高一数学必修1教案
在一年的数学教学工作中,作为高一数学教师的你知道如何写高一数学必修1教案吗?来写一篇高一数学必修1教案吧,它会对你的教学工作起到不菲的帮助。下面是小编为大家收集有关于高一数学必修1教案,希望你喜欢。
高一数学必修1教案1
一、教学目标
1、知识与技能:
(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2、过程与方法:
(1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让学生观察、讨论、归纳、概括所学的知识。
3、情感态度与价值观:
(1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。
(2)培养学生的空间想象能力和抽象括能力。
二、教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具
(1)学法:观察、思考、交流、讨论、概括。
(2)实物模型、投影仪。
四、教学过程
(一)创设情景,揭示课题
1、由六根火柴最多可搭成几个三角形?(空间:4个)
2、在我们周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?
3、展示具有柱、锥、台、球结构特征的空间物体。
问题:请根据某种标准对以上空间物体进行分类。
(二)、研探新知
空间几何体:多面体(面、棱、顶点):棱柱、棱锥、棱台;
旋转体(轴):圆柱、圆锥、圆台、球。
1、棱柱的结构特征:
(1)观察棱柱的几何物体以及投影出棱柱的图片,
思考:它们各自的特点是什么?共同特点是什么?
(学生讨论)
(2)棱柱的主要结构特征(棱柱的概念):
①有两个面互相平行;②其余各面都是平行四边形;③每相邻两上四边形的公共边互相平行。
(3)棱柱的表示法及分类:
(4)相关概念:底面(底)、侧面、侧棱、顶点。
2、棱锥、棱台的结构特征:
(1)实物模型演示,投影图片;
(2)以类似的方法,根据出棱锥、棱台的结构特征,并得出相关的概念、分类以及表示。
棱锥:有一个面是多边形,其余各面都是有一个公共顶点的三角形。
棱台:且一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分。
3、圆柱的结构特征:
(1)实物模型演示,投影图片——如何得到圆柱?
(2)根据圆柱的概念、相关概念及圆柱的表示。
4、圆锥、圆台、球的结构特征:
(1)实物模型演示,投影图片
——如何得到圆锥、圆台、球?
(2)以类似的方法,根据圆锥、圆台、球的结构特征,以及相关概念和表示。
5、柱体、锥体、台体的概念及关系:
探究:棱柱、棱锥、棱台都是多面体,它们在结构上有哪些相同点和不同点?三者的关系如何?当底面发生变化时,它们能否互相转化?
圆柱、圆锥、圆台呢?
6、简单组合体的结构特征:
(1)简单组合体的构成:由简单几何体拼接或截去或挖去一部分而成。
(2)实物模型演示,投影图片——说出组成这些物体的几何结构特征。
(3)列举身边物体,说出它们是由哪些基本几何体组成的。
(三)排难解惑,发展思维
1、有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱?(反例说明)
2、棱柱的何两个平面都可以作为棱柱的底面吗?
3、圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?
(四)巩固深化
练习:课本P7练习1、2;课本P8习题1.1第1、2、3、4、5题
(五)归纳整理:由学生整理学习了哪些内容
高一数学必修1教案2
一、指导思想与理论依据
数学是一门培养人的思维,发展人的思维的重要学科。因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。
二、教材分析
三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位.
三、学情分析
本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容.
四、教学目标
(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;
(2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;
(3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;
(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观.
五、教学重点和难点
1.教学重点
理解并掌握诱导公式.
2.教学难点
正确运用诱导公式,求三角函数值,化简三角函数式.
六、教法学法以及预期效果分析
“授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析.
1.教法
数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质.
在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦.
2.学法
“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生程度的消化知识,提高学习热情是教者必须思考的问题.
在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题简单应用、重现探索过程、练习巩固。让学生参与探索的全部过程,让学生在获取新知识及解决问题的方法后,合作交流、共同探索,使之由被动学习转化为主动的自主学习.
