教育巴巴 > 高中教案 > 数学教案 >

高中经典数学教案

时间: 新华 数学教案

编写教案可以帮助教师更好地掌握教学目标和教学内容,从而提高教学质量和效果。高中经典数学教案怎么写才规范?下面给大家分享高中经典数学教案,希望对大家有所帮助。

高中经典数学教案篇1

教学目标:

1.结合实际问题情景,理解分层抽样的必要性和重要性;

2.学会用分层抽样的方法从总体中抽取样本;

3.并对简单随机抽样、系统抽样及分层抽样方法进行比较,揭示其相互关系.

教学重点:

通过实例理解分层抽样的方法.

教学难点:

分层抽样的步骤.

教学过程:

一、问题情境

1.复习简单随机抽样、系统抽样的概念、特征以及适用范围.

2.实例:某校高一、高二和高三年级分别有学生名,为了了解全校学生的视力情况,从中抽取容量为的样本,怎样抽取较为合理?

二、学生活动

能否用简单随机抽样或系统抽样进行抽样,为什么?

指出由于不同年级的学生视力状况有一定的差异,用简单随机抽样或系统抽样进行抽样不能准确反映客观实际,在抽样时不仅要使每个个体被抽到的机会相等,还要注意总体中个体的层次性.

由于样本的容量与总体的个体数的比为100∶2500=1∶25,

所以在各年级抽取的个体数依次是,,,即40,32,28.

三、建构数学

1.分层抽样:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占的比进行抽样,这种抽样叫做分层抽样,其中所分成的各部分叫“层”.

说明:①分层抽样时,由于各部分抽取的个体数与这一部分个体数的比等于样本容量与总体的个体数的比,每一个个体被抽到的可能性都是相等的;

②由于分层抽样充分利用了我们所掌握的信息,使样本具有较好的代表性,而且在各层抽样时可以根据具体情况采取不同的抽样方法,所以分层抽样在实践中有着非常广泛的应用.

2.三种抽样方法对照表:

类别

共同点

各自特点

相互联系

适用范围

简单随机抽样

抽样过程中每个个体被抽取的概率是相同的

从总体中逐个抽取

总体中的个体数较少

系统抽样

将总体均分成几个部分,按事先确定的规则在各部分抽取

在第一部分抽样时采用简单随机抽样

总体中的个体数较多

分层抽样

将总体分成几层,分层进行抽取

各层抽样时采用简单随机抽样或系统

总体由差异明显的几部分组成

3.分层抽样的步骤:

(1)分层:将总体按某种特征分成若干部分.

(2)确定比例:计算各层的个体数与总体的个体数的比.

(3)确定各层应抽取的样本容量.

(4)在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.

四、数学运用

1.例题.

例1(1)分层抽样中,在每一层进行抽样可用_________________.

(2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;

②某班期中考试有15人在85分以上,40人在60-84分,1人不及格.现欲从中抽出8人研讨进一步改进教和学;

③某班元旦聚会,要产生两名“幸运者”.

对这三件事,合适的抽样方法为()

A.分层抽样,分层抽样,简单随机抽样

B.系统抽样,系统抽样,简单随机抽样

C.分层抽样,简单随机抽样,简单随机抽样

D.系统抽样,分层抽样,简单随机抽样

例2某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12000人,其中持各种态度的人数如表中所示:

很喜爱

喜爱

一般

不喜爱

2435

4567

3926

1072

电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?

解:抽取人数与总的比是60∶12000=1∶200,

则各层抽取的人数依次是12.175,22.835,19.63,5.36,

取近似值得各层人数分别是12,23,20,5.

然后在各层用简单随机抽样方法抽取.

答用分层抽样的方法抽取,抽取“很喜爱”、“喜爱”、“一般”、“不喜爱”的人

数分别为12,23,20,5.

说明:各层的抽取数之和应等于样本容量,对于不能取整数的情况,取其近似值.

(3)某学校有160名教职工,其中教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的某意见,拟抽取一个容量为20的样本.

分析:(1)总体容量较小,用抽签法或随机数表法都很方便.

