教育巴巴 > 高中教案 > 数学教案 >

高中数学教案模板案例

时间: 新华 数学教案

教案的编写可以帮助教师更好地掌握教学内容,合理规划教学流程,从而增强教学自信心。如何撰写优秀的高中数学教案模板案例?这里分享一些高中数学教案模板案例写作案例,供大家参考。

高中数学教案模板案例篇1

高二数学《椭圆的几何性质1》教学反思

近期,我开设了一节公开课《椭圆的几何性质1》。在新课程背景下,如何有效利用课堂教学时间,如何尽可能地提高学生的学习兴趣,提高学生在课堂上45分钟的学习效率,是一个很重要的课题。要教好高中数学,首先要对新课标和新教材有整体的把握和认识,这样才能将知识系统化,注意知识前后的联系,形成知识框架;其次要了解学生的现状和认知结构,了解学生此阶段的知识水平,以便因材施教;再次要处理好课堂教学中教师的教和学生的学的关系。课堂教学是实施高中新课程教学的主阵地,也是对学生进行思想品德教育和素质教育的主渠道。课堂教学不但要加强双基而且要提高智力,发展学生的智力,而且要发展学生的创造力;不但要让学生学会,而且要让学生会学,特别是自学。尤其是在课堂上,不但要发展学生的智力因素,而且要提高学生在课堂45分钟的学习效率,在有限的时间里,出色地完成教学任务。

一、要有明确的教学目标

教学目标分为三大领域,即认知领域、情感领域和动作技能领域。因此,在备课时要围绕这些目标选择教学的策略、方法和媒体,把内容进行必要的重组。备课时要依据教材,但又不拘泥于教材,灵活运用教材。在数学教学中,要通过师生的共同努力,使学生在知识、能力、技能、心理、思想品德等方面达到预定的目标,以提高学生的综合素质。

二、要能突出重点、化解难点

每一堂课都要有教学重点,而整堂的教学都是围绕着教学重点来逐步展开的。为了让学生明确本堂课的重点、难点,教师在上课开始时,可以在黑板的一角将这些内容简短地写出来,以便引起学生的重视。讲授重点内容,是整堂课的教学高潮。教师要通过声音、手势、板书等的变化或应用模型、投影仪等直观教具,刺激学生的大脑,使学生能够兴奋起来,对所学内容在大脑中刻下强烈的印象,激发学生的学习兴趣,提高学生对新知识的接受能力。尤其是在选择例题时,例题最好是呈阶梯式展现,我在准备例2时,就设置了三个小题,从易到难,便于学生理解接受。

三、要善于应用现代化教学手段

在新课标和新教材的背景下,教师掌握现代化的多媒体教学手段显得尤为重要和迫切。现代化教学手段的显著特点:

一是能有效地增大每一堂课的课容量;

二是减轻教师板书的工作量,使教师能有精力讲深讲透所举例子,提高讲解效率;

三是直观性强,容易激发起学生的学习兴趣,有利于提高学生的学习主动性;

四是有利于对整堂课所学内容进行回顾和小结。

在课堂教学结束时,教师引导学生总结本堂课的内容,学习的重点和难点。同时通过投影仪,同步地将内容在瞬间跃然“幕”上,使学生进一步理解和掌握本堂课的内容。在课堂教学中,对于板演量大的内容,如解析几何中的一些几何图形、一些简单但数量较多的小问答题、文字量较多应用题,复习课中章节内容的总结、选择题的训练等等都可以借助于投影仪来完成。

四、根据具体内容,选择恰当的教学方法

每一堂课都有规定的教学任务和目标要求。所谓“教学有法,但无定法”,教师要能随着教学内容的变化,教学对象的变化,教学设备的变化,灵活应用教学方法。这节课是高三的复习课,我采取了让学生自己回忆讲述椭圆的几何性质,教师补充的方法,改变了传统的教师讲,学生听的模式,调动了学生的积极性。在例题的解决过程中,我也尽量让学生多动手,多动脑,激发学生的思维。此外,我们还可以结合课堂内容,灵活采用谈话、读书指导、作业、练习等多种教学方法。在一堂课上,有时要同时使用多种教学方法。“教无定法,贵要得法”。只要能激发学生的学习兴趣,提高学生的学习积极性,有助于学生思维能力的培养,有利于所学知识的.掌握和运用,都是好的教学方法。

