教育巴巴 > 高中教案 > 数学教案 >

高中必修一数学公开课教案模板

时间: 晓晴2 数学教案

数学能让你思考任何问题的时候都比较缜密,而不至于思绪紊乱。还能使你的脑子反映灵活,对突发事件的处理手段也更理性。今天小编在这给大家整理了一些高中必修一数学公开课教案模板,我们一起来看看吧!

高中必修一数学公开课教案模板

高中必修一数学公开课教案模板1

函数的概念

教材分析:函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之

间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化

的思想.

教学目的:(1)通过丰富实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,

在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中

的作用;

(2)了解构成函数的要素;

(3)会求一些简单函数的定义域和值域;

(4)能够正确使用“区间”的符号表示某些函数的定义域;

教学重点:理解函数的模型化思想,用合与对应的语言来刻画函数;教学难点:符号“y=f(_)”的含义,函数定义域和值域的区间表示;

教学过程:

九、 引入课题

1. 复习初中所学函数的概念,强调函数的模型化思想;

2. 阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

(1)炮弹的射高与时间的变化关系问题;

(2)南极臭氧空洞面积与时间的变化关系问题;

(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题

备用实例:

我国2003年4月份非典疫情统计:

3. 引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;

4. 根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.

十、 新课教学

(一)函数的有关概念

1.函数的概念:

设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数_,在集合B中都有确定的数f(_)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).

记作: y=f(_),_∈A.

其中,_叫做自变量,_的取值范围A叫做函数的定义域(domain);与_的值相对应的y值叫做函数值,函数值的集合{f(_)| _∈A }叫做函数的值域(range).

注意:

1 “y=f(_)”是函数符号,可以用任意的字母表示,如“y=g(_)”○;

2 函数符号“y=f(_)”中的f(_)表示与_对应的函数值,一个数,而不是f乘_. ○

2. 构成函数的三要素:

定义域、对应关系和值域

3.区间的概念

(1)区间的分类:开区间、闭区间、半开半闭区间; (2)无穷区间; (3)区间的数轴表示.4.一次函数、二次函数、反比例函数的定义域和值域讨论

(由学生完成,师生共同分析讲评)

(二)典型例题

1.求函数定义域

说明:

1 函数的定义域通常由问题的实际背景确定。 ○

2 如果只给出解析式y=f(_),○而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;

3 函数的定义域、值域要写成集合或区间的形式. ○

2.判断两个函数是否为同一函数

说明:

1 构成函数三个要素是定义域、○对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

2 两个函数相等当且仅当它们的定义域和对应关系完全一致,○而与表示自变量和函数值的字母无关。

判断下列函数f(_)与g(_)是否表示同一个函数,说明理由?

(1)f ( _ ) = (_ -1) 0;g ( _ ) = 1

(2)f ( _ ) = _; g ( _ ) = _2

(3)f ( _ ) = _ 2;f ( _ ) = (_ + 1) 2

(4)f ( _ ) = | _ | ;g ( _ ) =

(三)课堂练习

求下列函数的定义域

(1)f(_)_2 1 _|_|

(2)f(_)1

11_

(3)f(_)_24_5(4)f(_)

(5)f(_)4_2 _1_26_10

(6)f(_)__31

十一、 归纳小结,强化思想

从具体实例引入了函数的的概念,用集合与对应的语言描述了函数的定义及其相关概念,介绍了求函数定义域和判断同一函数的典型题目,引入了区间的概念来表示集合。

课题:§1.2.2映射

教学目的:(1)了解映射的概念及表示方法,了解象、原象的概念;

(2)结合简单的对应图示,了解一一映射的概念.

教学重点:映射的概念.

教学难点:映射的概念.

教学过程:

十二、 引入课题

复习初中已经遇到过的对应:

1. 对于任何一个实数a,数轴上都有的点P和它对应;

2. 对于坐标平面内任何一个点A,都有的有序实数对(_,y)和它对应;

3. 对于任意一个三角形,都有确定的面积和它对应;

4. 某影院的某场电影的每一张电影票有确定的座位与它对应;

5. 函数的概念.

