人教版高二选修一数学教案
所有优秀的数学老师都应该具备宏阔的课程视野和远大的职业境界。在数学教学工作中,你知道如何写数学教案?不妨和我们分享一下。你是否在找正准备撰写“人教版高二选修一数学教案”,下面小编收集了相关的素材,供大家写文参考!
人教版高二选修一数学教案篇1
教学目标:
1、使学生理解并掌握不含括号的混合式题的运算顺序,自主、熟练的计算含有乘除混合的三步计算式题.
2、培养学生的学习兴趣,养成认真审题、仔细验算的良好习惯。
教学重点:
使学生掌握混合运算顺序,能熟练地进行计算。
教学难点:
帮助学生利用知识的迁移,探索混合运算的运算顺序。
教学过程:
一、口算引入
1、计算:140×3+280 400—400÷8
以上各式中都含有哪些运算?它们的运算顺序是什么?
使学生明确:当只有加减或乘除法时,按从左到右的顺序计算;当既有乘除法又有加减法,要先算乘法或除法,再算加法或减法。
学生练习,指名板演。
2、今天我们继续学习混和运算。
板书:不带括号的混和运算。
二、教学新课
1、学习例题。
媒体出示例题:一副中国象棋12元。一副围棋15元。购买3副中国象棋和4副围棋。一共要付多少元?
(1)请学生读题,教师提问:你看出了哪些已知条件?你认为要想求出一共要付的钱数,应该先求出什么?你能列出综合算式吗?
学生列式:12×3+15×4或15×4+12×3
那这样列式应该先算什么?应该按怎样的运算顺序计算,才能先求出买3副中国象棋和4副围棋用去的钱?
(2)学生分小组讨论上述问题并汇报。
(3)师:在没有括号的混合运算中应该先算乘除,后算加减。学生在书上完成。
2、试一试:150+120÷6×5。
学生在书上独立完成,指明说一说是怎样计算的?
在计算120÷6×5,为什么应该先算120÷6,而不先算6×5呢?你们是按怎样的运算顺序计算的?
通过刚才两道混合运算的解答,你能总结一下没有括号的三步混合运算顺序是怎样的吗? 使学生明确:在一道既有乘除法又有加减法的混合式题里,应先算乘除法,后算加减法;乘除连在一起,或加减连在一起,要从左往右依次计算。
三、巩固练习
1、“想想做做”1。
学生独立完成,展示个别学生作业。
注意强调运算顺序和书写格式.要明确:在没有括号的三步混合运算式题里,要先算乘除后算加减法。
2、说出运算顺序,并口算出计算结果。
48÷4+2×4
48÷4+20÷4
48-4+2×4
48+4+2×4
3、“想想做做”5。
学生先列式解答,再交流、汇报思考过程和解题方法。
四、课堂小结
五、布置作业
“想想做做”6。
人教版高二选修一数学教案篇2
一、教学目标
1.理解分式的基本性质.
2.会用分式的基本性质将分式变形.
二、重点、难点
1.重点:理解分式的基本性质.
2.难点:灵活应用分式的基本性质将分式变形.
3.认知难点与突破方法
教学难点是灵活应用分式的基本性质将分式变形.突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质.应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形.
三、例、习题的意图分析
1.P7的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变.
2.P9的例3、例4地目的是进一步运用分式的基本性质进行约分、通分.值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.
教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解.
3.P11习题16.1的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号.这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变.
“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.
四、课堂引入
1.请同学们考虑:与相等吗?与相等吗?为什么?
2.说出与之间变形的过程,与之间变形的过程,并说出变形依据?
3.提问分数的基本性质,让学生类比猜想出分式的基本性质.
五、例题讲解
P7例2.填空:
[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变.
P11例3.约分:
[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变.所以要找准分子和分母的公因式,约分的结果要是最简分式.
P11例4.通分:
[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母.
人教版高二选修一数学教案篇3
教学目标
1.等腰三角形的概念.2.等腰三角形的性质.3.等腰三角形的概念及性质的应用.
教学重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.
教学难点:等腰三角形三线合一的性质的理解及其应用.
教学过程
Ⅰ.提出问题,创设情境
在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?
有的三角形是轴对称图形,有的三角形不是.
问题:那什么样的三角形是轴对称图形?
满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.
我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.
Ⅱ.导入新课:要求学生通过自己的思考来做一个等腰三角形.
作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.
等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.
思考:
1.等腰三角形是轴对称图形吗?请找出它的对称轴.
2.等腰三角形的两底角有什么关系?