五、关爱学生,及时鼓励

高中新课程的宗旨是着眼于学生的发展。对学生在课堂上的表现,要及时加以总结,适当给予鼓励,并处理好课堂的偶发事件,及时调整课堂教学。在教学过程中,教师要随时了解学的对所讲内容的掌握情况。如在讲完一个概念后,让学生复述;讲完一个例题后,将解答擦掉,请中等水平学生上台板演。有时,对于基础差的学生,可以对他们多提问,让他们有较多的锻炼机会,同时教师根据学生的表现,及时进行鼓励,培养他们的自信心,让他们能热爱数学,学习数学。

六、切实重视基础知识、基本技能和基本方法

众所周知,近年来数学试题的新颖性、灵活性越来越强,不少师生把主要精力放在难度较大的综合题上,认为只有通过解决难题才能培养能力,因而相对地忽视了基础知识、基本技能、基本方法的教学。教学中急急忙忙把公式、定理推证拿出来,或草草讲一道例题就通过大量的题目来训练学生。

其实定理、公式推证的过程就蕴含着重要的解题方法和规律,教师没有充分暴露思维过程,没有发掘其内在的规律,就让学生去做题,试图通过让学生大量地做题去“悟”出某些道理。结果是多数学生“悟”不出方法、规律,理解浮浅,记忆不牢,只会机械地模仿,思维水平较低,有时甚至生搬硬套;照葫芦画瓢,将简单问题复杂化。如果教师在教学中过于粗疏或学生在学习中对基本知识不求甚解,都会导致在考试中判断错误。

不少学生说:现在的试题量过大,他们往往无法完成全部试卷的解答,而解题速度的快慢主要取决于基本技能、基本方法的熟练程度及能力的高低。可见,在切实重视基础知识的落实中同时应重视基本技能和基本方法的培养。

七、渗透教学思想方法,培养综合运用能力

常用的数学思想方法有:转化的思想,类比归纳与类比联想的思想,分类讨论的思想,数形结合的思想以及配方法、换元法、待定系数法、反证法等。这些基本思想和方法分散地渗透在中学数学教材的条章节之中。在平时的教学中,教师要在传授基础知识的同时,有意识地、恰当在讲解与渗透基本数学思想和方法,帮助学生掌握科学的方法,从而达到传授知识,培养能力的目的,只有这样。学生才能灵活运用和综合运用所学的知识。

总之,在新课程背景下的数学课堂教学中,要提高学生在课堂45分钟的学习效率,要提高教学质量,我们就应该多思考、多准备,充分做到用教材、备学生、备教法,提高自身的教学机智,发挥自身的主导作用。

高中数学教案模板案例篇2

一、学情分析

本节课是在学生已学知识的基础上进行展开学习的,也是对以前所学知识的巩固和发展,但对学生的知识准备情况来看,学生对相关基础知识掌握情况是很好,所以在复习时要及时对学生相关知识进行提问,然后开展对本节课的巩固性复习。而本节课学生会遇到的困难有:数轴、坐标的表示;平面向量的坐标表示;平面向量的坐标运算。

二、考纲要求

1.会用坐标表示平面向量的加法、减法与数乘运算.

2.理解用坐标表示的平面向量共线的条件.

3.掌握数量积的坐标表达式,会进行平面向量数量积的运算.

4.能用坐标表示两个向量的夹角,理解用坐标表示的平面向量垂直的条件.

三、教学过程

(一) 知识梳理:

1.向量坐标的求法

(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标.

(2)设A(x1,y1),B(x2,y2),则

=_________________

| |=_______________

(二)平面向量坐标运算

1.向量加法、减法、数乘向量

设 =(x1,y1), =(x2,y2),则

+ = - = λ = .

2.向量平行的坐标表示

设 =(x1,y1), =(x2,y2),则 ∥ ⇔________________.

(三)核心考点·习题演练

考点1.平面向量的坐标运算

例1.已知A(-2,4),B(3,-1),C(-3,-4).设 (1)求3 + -3 ;

(2)求满足 =m +n 的实数m,n;

练:(2015江苏,6)已知向量 =(2,1), =(1,-2),若m +n =(9,-8)

(m,n∈R),则m-n的值为     .

考点2平面向量共线的坐标表示

例2:平面内给定三个向量 =(3,2), =(-1,2), =(4,1)

若( +k )∥(2 - ),求实数k的值;

练:(2015,四川,4)已知向量 =(1,2), =(1,0), =(3,4).若λ为实数,( +λ )∥ ,则λ= (  )

思考:向量共线有哪几种表示形式?两向量共线的充要条件有哪些作用?