3.预期效果
本节课预期让学生能正确理解诱导公式的发现、证明过程,掌握诱导公式,并能熟练应用诱导公式了解一些简单的化简问题.
七、教学流程设计
(一)创设情景
1.复习锐角300,450,600的三角函数值;
2.复习任意角的三角函数定义;
3.问题:由,你能否知道sin2100的值吗?引如新课.
设计意图
自信的鼓励是增强学生学习数学的自信,简单易做的题加强了每个学生学习的热情,具体数据问题的出现,让学生既有好像会做的心理但又有迷惑的茫然,去发掘潜力期待寻找机会证明我能行,从而思考解决的办法.
(二)新知探究
1.让学生发现300角的终边与2100角的终边之间有什么关系;
2.让学生发现300角的终边和2100角的终边与单位圆的交点的坐标有什么关系;
3.Sin2100与sin300之间有什么关系.
设计意图
由特殊问题的引入,使学生容易了解,实现教学过程的平淡过度,为同学们探究发现任意角与的三角函数值的关系做好铺垫.
(三)问题一般化
探究一
1.探究发现任意角的终边与的终边关于原点对称;
2.探究发现任意角的终边和角的终边与单位圆的交点坐标关于原点对称;
3.探究发现任意角与的三角函数值的关系.
设计意图
首先应用单位圆,并以对称为载体,用联系的观点,把单位圆的性质与三角函数联系起来,数形结合,问题的设计提问从特殊到一般,从线对称到点对称到三角函数值之间的关系,逐步上升,一气呵成诱导公式二.同时也为学生将要自主发现、探索公式三和四起到示范作用,下面练习设计为了熟悉公式一,让学生感知到成功的喜悦,进而敢于挑战,敢于前进
(四)练习
利用诱导公式(二),口答下列三角函数值.
(1).;(2).;(3)..
喜悦之后让我们重新启航,接受新的挑战,引入新的问题.
(五)问题变形
由sin3000=-sin600出发,用三角的定义引导学生求出sin(-3000),Sin1500值,让学生联想若已知sin3000=-sin600,能否求出sin(-3000),Sin1500)的值.学生自主探究
高一数学必修1教案3
教学目标
1.使学生掌握的概念,图象和性质.
(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域.
(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质.
(3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象.
2.通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.
3.通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.教学建议
教材分析
(1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究.
(2)本节的教学重点是在理解定义的基础上掌握的图象和性质.难点是对底数在和时,函数值变化情况的区分.
(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.
教法建议
(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是.
(2)对底数的限制条件的理解与认识也是认识的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.
关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.
高一数学必修1教案4
一、教材分析及处理
函数是高中数学的重要内容之一,函数的基础知识在数学和其他许多学科中有着广泛的应用;函数与代数式、方程、不等式等内容联系非常密切;函数是近一步学习数学的重要基础知识;函数的概念是运动变化和对立统一等观点在数学中的具体体现;函数概念及其反映出的数学思想方法已广泛渗透到数学的各个领域,《函数》教学设计。