(2)总体容量较大,用抽签法或随机数表法都比较麻烦,由于人员没有明显差异,且刚好32排,每排人数相同,可用系统抽样.

(3)由于学校各类人员对这一问题的看法可能差异较大,所以应采用分层抽样方法.

五、要点归纳与方法小结

本节课学习了以下内容:

1.分层抽样的概念与特征;

2.三种抽样方法相互之间的区别与联系.

高中经典数学教案篇2

教学内容:习惯的养成(养成教育)

教学目标:

1.用轻松亲切的语调,让孩子们对小学生活有一个感性的认识。

2.培养卫生习惯、生活习惯、学习习惯、爱护公物的习惯。

3.通过学习,让孩子们对小学生活满怀美好的憧憬。

教学过程:

师:小朋友们好!首先祝贺小朋友们光荣地成为了一名小学生!老师看到每一个孩子的笑脸,真高兴啊,你们就像花儿一样,老师非常喜欢你们!

(在黑板上写一个大大的“聪”字)

师:认识这个字吗?

生:聪!

师:对,聪明的聪。你们想不想成为一个聪明的孩子?

生:想!

师:怎么样才能成为聪明的孩子呢?我们来看,“聪”字是由耳朵、眼睛、嘴巴,还有一个“心”字组成的。小朋友们,我们只要会用耳朵听,会用眼睛看,会用嘴巴说,再会用心去做,你就一定会是一个聪明的好孩子。你能做到吗?下面我们开始试一试啦!

首先是会用耳朵听。听老师说话要专心,不能东张西望,听同学发言,要注意听他回答对了没有,如果你还有想法,就举手说出你的想法。谁听懂了?(试问学生)

第二要会用眼睛看。你看到我们的教室干净吗?那是昨天我和曾老师花了很长时间打扫的。那绿色的很新的墙群是我和曾老师亲自粉刷的。所以,请同学们不要用手去摸,更不要用脚去踢,就像爱护我们的眼睛一样地去爱护它,谁能做得到?

第三要会用嘴巴说话。上课时,老师提问后,请你把小手举起来,回答问题要响亮,让全班小朋友都听得到,每个小朋友都要会用你的小嘴巴表达哦!

我们会用耳朵听,会用眼睛看,会用嘴巴说,是不是就很聪明了呢?不,最重要的是要会用心去听,会用心去看,会用心去说,一句话,就是做什么事都要用心去做,才是真正聪明的孩子。

聪明的孩子要做到以下几点:

一、爱护公物。学校的一草一木,一桌一椅,学校里所有的东西都要爱护。不踩花,不摘花,不踩草坪,不摘树叶,不在桌子上乱刻乱画,不在教室里追逐打闹。我们学校的操场正在施工,请小朋友们不要到操场上玩耍。

二、讲究卫生。上厕所时,不能在厕所外面随处大小便,要进到厕所里指定的位置,你能做到了吗?(课后,带队去看男女厕所的位置)在家里,每天早晚要刷牙,勤洗澡,勤换衣服,勤剪指甲。不随地吐痰,预防传染病。

三、爱惜粮食。早餐要吃完,午托的中餐要吃完,要多少就吃多少。今天,老师想看看谁是最爱惜粮食的好孩子。(放晚学前总结)

四、排路队时要做到快、静、齐。教给大家我编的儿歌:“排路队,手牵手,不说话,排整齐。”走出校门后,如果找不到家长,不要自己回,要找到老师,或者回到校门口等家长来接。

五、我们是小学生了,不能带玩具来学校玩,也不要带钱来买零食吃。现在天气炎热,我们每天要从家里自己带来一瓶水,多喝水,既清嗓来又防病,听明白了吗?我相信我们一(7)班的小朋友一定会成为一个聪明的讲文明的小学生。

后记:今天加班打印各种材料,包括开学初的养成教案。不知不觉已到教师节。祝各位同行教师节快乐!天天开心!