方法总结:

1.向量共线的两种表示形式

设a=(x1,y1),b=(x2,y2),①a∥b⇒a=λb(b≠0);②a∥b⇔x1y2-x2y1=0.至于使用哪种形式,应视题目的具体条件而定,一般情况涉及坐标的应用②.

2.两向量共线的充要条件的作用

判断两向量是否共线(平行的问题;另外,利用两向量共线的充要条件可以列出方程(组),求出未知数的值.

考点3平面向量数量积的坐标运算

例3“已知正方形ABCD的边长为1,点E是AB边上的动点,

则 的值为     ; 的值为     .

【提示】解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.

练:(2014,安徽,13)设 =(1,2), =(1,1), = +k .若 ⊥ ,则实数k的值等于(  )

【思考】两非零向量 ⊥ 的充要条件: · =0⇔     .

解题心得:

(1)当已知向量的坐标时,可利用坐标法求解,即若a=(x1,y1),b=(x2,y2),则a·b=x1x2+y1y2.

(2)解决涉及几何图形的向量数量积运算问题时,可建立直角坐标系利用向量的数量积的坐标表示来运算,这样可以使数量积的运算变得简捷.

(3)两非零向量a⊥b的充要条件:a·b=0⇔x1x2+y1y2=0.

考点4:平面向量模的坐标表示

例4:(2015湖南,理8)已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC,若点P的坐标为(2,0),则 的值为(  )

A.6 B.7 C.8 D.9

练:(2016,上海,12)

在平面直角坐标系中,已知A(1,0),B(0,-1),P是曲线上一个动点,则 的取值范围是?

解题心得:

求向量的模的方法:

(1)公式法,利用|a|= 及(a±b)2=|a|2±2a·b+|b|2,把向量的模的运算转化为数量积运算;

(2)几何法,利用向量加减法的平行四边形法则或三角形法则作出向量,再利用余弦定理等方法求解..

五、课后作业(课后习题1、2题)

高中数学教案模板案例篇3

教学内容

义务教育课程标准实验教科书(人教版)二年级上册第八单元第一课时

教学目标:

知识目标:

使学生通过观察、猜测、实验等活动,找出简单事物的排列数和组合数。

能力目标:

培养学生有顺序地、全面地思考问题的意识。

情感目标:

使学生感受到数学在现实生活中的应用价值,尝试用数学的方法来解决实际生活中的问题。

教学重点:

经历探索简单事物排列与组合规律的过程。教学难点:初步理解简单事物排列与组合的不同。教学环节

一、创设情境,导入新课

今天,我们来上一节数学活动课,大家乐意吗?(板书课题)现在大家来看一下我们的活动目标。(课件出示活动目标)

师:老师给大家带来了一个新朋友,课件出示圣诞老人画面,圣诞老人过生日了,想请大家参加他的生日聚会,但是他有要求。通过圣诞老人提出本节课任务。

二、合作学习,构建模型

(一)初步感知。课件出示:

第一关:摆一摆,猜密码。(用数字卡片

1、2能排成几个两位数自己动手摆一摆)让学生自己动手摆卡片后,指名汇报。

(二)合作探究。课件出示:

第二关:摆一摆,比一比(用数字卡片1、2、3能摆成几个不同的两位数)比比看,哪个组找的最多。

小组探讨,组长把大家的讨论结果记录在练习本上。(活动开始,教师巡视。)

以组为单位派代表汇报。

师:有的组摆出了4个不同的两位数,有的组摆出了6个不同的两位数,你们是怎么摆的?有什么好办法?

(鼓励方法的多样化,对各组的不同方法进行肯定和表扬。)结合发言,引导学生进行评价,选出优胜组。

师生共同归纳:用数字排列组成数,要按照一定的顺序确定十位上的数,然后考虑个位上有哪些数可以与其搭配。

(三)握一握。课件出示:小精灵说的话。

恭喜你们成功的度过了前两关,现在,我们握手祝贺一下。师:每两人握一次手,三人一共握几次手?(小组活动,教师巡视)活动后,小组指名汇报。

师:究竟是几次呢?请大家互相握握看吧!请一个组的同学上台演示,其他同学一起数数。

(四)课件出示:

师:圣诞老人决定奖励你们两件上衣、两条裤子,那么一共有几种搭配方法呢?(课件出示图片。)

学生拿出学具卡片,小组活动解决问题。汇报交流,说说自己为什么这样设计。

三、分层练习,巩固新知

(一)付钱问题。

课件出示:99页做一做2题

小组讨论,小组长统计本组学生答题情况,并由小组代表汇报。

(二)拍照站法。

小丽、小芳、小美在风景如画的郊外游玩,三人想站成一排拍照留念,她们有几种站法?