对函数概念本质的理解,首先应通过与初中定义的比较、与其他知识的联系以及不断地应用等,初步理解用集合与对应语言刻画的函数概念.其次在后续的学习中通过基本初等函数,引导学生以具体函数为依托、反复地、螺旋式上升地理解函数的本质。
教学重点是函数的概念,难点是对函数概念的本质的理解。
学生现状
学生在第一章的时候已经学习了集合的概念,同时在初中时已学过一次函数、反比例函数和二次函数,那么如何用集合知识来理解函数概念,结合原有的知识背景,活动经验和理解走入今天的课堂,如何有效地激活学生的学习兴趣,让学生积极参与到学习活动中,达到理解知识、掌握方法、提高能力的目的,使学生获得有益有效的学习体验和情感体验,是在教学设计中应思考的。
二、教学三维目标分析
1、知识与技能(重点和难点)
(1)、通过实例让学生能够进一步体会到函数是描述变量之间的依赖关系的重要数学模型。并且在此基础上学习应用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用。不但让学生能完成本节知识的学习,还能较好的复习前面内容,前后衔接。
(2)、了解构成函数的三要素,缺一不可,会求简单函数的定义域、值域、判断两个函数是否相等等。
(3)、掌握定义域的表示法,如区间形式等。
(4)、了解映射的概念。
2、过程与方法
函数的概念及其相关知识点较为抽象,难以理解,学习中应注意以下问题:
(1)、首先通过多媒体给出实例,在让学生以小组的形式开展讨论,运用猜想、观察、分析、归纳、类比、概括等方法,探索发现知识,找出不同点与相同点,实现学生在教学中的主体地位,培养学生的创新意识。
(2)、面向全体学生,根据课本大纲要求授课。
(3)、加强学法指导,既要让学生学会本节知识点,也要让学生会自我主动学习。
3、情感态度与价值观
(1)、通过多媒体给出实例,学生小组讨论,给出自己的结论和观点,加上老师的辅助讲解,培养学生的实践能力和和大胆创新意识,教案《《函数》教学设计》。
(2)、让学生自己讨论给出结论,培养学生的自我动手能力和小组团结能力。
三、教学器材
多媒体ppt课件
四、教学过程
教学内容教师活动学生活动设计意图
《函数》课题的引入(用时一分钟)配着简单的音乐,从简单的例子引入函数应用的广泛,将同学们的视线引入函数的学习上听着悠扬的音乐,让同学们的视线全注意在老师所讲的内容上从贴近学生生活入手,符合学生的认知特点。让学生在领略大自然的美妙与和谐中进入函数的世界,体现了新课标的理念:从知识走向生活
知识回顾:初中所学习的函数知识(用时两分钟)回顾初中函数定义及其性质,简单回顾一次函数、二次函数、正比例函数、反比例函数的性质、定义及简单作图认真听老师回顾初中知识,发现异同在初中知识的基础上引导学生向更深的内容探索、求知。即复习了所学内容又做了即将所学内容的铺垫
思考与讨论:通过给出的问题,引出本节课的主要内容(用时四分钟)给出两个简单的问题让同学们思考,讲述初中内容无法给出正确答案,需要从新的高度来认识函数结合老师所回顾的知识,结合自己所掌握的知识,思考老师给出的问题,小组形式作讨论,从简单问题入手,循序渐进,引出本节主要知识,回顾前一节的集合感念,应用到本节知识,前后联系、衔接
新知识的讲解:从概念开始讲解本节知识(用时三分钟)详细讲解函数的知识,包括定义域,值域等,回到开始提问部分作答做笔记,专心听讲讲解函数概念,由知识讲解回到问题身上,解决问题
对提问的回答(用时五分钟)引导学生自己解决开始所提的两个问题,然后同个互动给出最后答案通过与老师共同讨论回答开始问题,总结更好的掌握函数概念,通过问题来更好的掌握知识
函数区间(用时五分钟)引入函数定义域的表示方法简洁明了的方法表示函数的定义域或值域,在集合表示方法的基础上引入另一种方法
注意点(用时三分钟)做个简单的的回顾新内容,把难点重点提出来,让同学们记住通过问题回答,概念解答,把重难点给出,提醒学生注意内容和知识点
习题(用时十分钟)给出习题,分析题意在稿纸上简单作答,回答问题通过习题练习明确重难点,把不懂的地方记住,课后学生在做进一步的联系
