学生认为是16项,应明确a1为第2层的楼底离地面的高度,a2表示第一级台阶离地面的高度而第16级台阶离地面高度为a17,可用课件展示实际楼梯图以化解难点)
设置此题的目的:1.加强同学们对应用题的综合分析能力,2.通过数学实际问题引出等差数列问题,激发了学生的兴趣;3.再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法
(四)反馈练习
1、小节后的练习中的第1题和第2题(要求学生在规定时间内完成)。目的:使学生熟悉通项公式,对学生进行基本技能训练。
2、书上例3)梯子的一级宽33cm,最低一级宽110cm,中间还有10级,各级的宽度成等差数列。计算中间各级的宽度。
目的:对学生加强建模思想训练。
3、若数例{an} 是等差数列,若 bn = k an ,(k为常数)试证明:数列{bn}是等差数列
此题是对学生进行数列问题提高训练,学习如何用定义证明数列问题同时强化了等差数列的概念。
(五)归纳小结 (由学生总结这节课的收获)1.等差数列的概念及数学表达式.
强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数
2.等差数列的通项公式 an= a1+(n-1) d会知三求一
3.用“数学建模”思想方法解决实际问题
(六)布置作业
必做题:课本P114 习题3.2第2,6 题
选做题:已知等差数列{an}的首项a1= -24,从第10项开始为正数,求公差d的取值范围。(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)
五、板书设计
在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。
§3.2 等差数列
一、等差数列
1、定义
注:“从第二项起”及
“同一常数”用红色粉笔标注 二、等差数列的通项公式
数学教案高二2023【篇7】
一、自我介绍
我姓x,是你们的数学老师,因为是数学老师所以在自我介绍的时候喜欢给出自己的数字特征,也是希望通过这些方式能拓宽与大家交流的平台,希望能与大家在课堂中相识,在生活中相知,不仅能成为你们知识的传授者,方法的指引者,更希望成为你们情感上的依赖者。
二、相信大家对于高中学习都充满着好奇,和初中相比,高中课程与初中课程有很大的不同。今天这节课我们不急于上新课,我想和大家聊一聊数学,一起来思考为什么要学习数学及如何学好数学这两个问题。
(一)为什么要学习数学
相信高一的第一节课是各位科任老师各显神通的时候,通过各种有趣的方式来突出每门课的重要性,作为数学老师我表达上不如文科老师迂回婉转和风趣幽默,我们更喜欢用数字说明问题。大家知道北大最的院系是什么系吗?早在蔡元培先生任北大校长时,就列数学系为北大第一系,这种传统一直保持到现在。为什么数学系在高校中有如此重要的地位?课本主编寄语是这样描述的:数学是有用的,数学有助于提高能力。
数学家华罗庚在《人民日报》精彩描述了数学在"宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁"等方面无处不有重要贡献。
问题1:大家知道海王星是怎么发现的,冥王星又是怎么被请出十大行星行列的?
海王星的发现是在数学计算过程中发现的,天文望远镜的观测只是验证了人们的推论。