小组讨论后,由一组学生上台演示,其他学生数一数。

高中数学教案模板案例篇4

1、教材分析:

集合是现代数学的基本语言,可以简洁、准确地表达数学内容。本节是让学生学会用集合的语言来描述对象,章末我们会用集合和对应的语言来描述函数的概念,可见它是今后数学学习的基础,也是培养学生抽象概括能力的重要素材。

2、教材目标:

根据素质教育的要求和新课改的精神,我确定教学目标如下:

①知识与技能:

(1)了解集合的含义与集合中元素的特征

(2)熟记常用数集符号

(3)能用列举、描述法表示具体集合

②过程与方法:让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.让学生通过观察、归纳、总结的过程,提高抽象概括能力。

③情感态度与价值观:使学生感受到学习集合的必要性,增强学习的积极性.

3、教学重点、难点

教学重点:集合的基本概念与表示方法;

教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;说教法

1.学情分析

《集合的含义及表示》这一课时是学生进入高中阶段学习、接触到高中数学的第一堂课,它直接影响到了学生对高中阶段数学学习的认识;如果我们教学上过于草率,学生很容易对数学失去学习兴趣。再者,这是高中数学课程的第一章的第一课时,是整个高中数学的奠基部分,所以我们不仅要正确地传授知识,更要把握好教学的难度。如果传授得过于简单,那么学生容易麻痹大意,对今后的学习埋下隐患;如果讲得太深,那么学生会有畏难心理,也会对今后的学习造成影响。

2.方法选择

在教学中注意启发引导,通过预习学案的形式把知识问题化,通过实例引导学生观察归纳,上课组织学生分组讨论,让他们经历观察、猜测、推理、交流、反思的理性思维的基本过程,切实改变学生的学习方法。

说学法

让学生通过课前结合学案,阅读教材,自主预习,课上交流、讨论、概括,课后复习巩固三个环节,更好地完成本节课的教学目标。值得提出的是:集合作为一种数学语言,最好的学习方法是使用,所以应该多做转换练习,

说教学程序

(一)创设情境,揭示课题

军训前学校通知:x月x日x点,高一年段在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?

在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合(宣布课题),即是一些研究对象的总体。

通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发了学生求知欲,调动了学生主动参与的积极性。让学生在课堂的一开始就感受到数学就在我们身边,让学生学会用数学的眼光去关注生活。

(二)研探新知,建构概念

让学生阅读课本P2内容,让小组思考讨论,代表发言,师生共同补充答案它们的共同特征:它们都是指定的一组对象。这时我借此引入集合的概念,把一些元素组成的总体叫做集合,简称集,通常用大写字母A,B,C,?表示。把研究的对象称为元素,通常用小写拉丁字母a,b,c,?表示;

接下来,我引导学生把集合的涵义进行拓展,期间结合一些师生互动:我们班上的女生能不能构成一个集合,班上身高在1.75米以上的男生能不能构成一个集合,班上高的男生能不能构成一个集合??,通过身边这些大量例子,让学生了解集合的概念,并切实感受到学习集合语言的重要性。

对于集合元素的特征:确定性、互异性、无序性。我则在学生了解集合概念基础上,通过设置三个问题(1)班里个子高的同学能否构成一个集合?(2)在一个给定的集合中能否有相同的元素?(3)班里的全体同学组成一个集合,调整座位后这个集合有没有变化?调整后的集合和原来的集合是什么关系?让学生思考:任意一组对象是否都能组成一个集合?集合中的元素有什么特征?

这样设计将知识问题化,问题生活化,激发学生学习的主动性,引导学生归纳出集合中元素的三大特性,用简练的语言概括为——确定性、互异性、无序性用两集合相等的概念。

思考3:(1)设集合A表示“1~20以内的所有质数”,那么3,4,5,6这四个元素哪些在集合A中?哪些不在集合A中?

(2)对于一个给定的集合A,那么某元素a与集合A有哪几种可能关系?

(3)如果元素a是集合A中的元素,我们如何用数学化的语言表达?