高中经典数学教案篇3

一、教学背景

《同角三角函数基本关系式》是人教版高中数学必修第四册第一章第二节中的内容。本节课的内容在教材中有着承上启下的作用,是在学习了任意角和弧度,并了解正弦、余弦、正切的基本概念之后进行教学的,同时同角三角函数的基本关系也为之后学习两角和差公式奠定了基础,起着衔接作用。运用同角三角函数关系,能够更好的解决有关三角函数中求同角的其他三角函数值使解题更方便。学生在获得三角函数定义的过程中已经充分认识到了借助单位圆、利用数形结合思想是研究三角函数的重要工具。本节课内容中所体现的数学思想与方法在整个中学数学学习中起重要作用。

高中学生已经具备了初等代数、初等几何的相关知识,以及一定的抽象思维能力和逻辑推理能力。学生已经比较熟练的掌握了三角函数定义的两种推导方法,从方法上看,学生已经对数形结合,猜想证明有所了解。从学习情感方面看,大部分学生愿意主动学习。从能力上看,学生主动学习能力、探究能力较弱。因而通过本节课的学习,学生能较好地培养学生的思维能力、推理能力、探究能力及创新意识。

根据新课标的要求,以及对教材和学情的分析,我确立了如下三维教学目标:

1、知识与技能目标:掌握三种基本关系式之间的联系,熟练掌握已知一个角的三角函数值求其它三角函数值的方法。

2、过程与方法目标:牢固掌握同角三角函数的八个关系式,并能灵活运用于解题,提高学生分析、解决三角的思维能力,能灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力。

3、情感与态度目标:通过用数学知识解决实际问题,让学生体会数学与自然及人类社会的密切联系,激发学生学习数学的兴趣,增强学生学习数学的信心。

根据本节课的地位和作用以及新课程标准的具体要求,确定本节课的重点为:同角三角函数基本关系式sin2α+cos2α=1;tanα=sinα/cosα的运用。教学难点为:理三角函数值的符号的确定,同角三角函数的基本关系式的变式应用。

二、活动评价

在课堂教学过程中,我将对学生的学习情况进行及时而有效的评价。注重课程中的过程性评价,无论是在学生开始遇到问题、产生疑惑、给出猜想的时候,还是在逐步思考、交流、探索的教学过程中,我都会注重对于学生学习成果的评价。比如,在课堂讨论较难理解的问题时,我将先请一位平时善于解决数学问题的学生来回答,并请其他同学对其进行评价,然后再请大家给出不同的意见,从而形成良性的互动,在学生们的思维碰撞之中,正确、完善的结论将自然形成。从始至终,我都将贯彻以学生为主体、教师为主导的教学思想。

三、课程设计

在新课改理念的指导下,针对本课的教学目标和重难点,我将采用故事法、探究法、自主学习和合作探究等教学法,先从一个情境问题出发,然后引导学生循序渐进地对一组问题进行思考和探究,逐步归纳总结出同角三角函数的基本关系式,并在期间采用学生自评、小组互评、教师评价等多种方式,培养学生积极主动参与学习的兴趣。下面我将详细阐述本节课的教学过程。

1、趣味导入:上课伊始,我会通过多媒体讲述“蝴蝶效应”的故事,引导学生理解事物是普遍联系的观点,如果说南美亚马逊雨林中的一只蝴蝶与北美德克萨斯的龙卷风这两种看来是毫不相干的事物,都会有这样的联系,那么同一个角的三角函数应当也会有着非常密切的关系。通过这样的故事导入,能够激发学生的学习兴趣和探索热情,活跃其思维,为本节课的学习埋下伏笔。

2、温故知新:在这一环节,我将引导学生回顾三种常见三角函数的概念,单位圆中的任意角概念,以及初中学段学习的同角三角函数的两个基本关系式,进而引导学生思考如何证明任意角的三角函数也具备相应的基本关系。在这个过程中,我会请不同层次的学生起来回答,并请其他学生进行补充,引导全体学生进行复习和思考。学生依据以往证明三角函数平方关系的思路,能够较快想到利用单位圆中的勾股定理关系,证明得到sin2α+cos2α=1,同样的,根据任意角的正切函数定义,得到tanα=sinα/cosα。

