高一必修一数学教案设计
教案设计的内容包括导语环节,导入的方法可以是故事导入、直接导入、游戏导入等方式。下面是小编给大家带来的高一必修一数学教案设计模板7篇,欢迎大家阅读转发!
高一必修一数学教案设计篇1
重点难点教学:
1.正确理解映射的概念;
2.函数相等的两个条件;
3.求函数的定义域和值域。
教学过程:
1. 使学生熟练掌握函数的概念和映射的定义;
2. 使学生能够根据已知条件求出函数的定义域和值域; 3. 使学生掌握函数的三种表示方法。
教学内容:
1.函数的定义
设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么称:fAB81为从集合A到集合B的一个函数(function),记作:yf__A
其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合{|}f__A83叫值域(range)。显然,值域是集合B的子集。
注意:
① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.
2.构成函数的三要素 定义域、对应关系和值域。
3、映射的定义
设A、B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意
一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从 集合A到集合B的一个映射。
4. 区间及写法:
设a、b是两个实数,且a
(1) 满足不等式axb8080的实数x的集合叫做闭区间,表示为[a,b];
(2) 满足不等式axb8787的实数x的集合叫做开区间,表示为(a,b);
5.函数的三种表示方法
①解析法
②列表法
③图像法
高一必修一数学教案设计篇2
教学目标
1.使学生掌握的概念,图象和性质.
(1)能根据定义判断形如什么样的函数是,了解对底数的限制条件的合理性,明确的定义域.
(2)能在基本性质的指导下,用列表描点法画出的图象,能从数形两方面认识的性质.
(3)能利用的性质比较某些幂形数的大小,会利用的图象画出形如的图象.
2.通过对的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法.
3.通过对的研究,让学生认识到数学的应用价值,激发学生学习数学的兴趣.使学生善于从现实生活中数学的发现问题,解决问题.教学建议
教材分析
(1)是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,它是重要的基本初等函数之一,作为常见函数,它既是函数概念及性质的第一次应用,也是今后学习对数函数的基础,同时在生活及生产实际中有着广泛的应用,所以应重点研究.
(2)本节的教学重点是在理解定义的基础上掌握的图象和性质.难点是对底数在和时,函数值变化情况的区分.
(3)是学生完全陌生的一类函数,对于这样的函数应怎样进行较为系统的理论研究是学生面临的重要问题,所以从的研究过程中得到相应的结论固然重要,但更为重要的是要了解系统研究一类函数的方法,所以在教学中要特别让学生去体会研究的方法,以便能将其迁移到其他函数的研究.
教法建议
(1)关于的定义按照课本上说法它是一种形式定义即解析式的特征必须是的样子,不能有一点差异,诸如,等都不是.
(2)对底数的限制条件的理解与认识也是认识的重要内容.如果有可能尽量让学生自己去研究对底数,指数都有什么限制要求,教师再给予补充或用具体例子加以说明,因为对这个条件的认识不仅关系到对的认识及性质的分类讨论,还关系到后面学习对数函数中底数的认识,所以一定要真正了解它的由来.
关于图象的绘制,虽然是用列表描点法,但在具体教学中应避免描点前的盲目列表计算,也应避免盲目的连点成线,要把表列在关键之处,要把点连在恰当之处,所以应在列表描点前先把函数的性质作一些简单的讨论,取得对要画图象的存在范围,大致特征,变化趋势的大概认识后,以此为指导再列表计算,描点得图象.
高一必修一数学教案设计篇3
教学目的:
(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;
(2)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。
课 型:
新授课
教学重点:
集合的交集与并集的概念;
教学难点:
集合的交集与并集 “是什么”,“为什么”,“怎样做”;
教学过程:
一、 引入课题
我们两个实数除了可以比较大小外,还可以进行加法运算,类比实数的加法运算,两个集合是否也可以“相加”呢?
思考(P9思考题),引入并集概念。
二、 新课教学
1、 并集
一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集(Union)
记作:A∪B 读作:“A并B”
即: A∪B={x|x∈A,或x∈B}
Venn图表示:
说明:两个集合求并集,结果还是一个集合,是由集合A与B的所有元素组成的集合(重复元素只看成一个元素)。
例题1求集合A与B的并集
① A={6,8,10,12} B={3,6,9,12}
② A={x|-1≤x≤2} B={x|0≤x≤3}
(过度)问题:在上图中我们除了研究集合A与B的并集外,它们的公共部分(即问号部分)还应是我们所关心的,我们称其为集合A与B的交集。
2、交集
一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集(intersection)。
记作:A∩B 读作:“A交B”
即: A∩B={x|∈A,且x∈B}
交集的Venn图表示
说明:两个集合求交集,结果还是一个集合,是由集合A与B的公共元素组成的集合。
例题2求集合A与B的交集
③ A={6,8,10,12} B={3,6,9,12}
④ A={x|-1≤x≤2} B={x|0≤x≤3}
拓展:求下列各图中集合A与B的并集与交集(用彩笔图出)
说明:当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集
3、例题讲解
例3(P12例1):理解所给集合的含义,可借助venn图分析
例4 P12例2):先“化简”所给集合,搞清楚各自所含元素后,再进行运算。
4、 集合基本运算的一些结论:
A∩B A,A∩B B,A∩A=A,A∩ = ,A∩B=B∩A
A A∪B,B A∪B,A∪A=A,A∪ =A,A∪B=B∪A
若A∩B=A,则A B,反之也成立
若A∪B=B,则A B,反之也成立
若x∈(A∩B),则x∈A且x∈B
若x∈(A∪B),则x∈A,或x∈B
高一必修一数学教案设计篇4
一、教材
首先谈谈我对教材的理解,《两条直线平行与垂直的判定》是人教A版高中数学必修2第三章3.1.2的内容,本节课的内容是两条直线平行与垂直的判定的推导及其应用,学生对于直线平行和垂直的概念已经十分熟悉,并且在上节课学习了直线的倾斜角与斜率,为本节课的学习打下了基础。
二、学情
教材是我们教学的工具,是载体。但我们的教学是要面向学生的,高中学生本身身心已经趋于成熟,管理与教学难度较大,那么为了能够成为一个合格的高中教师,深入了解所面对的学生可以说是必修课。本阶段的学生思维能力已经非常成熟,能够有自己独立的思考,所以应该积极发挥这种优势,让学生独立思考探索。
三、教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
掌握两条直线平行与垂直的判定,能够根据其判定两条直线的位置关系。
(二)过程与方法
在经历两条直线平行与垂直的判定过程中,提升逻辑推理能力。
(三)情感态度价值观
在猜想论证的过程中,体会数学的严谨性。
四、教学重难点
我认为一节好的数学课,从教学内容上说一定要突出重点、突破难点。而教学重点的确立与我本节课的内容肯定是密不可分的。那么根据授课内容可以确定本节课的教学重点是:两条直线平行与垂直的判定。本节课的教学难点是:两条直线平行与垂直的'判定的推导。
五、教法和学法
现代教学理论认为,在教学过程中,学生是学习的主体,教师是学习的组织者、引导者,教学的一切活动都必须以强调学生的主动性、积极性为出发点。根据这一教学理念,结合本节课的内容特点和学生的年龄特征,本节课我采用讲授法、练习法、小组合作等教学方法。
六、教学过程
下面我将重点谈谈我对教学过程的设计。
(一)新课导入
首先是导入环节,那么我采用复习导入,回顾上节课所学的直线的倾斜角与斜率并顺势提问:能否通过直线的斜率,来判断两条直线的位置关系呢?
利用上节课所学的知识进行导入,很好的克服学生的畏难情绪。
(二)新知探索
接下来是教学中最重要的新知探索环节,我主要采用讲解法、小组合作、启发法等。
高一必修一数学教案设计篇5
一、基本情况:
本学期担任高一(2)、(3)两个班的数学教学工作,两个班学生共有124人,学生的水平参差不齐,多数学生基础差,成绩也不理想。为把本学期教学工作做好,根据学校的工作要求,结合这两个班的实际,制定如下教学工作计划。
二、本期教学内容:
数学必修1、数学必修2,争取在本学年基本上完必修部分,期望进入高二就开始文理分科,数学开始上选修部分。争取高二年级提早上完所有选修部分,若有暑假补课,则争取在高二结束时提前进入高三复习阶段。
三、课时大体安排:
1、可用课时:本期每周开设5节数学课,预计全期实际上课节18__5=90时,每周5节课中,4节用于达到教参进度(即每本必修教参课时36课时),其中1节用于作业讲评或进度调整机动课时。
第1~9周:必修一:(5天__9周=45天=45节+4天月考机动)。
第10~18周:必修二(同上)第20周:复习,期考。
2、教学内容需要课时预算及进度安排:(略)。
四、工作措施与要求:
1、落实学校德育为首,教学为主,教研领路工作要求,树立忧患意思,质量意识。
2、新教材教学要突出基础性、提倡科学性、注重探究性,切实改变教学观念,改变教学方式。积极引导学生积极参与教学过程,注重教育信息技术与教学的整合。
3、诚实工作,规范教学环节。坚决执行上级工作要求,倡导执行文化,提高教学能力,按时完成任务。
4、努力原创或收集有关新教材的习题,充分钻研教材。
最后,希望小编整理的第一学期高一数学教学工作计划对您有所帮助,祝同学们学习进步。
高一必修一数学教案设计篇6
本学期我担任高一(1)、(2)两班的数学教学,完成必修1、2的教学。本学期教学主要内容有:集合与函数的概念,基本初等函数,函数的应用,空间几何体,点、直线、平面之间的位置关系,直线与方程,圆与方程等七个章节的内容。现将本学期高中数学必修1、必修2的教学总结如下:
一、教学方面
1、要认真研究课程标准。在课程改革中,教师是关键,教师对新课程的理解与参与是推进课程改革的`前提。认真学习数学课程标准,对课改有所了解。课程标准明确规定了教学的目的、教学目标、教学的指导思想以及教学内容的确定和安排。继承传统,更新教学观念。高中数学新课标指出:“丰富学生的学习方式,改进学生的学习方法是高中数学课程追求的基本理念。学生的数学学习活动不应只限于对概念、结论和技能的记忆、模仿和接受,独立思考、自主探索、动手实践、合作交流、阅读自学等都是学习数学的重要方式。在高中数学教学中,教师的讲授仍然是重要的教学方式之一,但要注意的是必须关注学生的主体参与,师生互动”。
2、合理使用教科书,提高课堂效益。对教材内容,教学时需要作适当处理,适当补充或降低难度是备课必须处理的。灵活使用教材,才能在教学中少走弯路,提高教学质量。对教材中存在的一些问题,教师应认真理解课标,对课标要求的重点内容要作适量的补充;对教材中不符合学生实际的题目要作适当的.调整。此外,还应把握教材的“度”,不要想一步到位,如函数性质的教学,要多次螺旋上升,逐步加深。
3、改进学生的学习方式,注意问题的提出、探究和解决。教会学生发现问题和提出问题的方法。以问题引导学生去发现、探究、归纳、总结。引导他们更加主动、有兴趣的学,培养问题意识。
4、在课后作业,反馈练习中培养学生自学能力。课后作业和反馈练习、测试是检查学生学习效果的重要手段。抓好这一环节的教学,也有利于复习和巩固旧课,还锻炼了学生的自学能力。在学完一课、一单元后,让学生主动归纳总结,要求学生尽量自己独立完成,以便正确反馈教学效果。
二、存在困惑
1、书本习题都较简单和基础,而我们的教辅题目偏难,加重了学生的学习负担,而且学生完成情况很不好。课时又不足,教学时间紧,没时间讲评这些练习题。
2、在教学中,经常出现一节课的教学任务完不成的现象,更少巩固练习的时间。勉强按规定时间讲完,一些学生听得似懂非懂,造成差生越来越多。而且知识内容需要补充的内容有:乘法公式;因式分解的十字相乘法;一元二次方程及根与系数的关系;根式的运算;解不等式等知识。
3、虽然经常要求学生课后要去完成教辅上的精选的题目,但是,相当部分的同学还是没办法完成。学生的课业负担太重,有的学生则是学习意识淡薄。
三、今后要注意的几点
1、要处理好课时紧张与教学内容多的矛盾,加强对教材的研究;
2、注意对教辅材料题目的精选;
3、要加强对数学后进生的思想教育。
高一必修一数学教案设计篇7
第一章 集合与函数概念
一、集合有关概念
1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:
1.元素的确定性; 2.元素的互异性; 3.元素的无序性
说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}
1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
2.集合的表示方法:列举法与描述法。
非负整数集(即自然数集)记作:N
正整数集 N__或 N+ 整数集Z 有理数集Q 实数集R
关于“属于”的概念
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作 a∈A ,相反,a不属于集合A 记作
列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}
②数学式子描述法:例:不等式x-32的解集是{x?R| x-32}或{x| x-32}
4、集合的分类:
(1).有限集 含有有限个元素的集合
(2).无限集 含有无限个元素的集合
(3).空集 不含任何元素的集合 例:{x|x2=-5}
二、集合间的基本关系
1.“包含”关系—子集
注意: 有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A
2.“相等”关系(5≥5,且5≤5,则5=5)
3. 不含任何元素的集合叫做空集,记为
规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。
三、集合的运算
1.交集的'定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.
记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.
2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。记作:A∪B(读作”A并B”),即A∪B={x|x∈A,或x∈B}.
3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,
A∪φ= A ,A∪B = B∪A.
4、全集与补集
(1)补集:设S是一个集合,A是S的一个子集(即 ),由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)
(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。