(4)如果元素a不是集合A中的元素,我们如何用数学化的语言表达?用符号∈或?填空:

[设计说明]这几个问题比较简单,直接提问同学回答,并师生一起完善答案。通过问题的层层深入,目的是引导学生归纳出元素与集合的关系及表示方法。

反馈练习:

(1)设A为所有亚洲国家组成的集合,则

中国____A,美国____A,

印度____A,英国____A;

对于集合中常用的符号,我做了这样处理:简要介绍后,让学生用两三分钟的时间结合符号特点记忆。目的在于给学生一个信号:课堂上能消化的东西要及时记住。

2.集合的表示法:列举法和描述法

让学生自习阅读课本P3——P4的内容5-7分钟,接着让同学试着解决如下三个问题

(1)由大于10小于20的所有整数组成的集合;

(2)表示不等式x-7《3的解集;

(3)由1——20以内的所有素数组成的集合;

把集合的元素一一列举出来,并用花括号“{}”括起来表示的方法叫做列举法。用集合所含元素的共同特征表示集合的方法称为描述法。具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。

通过三个问题不仅检验了学生的自学效果,同时也让学生明白列举法和描述法两种方法各自的优缺点,更重要的是对集合的列举法和描述法的规范表达做进一步强调,最后,我带领学生分析了课本P4的例题,对集合的列举法和描述法的规范表达做进一

步的强调,让学生完成书上的习题,并请几个学生上台来演练,通过练习达到及时的反馈。

(四)归纳整理,整体认识

1.本节课我们学习了哪些知识内容?

2.你认为学习集合有什么意义?

3.比较列举法与描述法的优缺点。

(五)布置作业

作业:习题1.1A组:2、3、4.

作业的布置是要突出本节课的重点——集合概念的理解以及集合的表示法,让学生对数学符号的适用在课外进行延伸和巩固。

说板书

在教学中我把黑板分为三部分,把知识要点写在左侧,中间是课本例题演练,右侧是实例应用。在左侧的知识要点主要列出了集合、元素的概念、元素的特性:确定性,互异性,无序性,和集合的表示法:列举法和描述法。

以上是我对《集合的含义与表示》这节教材的认识和对教学过程的设计。对这节课的设计,我始终在努力贯彻一教师为主导,以学生为主题,以问题为基础,以能力、方法为主线,有计划培养学生的自学能力、观察和实践能力、思维能力为指导思想,利用各种教学手段激发学生的学习兴趣,体现了对学生创新意识的培养。

高中数学教案模板案例篇5

一、教学背景

《同角三角函数基本关系式》是人教版高中数学必修第四册第一章第二节中的内容。本节课的内容在教材中有着承上启下的作用,是在学习了任意角和弧度,并了解正弦、余弦、正切的基本概念之后进行教学的,同时同角三角函数的基本关系也为之后学习两角和差公式奠定了基础,起着衔接作用。运用同角三角函数关系,能够更好的解决有关三角函数中求同角的其他三角函数值使解题更方便。学生在获得三角函数定义的过程中已经充分认识到了借助单位圆、利用数形结合思想是研究三角函数的重要工具。本节课内容中所体现的数学思想与方法在整个中学数学学习中起重要作用。

高中学生已经具备了初等代数、初等几何的相关知识,以及一定的抽象思维能力和逻辑推理能力。学生已经比较熟练的掌握了三角函数定义的两种推导方法,从方法上看,学生已经对数形结合,猜想证明有所了解。从学习情感方面看,大部分学生愿意主动学习。从能力上看,学生主动学习能力、探究能力较弱。因而通过本节课的学习,学生能较好地培养学生的思维能力、推理能力、探究能力及创新意识。

根据新课标的要求,以及对教材和学情的分析,我确立了如下三维教学目标:

1、知识与技能目标:掌握三种基本关系式之间的联系,熟练掌握已知一个角的三角函数值求其它三角函数值的方法。

2、过程与方法目标:牢固掌握同角三角函数的八个关系式,并能灵活运用于解题,提高学生分析、解决三角的思维能力,能灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力。

3、情感与态度目标:通过用数学知识解决实际问题,让学生体会数学与自然及人类社会的密切联系,激发学生学习数学的兴趣,增强学生学习数学的信心。

根据本节课的地位和作用以及新课程标准的具体要求,确定本节课的重点为:同角三角函数基本关系式sin2α+cos2α=1;tanα=sinα/cosα的运用。教学难点为:理三角函数值的符号的确定,同角三角函数的基本关系式的变式应用。

二、活动评价

在课堂教学过程中,我将对学生的学习情况进行及时而有效的评价。注重课程中的过程性评价,无论是在学生开始遇到问题、产生疑惑、给出猜想的时候,还是在逐步思考、交流、探索的教学过程中,我都会注重对于学生学习成果的评价。比如,在课堂讨论较难理解的问题时,我将先请一位平时善于解决数学问题的学生来回答,并请其他同学对其进行评价,然后再请大家给出不同的意见,从而形成良性的互动,在学生们的思维碰撞之中,正确、完善的结论将自然形成。从始至终,我都将贯彻以学生为主体、教师为主导的教学思想。