3.顶角的平分线所在的直线是等腰三角形的对称轴吗?
4.底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?
结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.
要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.
沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.
由此可以得到等腰三角形的性质:
1.等腰三角形的两个底角相等(简写成“等边对等角”).
2.等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).
由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).
如右图,在△ABC中,AB=AC,作底边BC的中线AD,因为
所以△BAD≌△CAD(SSS).
所以∠B=∠C.
]如右图,在△ABC中,AB=AC,作顶角∠BAC的角平分线AD,因为
所以△BAD≌△CAD.
所以BD=CD,∠BDA=∠CDA=∠BDC=90°.
[例1]如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,
求:△ABC各角的度数.
分析:根据等边对等角的性质,我们可以得到
∠A=∠ABD,∠ABC=∠C=∠BDC,
再由∠BDC=∠A+∠ABD,就可得到∠ABC=∠C=∠BDC=2∠A.
再由三角形内角和为180°,就可求出△ABC的三个内角.
把∠A设为x的话,那么∠ABC、∠C都可以用x来表示,这样过程就更简捷.
解:因为AB=AC,BD=BC=AD,
所以∠ABC=∠C=∠BDC.
∠A=∠ABD(等边对等角).
设∠A=x,则∠BDC=∠A+∠ABD=2x,
从而∠ABC=∠C=∠BDC=2x.
于是在△ABC中,有
∠A+∠ABC+∠C=x+2x+2x=180°,
解得x=36°.在△ABC中,∠A=35°,∠ABC=∠C=72°.
[师]下面我们通过练习来巩固这节课所学的知识.
Ⅲ.随堂练习:1.课本P51练习1、2、3.2.阅读课本P
49~P51,然后小结.
Ⅳ.课时小结
这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.
我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.
Ⅴ.作业:课本P56习题12.3第1、2、3、4题.
板书设计
12.3.1.1等腰三角形
一、设计方案作出一个等腰三角形
二、等腰三角形性质:1.等边对等角2.三线合一
人教版高二选修一数学教案篇4
一、学习目标:1.多项式除以单项式的运算法则及其应用.
2.多项式除以单项式的运算算理.
二、重点难点:
重 点: 多项式除以单项式的运算法则及其应用
难 点: 探索多项式与单项式相除的运算法则的过程
三、合作学习:
(一) 回顾单项式除以单项式法则
(二) 学生动手,探究新课
1. 计算下列各式:
(1)(am+bm)÷m (2)(a2+ab)÷a (3)(4x2y+2xy2)÷2xy.
2. 提问:①说说你是怎样计算的 ②还有什么发现吗?
(三) 总结法则
1. 多项式除以单项式:先把这个多项式的每一项除以___________,再把所得的商______
2. 本质:把多项式除以单项式转化成______________
四、精讲精练
例:(1)(12a3-6a2+3a)÷3a; (2)(21x4y3-35x3y2+7x2y2)÷(-7x2y);
(3)[(x+y)2-y(2x+y)-8x]÷2x (4)(-6a3b3+ 8a2b4+10a2b3+2ab2)÷(-2ab2)
随堂练习: 教科书 练习
五、小结
1、单项式的除法法则
2、应用单项式除法法则应注意:
A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号
B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;
C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;
D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行.
E、多项式除以单项式法则
第三十四学时:14.2.1 平方差公式
一、学习目标:1.经历探索平方差公式的过程.
2.会推导平方差公式,并能运用公式进行简单的运算.
二、重点难点
重 点: 平方差公式的推导和应用
难 点: 理解平方差公式的结构特征,灵活应用平方差公式.
三、合作学习
你能用简便方法计算下列各题吗?
(1)2001×1999 (2)998×1002
导入新课: 计算下列多项式的积.
(1)(x+1)(x-1) (2)(m+2)(m-2)
(3)(2x+1)(2x-1) (4)(x+5y)(x-5y)
结论:两个数的和与这两个数的差的积,等于这两个数的平方差.
即:(a+b)(a-b)=a2-b2
四、精讲精练
例1:运用平方差公式计算:
(1)(3x+2)(3x-2) (2)(b+2a)(2a-b) (3)(-x+2y)(-x-2y)
例2:计算:
(1)102×98 (2)(y+2)(y-2)-(y-1)(y+5)
随堂练习
计算:
(1)(a+b)(-b+a) (2)(-a-b)(a-b) (3)(3a+2b)(3a-2b)
(4)(a5-b2)(a5+b2) (5)(a+2b+2c)(a+2b-2c) (6)(a-b)(a+b)(a2+b2)
五、小结:(a+b)(a-b)=a2-b2
第三十五学时:4.2.2. 完全平方公式(一)
一、学习目标:1.完全平方公式的推导及其应用.