十三、 新课教学

1. 我们已经知道,函数是建立在两个非空数集间的一种对应,若将其中的条件“非空数集”

弱化为“任意两个非空集合”,按照某种法则可以建立起更为普通的元素之间的对应关系,这种的对应就叫映射(mapping)

2. 先看几个例子,两个集合A、B的元素之间的一些对应关系

(1)开平方;

(2)求正弦

(3)求平方;

(4)乘以2;3. 什么叫做映射?

一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素_,在集合B中都有确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射(mapping).

记作“f:AB”

说明:

(1)这两个集合有先后顺序,A到B的射与B到A的映射是截然不同的.其中f表示具体的对应法则,可以用汉字叙述.

(2)“都有”什么意思?

包含两层意思:一是必有一个;二是只有一个,也就是说有且只有一个的意思。

4. 例题分析:下列哪些对应是从集合A到集合B的映射?

(1)A={P | P是数轴上的点},B=R,对应关系f:数轴上的点与它所代表的实数对应;

(2)A={ P | P是平面直角体系中的点},B={(_,y)| _∈R,y∈R},对应关系f:平面直角体系中的点与它的坐标对应;

(3)A={三角形},B={_ | _是圆},对应关系f:每一个三角形都对应它的内切圆;

(4)A={_ | _是新华中学的班级},B={_ | _是新华中学的学生},对应关系f:每一个班级都对应班里的学生.

思考:

将(3)中的对应关系f改为:每一个圆都对应它的内接三角形;(4)中的对应关系f改为:每一个学生都对应他的班级,那么对应f: BA是从集合B到集合A的映射吗?课题:§1.2.2函数的表示法

教学目的:(1)明确函数的三种表示方法;

(2)在实际情境中,会根据不同的需要选择恰当的方法表示函数;

(3)通过具体实例,了解简单的分段函数,并能简单应用;

(4)纠正认为“y=f(_)”就是函数的解析式的片面错误认识.

教学重点:函数的三种表示方法,分段函数的概念.

教学难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示

及其图象.

教学过程:

十四、 引入课题

5. 复习:函数的概念;

6. 常用的函数表示法及各自的优点:

(1)解析法;

(2)图象法;

(3)列表法.

十五、 新课教学

(一)典型例题

例1.某种笔记本的单价是5元,买_ (_∈{1,2,3,4,5})个笔记本需要y元.试用三种表示法表示函数y=f(_) .

分析:注意本例的设问,此处“y=f(_)”有三种含义,它可以是解析表达式,可以是图象,也可以是对应值表.

解:(略)

注意:

1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个○

图形是否是函数图象的依据;

2 解析法:必须注明函数的定义域; ○

3 图象法:是否连线; ○

4 列表法:选取的自变量要有代表性,应能反映定义域的特征. ○

巩固练习:

例1.下表是某校高一(1)班三位同学在高一学年度几次数学测试的成绩及班级及班级平均分表:王 伟 张 城 赵 磊 班平均分

第一次 98 90 68 88.2

第二次 87 76 65 78.3

第三次 91 88 73 85.4

第四次 92 75 72 80.3

第五次 88 86 75 75.7

第六次 95 80 82 82.6

请你对这三们同学在高一学年度的数学学习情况做一个分析.

分析:本例应引导学生分析题目要求,做学情分析,具体要分析什么?怎么分析?借助什么工具? 解:(略) 注意:

1 本例为了研究学生的学习情况,○将离散的点用虚线连接,这样更便于研究成绩的变化

特点;

2 本例能否用解析法?为什么? ○

例3.画出函数y = | _ | . 解:(略) 拓展练习:

任意画一个函数y=f(_)的图象,然后作出y=|f(_)| 和 y=f (|_|) 的图象,并尝试简要说明三者(图象)之间的关系.

例4.某市郊空调公共汽车的票价按下列规则制定: (1) 乘坐汽车5公里以内,票价2元;

(2) 5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算). 已知两个相邻的公共汽车站间相距约为1公里,如果沿途(包括起点站和终点站)设20个汽车站,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.

分析:本例是一个实际问题,有具体的实际意义.根据实际情况公共汽车到站才能停车,所以行车里程只能取整数值.