接下来,我将引导学生思考例1,(已知sinα=3/5,且α是第二象限角,求角α的余弦和正切值。)学生可能会跃跃欲试,先用平方关系式计算余弦值,但却会遇到开方时判别正负号的问题,于是才会根据α是第二象限角这个条件进行判断。这时我将会引导学生学会先判断任意角的区间及其三角函数的符号,再利用公式进行计算的解题思路。这样学生就能够更轻松地探索出例2的解答方法。例2当中,由于根据余弦值的范围,确定α可能在第二或第三象限出现,于是学生就能够想到采用分类思想进行解答。通过学生的自主思考和我的适当引导,可以自然而然地突破本课的难点。

3、归纳总结

经过前面的师生共同参与的探究讨论,就逐步归纳总结出了同角三角函数的基本关系式。在这个过程中,我会根据不同学生的特点,分别请他们发言,并请其他同学进行补充,在师生互动中,共同推导出结论,这种方法既可以有效地突出本课的重点,又自然而然地突破了本课的难点。

4、实践应用

为巩固所学知识,我会从教材中分梯度选取习题,给学生进行课堂练习,并请2-3位同学在黑板上完成,在练习后我会进行及时讲解。

在布置作业时,为了使所有学生都能够根据自身情况巩固所学知识,我将布置一类“必做题”和一类“探究题”,其中“探究题”是提供给那些学有余力的学生在课余时间完成的,帮助其拓展思维,培养兴趣。

5、课程总结

本节课的内容是极富探索性,我通过提问式复习和情境问题导入,学生产生好奇心和探索热情。接着,以学生为主体,我来引导学生根据已学的知识和方法,循序渐进地进行探究,逐步归纳总结出同角三角函数的基本关系式,从而自然地完成本课的教学过程,同时帮助学生体会数形结合的思想方法。

在板书设计方面,我会用简洁、工整的方式给出相关探究问题,同时以多媒体辅助展示平移动画,便于学生进行观察和探究。

四、教学体会

本节课我主要采用的是“引导发现、合作探究”的教学方法,以学生熟知的足球运动为情境引入新课,以问题为载体,以师生合作探究为主线,以思维训练为核心,以能力发展为目标,充分调动一切可利用的因素,激发学生的参与意识,使学生经历知识的形成、发展和应用的过程,在和谐、愉悦的氛围中获取知识,掌握方法。整个教学中既突出了学生的主体地位,又发挥了教师的指导作用。在课堂随机提问以及讨论结果的过程中,我采用多层次多角度的评价方式,不仅能促使学生思考问题,掌握学习知识的技巧和方法,还能调动学生积极性,激发课堂气氛。

高中经典数学教案篇4

教学内容:简单的排列和组合

教学目标:

1.知识能力目标:

①通过观察、猜测、比较、实验等活动,找出最简单的事物的排列数和组合数。

②初步培养有序地全面地思考问题的能力。

③培养初步的观察、分析、及推理能力。

2.情感态度目标:

①感受数学与生活的密切联系,激发学习数学、探索数学的浓厚兴趣。

②初步培养有顺序地、全面地思考问题的意识。

③使学生在数学活动中养成与人合作的良好习惯。

教学重点:

经历探索简单事物排列与组合规律的过程。

教学难点:

初步理解简单事物排列与组合的不同。

教学准备:

多媒体课件、数字卡片、1角、2角、5角的人民币。

教学过程:

一、创设情境,引发探究

师:今天老师带你们去一个很有趣的地方,哪呢?我们今天要到“数学广角”里去走一走、看一看。

二、操作探究,学习新知。

(一)组合问题

l、看一看,说一说

师:今天老师给大家带来了几件漂亮的衣服,你们来挑选吧。(课件出示主题图)

师引导思考:这么多漂亮的衣服,你们用一件上装在搭配一件下装可以怎么穿呢?(指名学生说一说)

2、想一想,摆一摆

(l)引导讨论:有这么多种不同的穿法,那怎样才能做到不遗漏、不重复呢?