1812年,法国人布瓦德在计算天王星的运动轨道时,发现理论计算值同观测资料发生了一系列误差。这使许多天文学家纷纷致力这个问题的研究,进而发现天王星的脱轨与一个未知的引力的存在相关。也就是说有一个未知的天体作用于天王星。1846年9月23日。柏林天文台收到来自法国巴黎的一封快信。发信人就是勒威耶。信中,勒威耶预告了一颗以往没有发现的新星:在摩羯座8星东约5度的地方,有一颗8等小星,每天退行69角秒。当夜,柏林天文台的加勒把巨大的天文望远镜对准摩羯座,果真在那里发现了一颗新的8等星。又过了-天,再次找到了这颗8等星,它的位置比前一天后退了70角秒。这与勒威耶预告的相差甚微。全世界都震动了。人们依照勒威耶的建议,按天文学惯例,用神话里的名字把这颗星命名为"海王星"。
1930年美国天文学家汤博发现冥王星,当时错估了冥王星的质量,以为冥王星比地球还大,所以命名为大行星。然而,经过近30年的进一步观测和计算,发现它的直径只有2300公里,比月球还要小,等到冥王星的大小被确认,"冥王星是大行星"早已被写入教科书,以后也就将错就错了。经过多年的争论,国际天文学联合会通过投票表决做出最终决定,取消冥王星的行星资格。8月24日据国际天文学联合会宣布,冥王星将被排除在行星行列之外,从而太阳系行星的数量将由九颗减为八颗。事实上,位居太阳系九大行星末席70多年的冥王星,自发现之日起地位就备受争议。
马克思说:"一种科学只有在成功运用数学时,才算达到了真正完善的地步。"正因为数学是日常生活和进一步学习必不可少的基础和工具,一切科学到了最后都归结为数学问题。
其实在我们的周围有很多事情都是可以用数学可以来解决的,无非很多人都没有用数学的眼光来看待。
问题2:_徒认为上帝是万能的。你们认为呢?如何来证明你的结论呢?(让同学发言)
我的观点:上帝不是万能的。为什么呢?仔细听我讲来。
证明:(反证法)假如上帝是万能的
那么他能够制作出一块无论什么力量都搬不动的石头
根据假设,既然上帝是万能的,那么他一定能够搬的动他自己制造的那石头
这与"无论什么力量都搬不动的石头"相矛盾
所以假设不成立
所以上帝不是万能的。问题3:抓阄对个人来说公平吗?5张票中有一张奖票,那么先抽还是后抽对个人还说公平吗?
当然,我们学习的数学只是数学学科体系中很基础,很小的一部分。现在课本上学的未必能直接应用于生活,主要是为以后学习更高层次的理科打好基础,同时,也为了掌握一些数学的思考方法以及分析问题解决问题的思维方式。哲学家培根说过:"读诗使人灵秀,读历史使人明智,学逻辑使人周密,学哲学使人善辩,学数学使人聪明…",也有人形象地称数学是思维的体操。下面我们通过具体的例子来体验一下某些数学思想方法和思维方式。
故事一:据说国际象棋是古印度的一位宰相发明的。国王很欣赏他的这项发明,问他的宰相要什么赏赐。聪明的宰相说,"我所要的从一粒谷子(没错,是1粒,不是1两或1斤)开始。在这个有64格的棋盘上,第一格里放1粒谷子,第二格里放2粒,第三格里放4粒,即每下一格粒数加倍,……如此下去,一直放满到棋盘上的64格。这就是我所要的赏赐。"国王觉得宰相要的实在不多,就叫人按宰相的要求赏赐。但后来发现即使把全国所有的谷子抬来也远远不够。
人们通常凭借自己掌握的数学知识耍些小聪明,使问题妙不可言。
数学游戏:两人相继轮流往长方形桌子上放同样大小的硬币,硬币一定要平放在桌面上,后放的硬币不能压在先放的硬币上,放最后一颗的硬币的人算赢。应该先放还是后放才有必胜的把握。
数学思想:退到最简单、最特殊的地方。
故事二:聪明的渡边:20世纪40年代末,手写工具突破性进展-圆珠笔问世,它以价廉、方便、书写流利在社会上广泛流传,但写到20万字时就会因圆珠磨小而漏油,影响了销售。工程师们从圆珠质量入手,从改进油墨性能入手进行改良,但收效甚微。于是厂家打出广告:解决此问题获奖金50万元。当时山地制笔厂的青年工人渡边看到女儿把圆珠笔用到快漏油时就德育不用这一现象中受到启发,很好地解决了这一问题,你认为他会怎么做呢?