三、课程设计

在新课改理念的指导下,针对本课的教学目标和重难点,我将采用故事法、探究法、自主学习和合作探究等教学法,先从一个情境问题出发,然后引导学生循序渐进地对一组问题进行思考和探究,逐步归纳总结出同角三角函数的基本关系式,并在期间采用学生自评、小组互评、教师评价等多种方式,培养学生积极主动参与学习的兴趣。下面我将详细阐述本节课的教学过程。

1、趣味导入:上课伊始,我会通过多媒体讲述“蝴蝶效应”的故事,引导学生理解事物是普遍联系的观点,如果说南美亚马逊雨林中的一只蝴蝶与北美德克萨斯的龙卷风这两种看来是毫不相干的事物,都会有这样的联系,那么同一个角的三角函数应当也会有着非常密切的关系。通过这样的故事导入,能够激发学生的学习兴趣和探索热情,活跃其思维,为本节课的学习埋下伏笔。

2、温故知新:在这一环节,我将引导学生回顾三种常见三角函数的概念,单位圆中的任意角概念,以及初中学段学习的同角三角函数的两个基本关系式,进而引导学生思考如何证明任意角的三角函数也具备相应的基本关系。在这个过程中,我会请不同层次的学生起来回答,并请其他学生进行补充,引导全体学生进行复习和思考。学生依据以往证明三角函数平方关系的思路,能够较快想到利用单位圆中的勾股定理关系,证明得到sin2α+cos2α=1,同样的,根据任意角的正切函数定义,得到tanα=sinα/cosα。

接下来,我将引导学生思考例1,(已知sinα=3/5,且α是第二象限角,求角α的余弦和正切值。)学生可能会跃跃欲试,先用平方关系式计算余弦值,但却会遇到开方时判别正负号的问题,于是才会根据α是第二象限角这个条件进行判断。这时我将会引导学生学会先判断任意角的区间及其三角函数的符号,再利用公式进行计算的解题思路。这样学生就能够更轻松地探索出例2的解答方法。例2当中,由于根据余弦值的范围,确定α可能在第二或第三象限出现,于是学生就能够想到采用分类思想进行解答。通过学生的自主思考和我的适当引导,可以自然而然地突破本课的难点。

3、归纳总结

经过前面的师生共同参与的探究讨论,就逐步归纳总结出了同角三角函数的基本关系式。在这个过程中,我会根据不同学生的特点,分别请他们发言,并请其他同学进行补充,在师生互动中,共同推导出结论,这种方法既可以有效地突出本课的重点,又自然而然地突破了本课的难点。

4、实践应用

为巩固所学知识,我会从教材中分梯度选取习题,给学生进行课堂练习,并请2-3位同学在黑板上完成,在练习后我会进行及时讲解。

在布置作业时,为了使所有学生都能够根据自身情况巩固所学知识,我将布置一类“必做题”和一类“探究题”,其中“探究题”是提供给那些学有余力的学生在课余时间完成的,帮助其拓展思维,培养兴趣。

5、课程总结

本节课的内容是极富探索性,我通过提问式复习和情境问题导入,学生产生好奇心和探索热情。接着,以学生为主体,我来引导学生根据已学的知识和方法,循序渐进地进行探究,逐步归纳总结出同角三角函数的基本关系式,从而自然地完成本课的教学过程,同时帮助学生体会数形结合的思想方法。

在板书设计方面,我会用简洁、工整的方式给出相关探究问题,同时以多媒体辅助展示平移动画,便于学生进行观察和探究。

四、教学体会

本节课我主要采用的是“引导发现、合作探究”的教学方法,以学生熟知的足球运动为情境引入新课,以问题为载体,以师生合作探究为主线,以思维训练为核心,以能力发展为目标,充分调动一切可利用的因素,激发学生的参与意识,使学生经历知识的形成、发展和应用的过程,在和谐、愉悦的氛围中获取知识,掌握方法。整个教学中既突出了学生的主体地位,又发挥了教师的指导作用。在课堂随机提问以及讨论结果的过程中,我采用多层次多角度的评价方式,不仅能促使学生思考问题,掌握学习知识的技巧和方法,还能调动学生积极性,激发课堂气氛。

高中数学教案模板案例篇6

一、指导思想

1、培养学生的逻辑思维能力、运算能力、空间想象能力,以及综合运用有关数学知识分析问题和解决问题的能力.使学生逐步地学会观察、分析、综合、比较、抽象、概括、探索和创新的能力;运用归纳、演绎和类比的方法进行推理,并正确地、有条理地表达推理过程的能力.