①学生小组讨论交流,老师参与小组讨论。

②学生汇报

(2)引导操作:小组同学互相合作,把你们设计的穿法有序的贴在纸板上。(要求:小组长拿出学具衣服图片、纸板。)

①学生小组合作操作摆,教师巡视参与小组活动。

②学生展示作品,介绍搭配方案。

③生生互相评价。

(3)师引导观察:

第一种方案(按上装搭配下装)有几种穿法?(4种)

第二种方案(按下装搭配上装)有几种穿法?(4种)

师小结:不管是用上装搭配下装,还是用下装搭配上装,只要做到有序搭配就能够不重复、不遗漏的把所有的方法找出来。在今后的学习和生活中,我们还会遇到许多这样的问题,我们都可以运用有序的思考方法来解决它们。、操作探究,学习新知。

(二)排列问题

1、初步感知排列

(1)师:我们穿上漂亮的衣服,来到了数学广角,可是这有一扇密码门,(出示课件:密码门)我们只要说对密码,就可以到数学广角游玩了。看小精灵给了我们提示(点小精灵)你们猜密码是什么?

(2)学生猜密码(情景预设:有的学生说是12,有的学生说是21。)

(3)试密码,打开密码门,进入数学广角乐园。

2、合作探究排列

(1)师问:数学广角乐园美不美呀?(学生回答)它虽然很美,可处处充满着挑战,你们愿意接受吗?(学生回答)那么我们先到数学乐园里去看一看吧!(点数学乐园)

(2)师:同学们,我们到了数学乐园里看到了什么呀?(回答)现在我们每个人都当一个小魔术师看谁的本领大?谁能把1、2、3这三个数字变成两位数,看谁变得最多?

(3)学生活动,师巡视指导

(4)学生汇报摆法,师板书。。

方法一:每次拿出两张数字卡片能摆出不同的两位数;

方法二:固定十位上的数字,交换个位数字得到不同的.两位数;

方法三:固定个位上的数字,交换十位数字得到不同的两位

(5)小结。

三、课堂实践,巩固新知

1、握手游戏:

师:同学们真棒!都能把数字1、2、3组成不同的两位数,而且不重复、不遗漏。下面老师带大家到运动乐园去看一看。(出示课件)看小朋友们在干什么?(生回答)

师:看到他们握手,老师有一个问题需要大家帮助解决一下。

(1)出示问题

(2)小组活动:握手

(3)抽生上台表演

(4)小结。

2、乒乓球比赛

三个人进行乒乓球比赛要举行几场?

(1)小组讨论

(2)学生汇报

(3)小结

3、生活乐园

看来数学广角处处充满挑战一点不假,你们愿不愿意接受新的挑战?(生)那我们一起到生活乐园去看一看吧!出示《生活乐园》课件。

(1)看课件

(2)学生活动

(3)学生汇报,师相机演示课件。

四、全课总结

今天我们到数学乐园玩的开不开心?看到了什么?你有什么收获?

高中经典数学教案篇5

排列问题的应用题是学生学习的难点,也是高考的必考内容,笔者在教学中尝试将排列问题归纳为三种类型来解决:

下面就每一种题型结合例题总结其特点和解法,并附以近年的高考原题供读者参研.

一.能排不能排排列问题(即特殊元素在特殊位置上有特别要求的排列问题)

解决此类问题的关键是特殊元素或特殊位置优先.或使用间接法.

例1.(1)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?

(2)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?

(3)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?

(4)7位同学站成一排,其中甲不能在排头、乙不能站排尾的排法共有多少种?

解析:(1)先考虑甲站在中间有1种方法,再在余下的6个位置排另外6位同学,共种方法;

(2)先考虑甲、乙站在两端的排法有种,再在余下的5个位置排另外5位同学的排法有种,共种方法;

(3)先考虑在除两端外的5个位置选2个安排甲、乙有种,再在余下的5个位置排另外5位同学排法有种,共种方法;本题也可考虑特殊位置优先,即两端的排法有,中间5个位置有种,共种方法;

(4)分两类乙站在排头和乙不站在排头,乙站在排头的排法共有种,乙不站在排头的排法总数为:先在除甲、乙外的5人中选1人安排在排头的方法有种,中间5个位置选1个安排乙的方法有,再在余下的5个位置排另外5位同学的排法有,故共有种方法;本题也可考虑间接法,总排法为,不符合条件的甲在排头和乙站排尾的排法均为,但这两种情况均包含了甲在排头和乙站排尾的情况,故共有种.