解:设票价为y元,里程为_公里,同根据题意,

如果某空调汽车运行路线中设20个汽车站(包括起点站和终点站),那么汽车行驶的里程约为19公里,所以自变量_的取值范围是{_∈N_| _≤19}.

由空调汽车票价制定的规定,可得到以下函数解析式:20_535_10_ (_N) y

410_15

515_19

根据这个函数解析式,可画出函数图象,如下图所示:

注意:

1 本例具有实际背景,所以解题时应考虑其实际意义; ○

2 本题可否用列表法表示函数,如果可以,应怎样列表? ○

实践与拓展:

请你设计一张乘车价目表,让售票员和乘客非常容易地知道任意两站之间的票价.(可以实地考查一下某公交车线路)

说明:象上面两例中的函数,称为分段函数.

注意:分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.

十六、 归纳小结,强化思想

理解函数的三种表示方法,在具体的实际问题中能够选用恰当的表示法来表示函数,注意分段函数的表示方法及其图象的画法.

高中必修一数学公开课教案模板2

重点难点教学:

1.正确理解映射的概念;

2.函数相等的两个条件;

3.求函数的定义域和值域。

一.教学过程:

1.使学生熟练掌握函数的概念和映射的定义;

2.使学生能够根据已知条件求出函数的定义域和值域;3.使学生掌握函数的三种表示方法。

二.教学内容:

1.函数的定义

设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数_,在集合B中都有确定的数()f_和它对应,那么称:fAB为从集合A到集合B的一个函数(function),记作:

(),yf__A

其中,_叫自变量,_的取值范围A叫作定义域(domain),与_的值对应的y值叫函数值,函数值的集合{()|}f__A叫值域(range)。显然,值域是集合B的子集。

注意:

①“y=f(_)”是函数符号,可以用任意的字母表示,如“y=g(_)”;

②函数符号“y=f(_)”中的f(_)表示与_对应的函数值,一个数,而不是f乘_.

2.构成函数的三要素定义域、对应关系和值域。

3、映射的定义

设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意

一个元素_,在集合B中都有确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

4.区间及写法:

设a、b是两个实数,且a

(1)满足不等式a_b的实数_的集合叫做闭区间,表示为[a,b];

(2)满足不等式a_b的实数_的集合叫做开区间,表示为(a,b);

5.函数的三种表示方法①解析法②列表法③图像法

高中必修一数学公开课教案模板3

一、设计思路

指导思想

数学是一门具有严密推理能力和抽象概括能力的学科。本课以发展学生思维能力为核心,以学生发展为本,从本班学生的实际出发,培养学生观察能力,探究能力和抽象概括能力。

教材分析

本节课是学生在已知函数概念,并且已经掌握了函数的一般性质和简单的对数运算性质的基础上,进一步研究一类具体函数——对数函数,深化学生对函数概念的理解与认识,使学生得到较系统的函数知识和研究函数的方法,同时也为今后进一步学习函数的知识打下坚实的基础。因此,本节课的内容十分重要,它对知识起到了承上启下的作用。

教学目标

1、知识目标:理解对数函数的定义,掌握对数函数的图像、性质及其简单应用

2、能力目标:通过教学培养学生观察、分析、归纳等思维能力,体会数形结合和分类讨论思想,以及从特殊到一般等学习数学的方法,并体会数形结合思想

3、情感目标:通过学习,学会认识事物的特殊性与一般性之间的关系,构建和谐的课堂氛围,培养学生勇于提问,善于探索的思维品质。

教学重点

通过对对数函数图像的的探究,得出的对数函数图像及其性质,以及图像和性质的简单应用,是本节课的重点。

教学难点

1.底数a的变化对对数函数图像及性质的有较大的影响,是本节课的一大难点。

2.底数不同时,如何比较两个对数的大小是本节课的又一个难点

教学准备

1、认真研究教材,与同课头老师探讨教学思路,听取有经验老师的意见!。

2、精心制作PPT课件和几何画板课件辅助教学。

3、安排学生预习。

教学过程设计

一.复习提问,引入新课

师:对数函数的概念?定义域是什么?