2、根据数学的学科特点,加强学习目的性的教育,提高学生学习数学的自觉心和兴趣,培养学生良好的学习习惯,实事求是的科学态度,顽强的学习毅力和独立思考、探索创新的精神.

3、使学生具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,理解数学中普遍存在着的运动、变化、相互联系和相互转化的情形,从而进一步树立辩证唯物主义和历史唯物主义世界观.

二、目的要求

1.深入钻研教材,以教材为核心,“以纲为纲,以本为本”深入研究教材中章节知识的内外结构,熟练把握知识的逻辑体系和网络结构,细致领会教材改革的精髓,把握通性通法,逐步明确教材对教学形式、内容和教学目标的影响.

2.因材施教,以学生为学习的主体,构建新的认知体系,营造有利于学生学习的氛围.

3.加强课堂教学研究,科学设计教学方法,扎实有效的提高课堂教学效果,全面提高数学教学质量.

三、具体措施

1.不孤立记忆和认识各个知识点,而要将其放到相应的体系结构中,在比较、辨析的过程中寻求其内在联系,达到理解层次,注意知识块的复习,构建知识网路.注重基础知识和基本解题技能,注意基本概念、基本定理、公式的辨析比较,灵活运用;力求有意识的分析理解能力;尤其是数学语言的表达形式,推力论证要思路清晰、整体完整.

2.学会分析,首先是阅读理解,侧重于解题前对信息的捕捉和思路的探索;其次是解题回顾,侧重于经验及教训的总结,重视常见题型及通法通解.

3.以“错”纠错,查缺补漏,反思错误,严格训练,规范解题,养成:想明白,写清楚,算准确的习惯,注意思路的清晰性、思维的严谨性、叙述的条理性、结果的准确性,注重书写过程,举一反三,及时归纳,触类旁通,加强数学思想和数学方法的应用.

4.协调好讲、练、评、辅之间的关系,追求数学复习的效果,注重实效,努力提高复习教学的效率和效益;精心设计教学,做到精讲精练,不加重学生的负担,避免“题海战” ,精心准备,讲评到为,做到讲评试卷或例题时:讲清考察了那些知识点,怎样审题,怎样打开解题思路,用到了那些方法技巧,关键步骤在那里,哪些是典型错误,是知识和是逻辑,是方法、是心理上、策略上的错误,针对学生的错误调整复习策略,使复习更加有重点、针对性,加快教学节奏,提高教学效率.

5.周密计划合理安排,现数学学科特点,注重知识能力的提高,提升综合解题能力,加强解题教学,使学生在解题探究中提高能力.

6.多从“贴近教材、贴近学生、贴近实际”角度,选择典型的数学联系生活、生产、环境和科技方面的问题,对学生进行有计划、针对性强的训练,多给学生锻炼各种能力的机会,从而达到提升学生数学综合能力之目的.不脱离基础知识来讲学生的能力,基础扎实的学生不一定能力 强.教学中,不断地将基础知识运用于数学问题的解决中,努力提高学生的学科综合能力.

新的学期是新的起点,新的希望。通过这份高二数学上学期教学工作计划,我相信自己在本学期一定能够将两个班的数学成绩带上去,我相信,我能行。

高中数学教案模板案例篇7

教学准备

1.教学目标

1、知识与技能:

函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依

赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.

2、过程与方法:

(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

(2)了解构成函数的要素;

(3)会求一些简单函数的定义域和值域;

(4)能够正确使用“区间”的符号表示函数的定义域;

3、情感态度与价值观,使学生感受到学习函数的必要性和重要性,激发学习的积极性.

教学重点/难点

重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;

难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;

教学用具

多媒体

4.标签

函数及其表示

教学过程

(一)创设情景,揭示课题

1、复习初中所学函数的概念,强调函数的模型化思想;

2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

(1)炮弹的射高与时间的变化关系问题;

(2)南极臭氧空洞面积与时间的变化关系问题;

(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题.

3、分析、归纳以上三个实例,它们有什么共同点;

4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;

5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.

(二)研探新知

1、函数的有关概念

(1)函数的概念:

设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).

记作:y=f(x),x∈A.

其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的.集合{f(x)x∈A}叫做函数的值域(range).

注意:

①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

(2)构成函数的三要素是什么?

定义域、对应关系和值域

(3)区间的概念

①区间的分类:开区间、闭区间、半开半闭区间;

②无穷区间;

③区间的数轴表示.