映射(用时两分钟)从概念方面讲解映射的意义,象与原象在新知识的基础上了解更多知识,映射的学习给以后的知识内容做更好的铺垫
小结(用时五分钟)简单讲述本节的知识点,重难点做笔记前后知识的连贯,总结,使学生更明白知识点
五、教学评价
为了使学生了解函数概念产生的背景,丰富函数的感性认识,获得认识客观世界的体验,本课采用"突出主题,循序渐进,反复应用"的方式,在不同的场合考察问题的不同侧面,由浅入深。本课在教学时采用问题探究式的教学方法进行教学,逐层深入,这样使学生对函数概念的理解也逐层深入,从而准确理解函数的概念。函数引入中的三种对应,与初中时学习函数内容相联系,这样起到了承上启下的作用。这三种对应既是函数知识的生长点,又突出了函数的本质,为从数学内部研究函数打下了基础。
在培养学生的能力上,本课也进行了整体设计,通过探究、思考,培养了学生的实践能力、观察能力、判断能力;通过揭示对象之间的内在联系,培养了学生的辨证思维能力;通过实际问题的解决,培养了学生的分析问题、解决问题和表达交流能力;通过案例探究,培养了学生的创新意识与探究能力。
虽然函数概念比较抽象,难以理解,但是通过这样的教学设计,学生基本上能很好地理解了函数概念的本质,达到了课程标准的要求,体现了课改的教学理念。
高一数学必修1教案5
教学目标
1.使学生了解反函数的概念;
2.使学生会求一些简单函数的反函数;
3.培养学生用辩证的观点观察、分析解决问题的能力。
教学重点
1.反函数的概念;
2.反函数的求法。
教学难点
反函数的概念。
教学方法
师生共同讨论
教具装备
幻灯片2张
第一张:反函数的定义、记法、习惯记法。(记作A);
第二张:本课时作业中的预习内容及提纲。
教学过程
(I)讲授新课
(检查预习情况)
师:这节课我们来学习反函数(板书课题)§2.4.1反函数的概念。
同学们已经进行了预习,对反函数的概念有了初步的了解,谁来复述一下反函数的定义、记法、习惯记法?
生:(略)
(学生回答之后,打出幻灯片A)。
师:反函数的定义着重强调两点:
(1)根据y=f(x)中x与y的关系,用y把x表示出来,得到x=φ(y);
(2)对于y在c中的任一个值,通过x=φ(y),x在A中都有惟一的值和它对应。
师:应该注意习惯记法是由记法改写过来的。
师:由反函数的定义,同学们考虑一下,怎样的映射确定的函数才有反函数呢?
生:一一映射确定的函数才有反函数。
(学生作答后,教师板书,若学生答不来,教师再予以必要的启示)。
师:在y=f(x)中与y=f-1(y)中的x、y,所表示的量相同。(前者中的x与后者中的x都属于同一个集合,y也是如此),但地位不同(前者x是自变量,y是函数值;后者y是自变量,x是函数值。)
在y=f(x)中与y=f–1(x)中的x都是自变量,y都是函数值,即x、y在两式中所处的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y是后者中的x。)
由此,请同学们谈一下,函数y=f(x)与它的反函数y=f–1(x)两者之间,定义域、值域存在什么关系呢?
生:(学生作答,教师板书)函数的定义域,值域分别是它的反函数的值域、定义域。
师:从反函数的概念可知:函数y=f(x)与y=f–1(x)互为反函数。
从反函数的概念我们还可以知道,求函数的反函数的方法步骤为:
(1)由y=f(x)解出x=f–1(y),即把x用y表示出;
(2)将x=f–1(y)改写成y=f–1(x),即对调x=f–1(y)中的x、y。
(3)指出反函数的定义域。
下面请同学自看例1
(II)课堂练习课本P68练习1、2、3、4。
(III)课时小结
本节课我们学习了反函数的概念,从中知道了怎样的映射确定的函数才有反函数并求函数的反函数的方法步骤,大家要熟练掌握。
(IV)课后作业
一、课本P69习题2.41、2。
二、预习:互为反函数的函数图象间的关系,亲自动手作题中要求作的图象。
板书设计
课题:求反函数的方法步骤:
定义:(幻灯片)
注意:小结
一一映射确定的
函数才有反函数
函数与它的反函
数定义域、值域的关系。
高一数学教育方案相关文章: