教育巴巴 > 高中教案 > 数学教案 >

高中数学教学教案模板范文

时间: 金成 数学教案

作为一名无私奉献的老师,就难以避免地要准备教案,教案是教学蓝图,可以有效提高教学效率。教案要怎么写呢?下面小编带来高中数学教学教案模板范文5篇,希望大家喜欢。

高中数学教学教案模板范文

高中数学教学教案模板范文篇1

教学目标:

1.理解流程图的选择结构这种基本逻辑结构.

2.能识别和理解简单的框图的功能.

3. 能运用三种基本逻辑结构设计流程图以解决简单的问题.

教学方法:

1. 通过模仿、操作、探索,经历设计流程图表达求解问题的过程,加深对流程图的感知.

2. 在具体问题的解决过程中,掌握基本的流程图的画法和流程图的三种基本逻辑结构.

教学过程:

一、问题情境

1.情境:

某铁路客运部门规定甲、乙两地之间旅客托运行李的费用为

其中(单位:)为行李的重量.

试给出计算费用(单位:元)的一个算法,并画出流程图.

二、学生活动

学生讨论,教师引导学生进行表达.

解 算法为:

输入行李的重量;

如果,那么,

否则;

输出行李的重量和运费.

上述算法可以用流程图表示为:

教师边讲解边画出第10页图1-2-6.

在上述计费过程中,第二步进行了判断.

三、建构数学

1.选择结构的概念:

先根据条件作出判断,再决定执行哪一种

操作的结构称为选择结构.

如图:虚线框内是一个选择结构,它包含一个判断框,当条件成立(或称条件为“真”)时执行,否则执行.

2.说明:(1)有些问题需要按给定的条件进行分析、比较和判断,并按判

断的不同情况进行不同的操作,这类问题的实现就要用到选择结构的设计;

(2)选择结构也称为分支结构或选取结构,它要先根据指定的条件进行判断,再由判断的结果决定执行两条分支路径中的某一条;

(3)在上图的选择结构中,只能执行和之一,不可能既执行,又执

行,但或两个框中可以有一个是空的,即不执行任何操作;

(4)流程图图框的形状要规范,判断框必须画成菱形,它有一个进入点和

两个退出点.

3.思考:教材第7页图所示的算法中,哪一步进行了判断?

高中数学教学教案模板范文篇2

教学目标:

(1)了解坐标法和解析几何的意义,了解解析几何的基本问题.

(2)进一步理解曲线的方程和方程的曲线.

(3)初步掌握求曲线方程的方法.

(4)通过本节内容的教学,培养学生分析问题和转化的能力.

教学重点、难点:求曲线的方程.

教学用具:

计算机.

教学方法:

启发引导法,讨论法.

教学过程:

【引入】

1.提问:什么是曲线的方程和方程的曲线.

学生思考并回答.教师强调.

2.坐标法和解析几何的意义、基本问题.

对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:

(1)根据已知条件,求出表示平面曲线的方程.

(2)通过方程,研究平面曲线的性质.

事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先研究如何求出曲线方程,再研究如何用方程研究曲线.本节课就初步研究曲线方程的求法.

【问题】

如何根据已知条件,求出曲线的方程.

【实例分析】

例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程.

首先由学生分析:根据直线方程的知识,运用点斜式即可解决.

解法一:易求线段的中点坐标为(1,3),

由斜率关系可求得l的斜率为

于是有

即l的方程为

分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?

(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).

证明:(1)曲线上的点的坐标都是这个方程的解.

设是线段的垂直平分线上任意一点,则

将上式两边平方,整理得

这说明点的坐标是方程的解.

(2)以这个方程的解为坐标的点都是曲线上的点.

设点的坐标是方程①的任意一解,则

到、的距离分别为

所以,即点在直线上.

综合(1)、(2),①是所求直线的方程.

至此,证明完毕.回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:

解法二:设是线段的垂直平分线上任意一点,也就是点属于集合

由两点间的距离公式,点所适合的条件可表示为

将上式两边平方,整理得

果然成功,当然也不要忘了证明,即验证两条是否都满足.显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证.

这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.

让我们用这个方法试解如下问题:

例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程.

分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系.然后仿照例1中的解法进行求解.

求解过程略.

【概括总结】通过学生讨论,师生共同总结:

分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:

首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:

(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;

(2)写出适合条件的'点的集合;

(3)用坐标表示条件,列出方程;

(4)化方程为最简形式;

(5)证明以化简后的方程的解为坐标的点都是曲线上的点.

一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常情况下证明可省略,不过特殊情况要说明.

上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.

下面再看一个问题:

例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程.

【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系.

解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合

由距离公式,点适合的条件可表示为

将①式移项后再两边平方,得

化简得

由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.

【练习巩固】

题目:在正三角形内有一动点,已知到三个顶点的距离分别为、 、,且有,求点轨迹方程.

分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设、的坐标为、,则的坐标为,的坐标为.

根据条件,代入坐标可得

化简得

由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为

【小结】师生共同总结:

(1)解析几何研究研究问题的方法是什么?

(2)如何求曲线的方程?

(3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应注意什么?

【作业】课本第72页练习1,2,3;

高中数学教学教案模板范文篇3

一、教学目标

1.知识与技能

(1)掌握画三视图的基本技能

(2)丰富学生的空间想象力

2.过程与方法

主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

3.情感态度与价值观

(1)提高学生空间想象力

(2)体会三视图的作用

二、教学重点、难点

重点:画出简单组合体的三视图

难点:识别三视图所表示的空间几何体

三、学法与教学用具

1.学法:观察、动手实践、讨论、类比

2.教学用具:实物模型、三角板

四、教学思路

(一)创设情景,揭开课题

“横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。

在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?

(二)实践动手作图

1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;

2.教师引导学生用类比方法画出简单组合体的三视图

(1)画出球放在长方体上的三视图

(2)画出矿泉水瓶(实物放在桌面上)的三视图

学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。

作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。

3.三视图与几何体之间的相互转化。

(1)投影出示图片(课本P10,图1.2-3)

请同学们思考图中的三视图表示的几何体是什么?

(2)你能画出圆台的三视图吗?

(3)三视图对于认识空间几何体有何作用?你有何体会?

教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。

4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。

(三)巩固练习

课本P12练习1、2P18习题1.2A组1

(四)归纳整理

请学生回顾发表如何作好空间几何体的三视图

(五)课外练习

1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。

2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。

高中数学教学教案模板范文篇4

1.教学目标

(1)知识目标: 1.在平面直角坐标系中,探索并掌握圆的标准方程;

2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.

(2)能力目标: 1.进一步培养学生用解析法研究几何问题的能力;

2.使学生加深对数形结合思想和待定系数法的理解;

3.增强学生用数学的意识.

(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.

2.教学重点.难点

(1)教学重点:圆的标准方程的求法及其应用.

(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰

当的坐标系解决与圆有关的实际问题.

3.教学过程

(一)创设情境(启迪思维)

问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

[引导] 画图建系

[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)

将x=2.7代入,得 .

即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

(二)深入探究(获得新知)

问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?

答:x2 y2=r2

2.如果圆心在 ,半径为 时又如何呢?

[学生活动] 探究圆的方程。

[教师预设] 方法一:坐标法

如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}

由两点间的距离公式,点m适合的条件可表示为 ①

把①式两边平方,得(x―a)2 (y―b)2=r2

方法二:图形变换法

方法三:向量平移法

(三)应用举例(巩固提高)

i.直接应用(内化新知)

问题三:1.写出下列各圆的方程(课本p77练习1)

(1)圆心在原点,半径为3;

(2)圆心在 ,半径为 ;

(3)经过点 ,圆心在点 .

2.根据圆的方程写出圆心和半径

(1) ; (2) .

ii.灵活应用(提升能力)

问题四:1.求以 为圆心,并且和直线 相切的圆的方程.

[教师引导]由问题三知:圆心与半径可以确定圆.

2.已知圆的方程为 ,求过圆上一点 的切线方程.

[学生活动]探究方法

[教师预设]

方法一:待定系数法(利用几何关系求斜率-垂直)

方法二:待定系数法(利用代数关系求斜率-联立方程)

方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示]

方法四:轨迹法(利用向量垂直列关系式)

3.你能归纳出具有一般性的结论吗?

已知圆的方程是 ,经过圆上一点 的切线的方程是: .

iii.实际应用(回归自然)

问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到0.01m).

[多媒体课件演示创设实际问题情境]

(四)反馈训练(形成方法)

问题六:1.求以c(-1,-5)为圆心,并且和y轴相切的圆的方程.

2.已知点a(-4,-5),b(6,-1),求以ab为直径的圆的方程.

3.求圆x2 y2=13过点(-2,3)的切线方程.

4.已知圆的方程为 ,求过点 的切线方程.

高中数学教学教案模板范文篇5

一、教学目标:

掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

二、教学重点:

向量的性质及相关知识的综合应用。

三、教学过程:

(一)主要知识:

1、掌握向量的概念、坐标表示、运算性质,做到融会贯通,能应用向量的有关性质解决诸如平面几何、解析几何等的问题。

(二)例题分析:略

四、小结:

1、进一步熟练有关向量的运算和证明;能运用解三角形的知识解决有关应用问题,

2、渗透数学建模的思想,切实培养分析和解决问题的能力。

五、作业:

22882