生:一般地,函数,(a>0且a≠1)叫做对数函数,其中定义域是(0,+∞)

师:对数的运算性质有哪些?

生:(1);

(2);

(3).

(4)对数的换底公式

(,且,,且,)

设计思路:从对数函数概念以及对运算性质引出课题,寻找学习最近发展区,为后面研究对数函数的图象和性质埋下了伏笔。

二.性质探究

1.探究一:对数函数的图像

操作1:同指数函数一样,在学习了函数定义之后,我们要画函数的图象。

在同一坐标系内画出函数和的图象。

师:画函数都有哪些步骤呢?

生:列表、描点、连线。

(学生动手画图后,教师利用多媒体演示画图过程)

操作2:继续在同一坐标系中,画出下列函数图像

设计思路:通过描点法在同一坐标画出不同底数函数的图像,既有利于培养学生的动手能力,又有利于学生感知对数函数的图像的变化规律。

2.探究二

师:老师布置学习任务和组织学生探究:

请各小组根据同一坐标系中所画底数不同时对数函数的图像,归纳总结出对数函数具有哪些性质?最终请各小组派代表起来汇报本小组的探究结果。

生:各小组积极探讨,把发现的性质归纳总结,记录下来。其中重点包含(但不限于)如下内容:

v定义域与值域分别是什么

v当底数a变化时,对数函数图像如何变化?

v经过哪个定点?

vy=loga_与y=图像有什么关系

v函数的单调性?

v函数的奇偶性?

v函数值何时取正值,何时取负值?

设计思路:小组探究,有利于培养学生合作意识和团队精神;开放式的探究,更有利于培养学生观察能力以及发现问题,提出问题能力。

三.成果展示

师:教师轮流要求各小组派代表展示本组所发现对数函数的所有性质,其它队员可以补充,并对学生的精彩回答加以肯定;如果发现了新问题,鼓励学生继续讨论。

生:

通过学生的观察、探究和发现,以及各组的成果展示,将对数函数的图像性质,归结总结如下(各性质尽可能由学生总结):

a>1

0<a<1< p="">

0

(1,0)

定义域

(0,+∞);

值域

R

渐近线

图象都在y轴的右方,以作为渐近线

定点

图象都经过(1,0)点,即_=1时,y=0

底数变化规律

在第一象限,图像从左向右,底数a增大

底数a逆时针增大

奇偶性

对数函数为非奇非偶函数

对称性

y=loga_与y=log1/a_图像关于_轴对称

单调性

当a>1时,图象呈上升趋势,

为增函数

当0<a<1时,图像呈下降趋势,为减函数< p="">

正负性

当a>1时,若0<_<1,则y1,则y>0;

当0<a<1时,若0<_<1,< p="">

则y>0,若_>1,则y<0

师:通过几何画板软件,对部分性质进行验证。

设计思路:通过成果展示,培养学生的团队合作精神,以及抽象概括辐射能和口头表达能力!

探究三:判断下列各对数值的正负,有什么规律?

值为正的有:(1)(2)(3)(4)

值为负的有:(5)(6)(7)(8)

师:根据上述探究,请学生总结规律!

规律总结:设a,b∈(0,1)∪(1,+∞),则logab与0的大小规律是:

(1)当a,b同时大于1或同小于1时,logab>0;

(2)当a,b一个大于1另一个小于1时,logab<0。

设计思路:进一步激发学生的问题意识和探索精神,培养学生的概括能力。

四.性质应用

例1.求下列函数的定义域:

(1);(2);.

分析:此题主要利用对数函数的定义域(0,+∞)求解.

解:(1)由>0得,∴函数的定义域是;

(2)由得,∴函数的定义域是;

设计意图:加强学生对定义域的理解

例2:比较下列各组中两个数的大小:

(1)

解:考查对数函数,因为它的底数2>1,所以它在(0,+∞)上是增函数,于是.

考查对数函数,因为它的底数0<0.3<1,所以它在(0,+∞)上是减函数,于是.