渡边的成功之处就在于思维角度新,从问题的侧面轻巧取胜。也正体现了数学学习中经常用到的发散式思维。在数学学习中,既要有集中式思维又要有发散式思维。集中式思维是一种常用思维渠道,即为对问题的归纳,联系思维方式,表现为对解题方法的模仿和继承;而发散式思维即对问题开拓、创新,表现为对问题举一反三,触类旁通。在解决具体问题中,我们应该将两种思维方式相结合。
学数学有利于培养人的思维品质:结构意识、整体意识、抽象意识、化归意识、优化意识、反思意识,尽管数学在培养学生的这些思维品质方面和其他学科存在着交集,但数学在其中的地位是无法被代替的。总之,学习数学可以使人思考问题更合乎逻辑,更有条理,更严密精确,更深入简洁,更善于创造……
(二)如何学好数学
高中数学的内容多,抽象性、理论性强,高中很注重自学能力的培养的,高中不会像初中那样老师一天到晚盯着你,在高中一定要注重自学能力的培养,谁的自学能力强,那么在一定的程度上影响着你的成绩以及你将来你发展的前途。同时要注意以下几点:
第一:对数学学科特点有清楚的认识
主编寄语里是这样描述数学的特征的:数学是自然的。数学的概念、方法、思想都是人类长期实践中自然发展形成的,以数域的发展为例,从自然数到有理数到实数再到复数,都是由自然的认知冲突引起的。因此,在学习过程中我们有必要了解知识产生的背景,它的形成过程以及它的应用,让数学显得合情合理,浑然天成。数学中没有含糊不清的词,对错分明,凡事都要讲个为什么,只要按照数学规则去学去想就能融会贯通,但是如果不把来龙去脉想清楚而是"想当然"的话,那就学不下去了。
第二:要改变一个观念。
有人会说自己的基础不好。那我问下什么是基础?今天所学的知识就是明天的基础。明天学习的知识就是后天的基础。所以要学好每一天的内容,那么你打的基础就是最扎实的了。所以现在你们是在同一个起跑线上的,无所谓基础好不好。过去的几年里我分别带过五十一中和一中的学生,两边学生的课堂感觉差不多,应该说接受能力不相上下,有的时候我会选择在五十一中开公开课,因为课堂气氛活跃、轻松,但是成绩差异却是很大,原因在于我们同学外课自主时间的投入太少,学习习惯不太好。
第三:学数学要摸索自己的学习方法
学习、掌握并能灵活应用数学的途径有千万条,每个人都可以有与众不同的数学学习方法。做习题、用数学解决各种问题是必需的,理解、学会证明、领会思想、掌握方法也是必需的。此外,还要发挥问题的作用,学会提问,热心帮助别人解决问题,用自己的问题和别人的问题带动自己的学习。同时,注意前后知识的衔接,类比地学、联系地学,既要从概念中看到它的具体背景,又要在具体的例子中想到它蕴含的一般概念。
第四:养成良好的学习习惯(与一中学生相比较)
㈠课前预习。怎样预习呢?就是自己在上课之前把内容先看一边,把自己不懂的地方做个记号或者打个问号,以至于上课的时候重点听,这样才能够很快提高自己的水平。但是预习不是很随便的把课本看一边,预习有个目标,那就是通过预习可以把书本后面的练习题可以自己独立的完成。一中的同学预习就已经有好几个层次了,先是课本,再是精编,再是高考题典,上课对于他们来说是第一轮高考复习。
㈡上课认真听讲。上课的时候准备课本,一只笔,一本草稿。做不做笔记你们自己决定,不过我不大提倡数学课做笔记的。不过有一点,有些知识点比较重要,课本上又没有的,我要求你们把它写在课本上的相应的空白地方。还有如果你觉得某个例题比较新或者比较重要,也可以把它记在书本的相应位置上,这样以后复习起来就一目了然了。那么草稿要来干什么的呢?课堂上你可以自己演算还有做课堂练习。
㈢关于作业。绝对不允许有抄作业的情况发生。如果我发现有谁抄作业,那么既然他这样喜欢抄,我就要你把当天的作业多抄几遍给我。那有人会问,碰到不会做的题目怎么办?有两个办法:一、向同学请教,请教做题目的思路,而不是整个过程和答案。同学之间也要相互帮助,如果你让他抄袭你的作业这样不是帮助他而是害他,这个道理大家应该明白吧。我非常提倡同学之间的相互讨论问题的,这样才能够相互促进提高。二、向老师请教,要养成多想多问的习惯。我的办公室在二楼二号,欢迎大家前来交流
㈣准备一本笔记本,作为自己的问题集。把平时自己不懂的和不大理解的还有易错的记录下来,并且要及时的消化,不懂的地方问老师。这是一个很好的办法,到考试的时候就可以有重点、有针对性的自己复习了。我高中的时候就是采用这样的方法把数学成绩提高。
好的开始是成功的一半,新的学期开始了,请大家调整好自己的思想,找到学习的原动力。播种一种思想,收获一种行为;播种一种行为,收获一种习惯;播种一种习惯,收获一种性格;播种一种性格,收获一种命运。愿每位同学都有个好的开始。