(4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?

通过三个已知的函数:y=ax+b(a≠0)

y=ax2+bx+c(a≠0)

y=(k≠0)比较描述性定义和集合,与对应语言刻画的定义,谈谈体会.

师:归纳总结

(三)质疑答辩,排难解惑,发展思维。

1、如何求函数的定义域

例1:已知函数f(x)=+

(1)求函数的定义域;

(2)求f(-3),f()的值;

(3)当a>0时,求f(a),f(a-1)的值.

分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.

例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域.

分析:由题意知,另一边长为x,且边长x为正数,所以0<x<40.

所以s==(40-x)x(0<x<40)

引导学生小结几类函数的定义域:

(1)如果f(x)是整式,那么函数的定义域是实数集R.

(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.

(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.

(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)

(5)满足实际问题有意义.

巩固练习:课本P19第1

2、如何判断两个函数是否为同一函数

例3、下列函数中哪个与函数y=x相等?

分析:

1、构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

2、两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

解:

课本P18例2

(四)归纳小结

①从具体实例引入了函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;

②初步介绍了求函数定义域和判断同一函数的基本方法,同时引出了区间的概念.

(五)设置问题,留下悬念

1、课本P24习题1.2(A组)第1—7题(B组)第1题

2、举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系.

课堂小结

高中数学教案模板案例篇8

如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的`公比,公比通常用字母q表示。

(1)等比数列的通项公式是:An=A1×q^(n-1)

若通项公式变形为an=a1/q-q^n(n∈N-),当q>0时,则可把an看作自变量n的函数,点(n,an)是曲线y=a1/q-q^x上的一群孤立的点。

(2)任意两项am,an的关系为an=am·q^(n-m)

(3)从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}

(4)等比中项:aq·ap=ar^2,ar则为ap,aq等比中项。

(5)等比求和:Sn=a1+a2+a3+.......+an

①当q≠1时,Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)

②当q=1时,Sn=n×a1(q=1)

记πn=a1·a2…an,则有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1

另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。

高中数学教案模板案例篇9

1.教学目标

(1)知识目标:1.在平面直角坐标系中,探索并掌握圆的标准方程;

2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.

(2)能力目标:1.进一步培养学生用解析法研究几何问题的能力;

2.使学生加深对数形结合思想和待定系数法的理解;

3.增强学生用数学的意识.

(3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.

2.教学重点.难点

(1)教学重点:圆的标准方程的求法及其应用.

(2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰

当的坐标系解决与圆有关的实际问题.

3.教学过程

(一)创设情境(启迪思维)

问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

[引导]画图建系

[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2y2=16(y≥0)

将x=2.7代入,得.

即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

(二)深入探究(获得新知)

问题二:1.根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?

答:x2y2=r2

2.如果圆心在,半径为时又如何呢?

[学生活动]探究圆的方程。

[教师预设]方法一:坐标法

如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={mmc=r}

由两点间的距离公式,点m适合的条件可表示为①

把①式两边平方,得(x―a)2(y―b)2=r2

方法二:图形变换法

方法三:向量平移法

(三)应用举例(巩固提高)

i.直接应用(内化新知)

问题三:1.写出下列各圆的方程(课本p77练习1)

(1)圆心在原点,半径为3;

(2)圆心在,半径为;

(3)经过点,圆心在点.

2.根据圆的方程写出圆心和半径

(1);(2).

ii.灵活应用(提升能力)

问题四:1.求以为圆心,并且和直线相切的圆的方程.

[教师引导]由问题三知:圆心与半径可以确定圆.

2.已知圆的方程为,求过圆上一点的切线方程.

[学生活动]探究方法

[教师预设]

方法一:待定系数法(利用几何关系求斜率-垂直)

方法二:待定系数法(利用代数关系求斜率-联立方程)

方法三:轨迹法(利用勾股定理列关系式)[多媒体课件演示]

方法四:轨迹法(利用向量垂直列关系式)

3.你能归纳出具有一般性的结论吗?

已知圆的方程是,经过圆上一点的切线的方程是:.

iii.实际应用(回归自然)

问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0.01m).

[多媒体课件演示创设实际问题情境]

(四)反馈训练(形成方法)

问题六:1.求以c(-1,-5)为圆心,并且和y轴相切的圆的方程.

2.已知点a(-4,-5),b(6,-1),求以ab为直径的圆的方程.

3.求圆x2y2=13过点(-2,3)的切线方程.

4.已知圆的方程为,求过点的切线方程.

高中数学教案模板案例(素材下载9篇)

将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
101249