当时,在(0,+∞)上是增函数,于是;

当时,在(0,+∞)上是减函数,于是

练习1:比较下列各组对数的大小

(1)log27与log37;

(2)

(3)

(4)log3π与log20.8

解:(1)、(2)如图log27>log37,

(3)log67>log66=1

log76<log77=1< p="">

∴log67>log76

(4)log3π>log31=0

log20.8<log21=0< p="">

∴log3π>log20.

归纳总结:比较两个对数式的大小的方法

a)底数相同:可由对数函数的单调性直接进行判断.

b)底数不同,真数相同:可用不同底时图像的高低性判断.(也可用换底公式)

c)底数、真数都不相同:常借助1、0、-1等中间量进行比较

d)底数不确定时,必须讨论

e)灵活运用公式,将等价转化后再比较

设计意图:加强学生对函数的图像及性质的的理解,并渗透数形结合思想。

五.拓展提高

思考:在同一个坐标内分别作出下列函数图象

(1)y=2_和y=log2_(2)y=0.5_和y=log0.5_

师:从图象中你能发现两个函数的图象间有什么关系?

生:函数y=a_与y=loga_图象关于y=_对称

师:推广,函数y=f(_)与反函数y=f-1(_)图象关于y=_对称

设计意图:拓展知识,进一步理解反函数的概念

六、课堂小结

1.正确理解对数函数的定义;

2.掌握对数函数的图象和性质;

3.能利用对数函数的性质解决有关问题。

4.比较两个对数式的大小关系的哪些方法。

高中必修一数学公开课教案模板4

教学目标

1。使学生掌握的概念,图象和性质。

(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域。

(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质。

(3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象。

2。通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法。

3。通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣。使学生善于从现实生活中数学的发现问题,解决问题。

教学建议

教材分析

(1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究。

(2)本节的教学重点是在理解定义的基础上掌握的图象和性质。难点是对底数在和时,函数值变化情况的区分。

(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究。

教法建议

(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是。

(2)对底数的限制条件的理解与认识也是认识的重要内容。如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来。

关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象。

高中必修一数学公开课教案模板5

集合

教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

课 型:新授课

教学目标:(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;

(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;

教学重点:集合的基本概念与表示方法;

教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;

教学过程:

一、 引入课题

军训前学校通知:8月15日8点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

阅读课本P2-P3内容

二、 新课教学

(一)集合的有关概念

1. 集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体。

2. 一般地,研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集。

3. 思考1:课本P3的思考题,并再列举一些集合例子和不能构成集合的例子,对学生的例子予以讨论、点评,进而讲解下面的问题。

4. 关于集合的元素的特征

(1)确定性:设A是一个给定的集合,_是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立。

(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素。

(3)集合相等:构成两个集合的元素完全一样

5. 元素与集合的关系;

(1)如果a是集合A的元素,就说a属于(belong to)A,记作a∈A

(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作a A(或a A)(举例)

6. 常用数集及其记法

非负整数集(或自然数集),记作N

正整数集,记作N_或N+;

整数集,记作Z

有理数集,记作Q

实数集,记作R

(二)集合的表示方法

我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合。

(1) 列举法:把集合中的元素一一列举出来,写在大括号内。

如:{1,2,3,4,5},{_2,3_+2,5y3-_,_2+y2},…;

例1.(课本例1)

思考2,引入描述法

说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。

(2) 描述法:把集合中的元素的公共属性描述出来,写在大括号{}内。

具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

如:{_|_-3>2},{(_,y)|y=_2+1},{直角三角形},…;

例2.(课本例2)

说明:(课本P5最后一段)

思考3:(课本P6思考)

强调:描述法表示集合应注意集合的代表元素

{(_,y)|y= _2+3_+2}与 {y|y= _2+3x_2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。

辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}。下列写法{实数集},{R}也是错误的。

说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。

(三)课堂练习(课本P6练习)

三、 归纳小结

本节课从实例入手,非常自然贴切地引出集合与集合的概念,并且结合实例对集合的概念作了说明,然后介绍了集合的常用表示方法,包括列举法、描述法。

四、 作业布置

书面作业:习题1.1,第1- 4题

五、 板书设计(略) 文章

2971