2.完全平方公式的几何解释.
二、重点难点:
重 点: 完全平方公式的推导过程、结构特点、几何解释,灵活应用
难 点: 理解完全平方公式的结构特征并能灵活应用公式进行计算
三、合作学习
Ⅰ.提出问题,创设情境
一位老人非常喜欢孩子.每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,…
(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?
(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?
(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?
(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?
Ⅱ.导入新课
计算下列各式,你能发现什么规律?
(1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;
(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;
(5)(a+b)2=________;(6)(a-b)2=________.
两数和(或差)的平方,等于它们的平方和,加(或减)这两个数的积的二倍的2倍.
(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2
四、精讲精练
例1、应用完全平方公式计算:
(1)(4m+n)2 (2)(y- )2 (3)(-a-b)2 (4)(b-a)2
例2、用完全平方公式计算:
(1)1022 (2)992
人教版高二选修一数学教案篇5
教学目标:
让学生经历联系生活中的问题来进行除法和加、减法的运算过程,获得解决问题的经验,体会除法和加、减的混合运算的计算顺序,我根据本节课内容在教材中的地位与作用及小学生的认知水平,确定本节课的教学目标。
1.知识与技能:列综合算式解决两步计算的问题,掌握四则混合运算的顺序。
2.过程与方法:掌握混合运算计算过程,能熟练计算,养成良好的学习习惯。
3.情感态度与价值观:初步感受混合运算与现实生活的密切联系,体会数学的应用价值。
教学重点:
探索并掌握含有除法和加、减法的混合运算的运算顺序。
教学难点:
对、加、减、乘、除四则混合运算能够正确计算。
教法学法:
1.针对本节课的教学内容以及小学生的特点,我主要采用联系生活实际进行情景创设,引导学生讨论交流和小组合作法,并运用计算机多媒体教学课件辅助教学。采用这些方法及手段,以激发学生的学习兴趣,调动学生的学习积极性。培养了学生独立获取知识的能力。
2.小组合作学习。学生通过小组内交流从题目中获得的数学信息,说说解题思路,来解决实际问题。
3.学生通过独立列式计算,交流计算顺序和结果,提高学生的计算能力。
教学过程:
一、创设情境,诱发兴趣
(1)出示7×6+24,指名学生板演计算,总结运算顺序。
(2)课件出示例2.
(3)找出例2中的数学信息,引导学生提出问题。
(4)在同学们提的问题中选择“每个足球比篮球多多少元?”来研究。
二、学生交流、合作、探索、归纳方法。
(1)鼓励学生探究
师:关于这一节的问题,每个足球比篮球多多少元?老师想放手让同学们自己解决,依托小组的力量,先独立思考,再交流分享自己的观点。
生:学生独立思考,小组合作交流,教师参与其中收集信息。
(2)学生代表汇报本组内的发现,教师补充,教师引导学生说出计算步骤,和书写格式。
(3)及时总结:在一个算式里既有除法也有加减法,我们应该按怎样的顺序计算。(先算除法,再算加减法。)
三、巩固拓展 强化新知
(1)课件出示算式,147-72÷6 327-56+78 56÷8×15 32×3+37
学生说说计算顺序。
(2)给计算顺序分类,(含有同一级运算的按从左到右的顺序计算,含有两级运算的按先乘除,后加减的顺序计算。)
(3)画出第一步计算什么,再计算。
设计意图:练习时按照,先说计算顺序,再画出第一步计算什么,最后计算的模式进行练习,这样学生有说到做,明确了计算顺序,提高了计算能力。
四、归纳总结
(1)今天你有什么收获?
含有同一级运算的按从左到右的顺序计算,含有两级运算的按先乘除,后加减的顺序计算。
(2)你还有什么不明白的?
板书设计:
除法和加、减法的混合运算
45-70÷2
=45-35
=10(元)
1.当综合算式里有乘、除法和加、减法时,要先算乘除,再算加减。
2. 在一个算式里,只有加减法或只有乘除法时,要按照从左到右的顺序进行计算。
通过板演除法和加、减法的混合运算的计算过程,让学生直观的了解除法和加、减法的混合运算的计算顺序,并及时的进行计算顺序的文字总结,给计算顺序分类明确。达到学生正确计算的目的。