例2.某天课表共六节课,要排政治、语文、数学、物理、化学、体育共六门课程,如果第一节不排体育,最后一节不排数学,共有多少种不同的排课方法?

解法1:对特殊元素数学和体育进行分类解决

(1)数学、体育均不排在第一节和第六节,有种,其他有种,共有种;

(2)数学排在第一节、体育排在第六节有一种,其他有种,共有种;

(3)数学排在第一节、体育不在第六节有种,其他有种,共有种;

(4)数学不排在第一节、体育排在第六节有种,其他有种,共有种;

所以符合条件的排法共有种

解法2:对特殊位置第一节和第六节进行分类解决

(1)第一节和第六节均不排数学、体育有种,其他有种,共有种;

(2)第一节排数学、第六节排体育有一种,其他有种,共有种;

(3)第一节排数学、第六节不排体育有种,其他有种,共有种;

(4)第一节不排数学、第六节排体育有种,其他有种,共有种;

所以符合条件的排法共有种.

解法3:本题也可采用间接排除法解决

不考虑任何限制条件共有种排法,不符合题目要求的排法有:(1)数学排在第六节有种;(2)体育排在第一节有种;考虑到这两种情况均包含了数学排在第六节和体育排在第一节的情况种所以符合条件的排法共有种

附:1、(20__北京卷)五个工程队承建某项工程的五个不同的子项目,每个工程队承建1项,其中甲工程队不能承建1号子项目,则不同的承建方案共有()

(A)种(B)种(C)种(D)种

解析:本题在解答时将五个不同的子项目理解为5个位置,五个工程队相当于5个不同的元素,这时问题可归结为能排不能排排列问题(即特殊元素在特殊位置上有特别要求的排列问题),先排甲工程队有,其它4个元素在4个位置上的排法为种,总方案为种.故选(B).

2、(20__全国卷Ⅱ)在由数字0,1,2,3,4,5所组成的没有重复数字的四位数中,不能被5整除的数共有个.

解析:本题在解答时只须考虑个位和千位这两个特殊位置的限制,个位为1、2、3、4中的某一个有4种方法,千位在余下的4个非0数中选择也有4种方法,十位和百位方法数为种,故方法总数为种.

3、(20__福建卷)从6人中选出4人分别到巴黎、伦敦、悉尼、莫斯科四个城市游览,要求每个城市有一人游览,每人只游览一个城市,且这6人中甲、乙两人不去巴黎游览,则不同的选择方案共有()

A.300种B.240种C.144种D.96种

解析:本题在解答时只须考虑巴黎这个特殊位置的要求有4种方法,其他3个城市的排法看作标有这3个城市的3个签在5个位置(5个人)中的排列有种,故方法总数为种.故选(B).

上述问题归结为能排不能排排列问题,从特殊元素和特殊位置入手解决,抓住了问题的本质,使问题清晰明了,解决起来顺畅自然.

二.相邻不相邻排列问题(即某两或某些元素不能相邻的排列问题)

相邻排列问题一般采用大元素法,即将相邻的元素捆绑作为一个元素,再与其他元素进行排列,解答时注意释放大元素,也叫捆绑法.不相邻排列问题(即某两或某些元素不能相邻的排列问题)一般采用插空法.

例3.7位同学站成一排,

(1)甲、乙和丙三同学必须相邻的排法共有多少种?

(2)甲、乙和丙三名同学都不能相邻的排法共有多少种?

(3)甲、乙两同学间恰好间隔2人的排法共有多少种?

解析:(1)第一步、将甲、乙和丙三人捆绑成一个大元素与另外4人的排列为种,

第二步、释放大元素,即甲、乙和丙在捆绑成的大元素内的排法有种,所以共种;

(2)第一步、先排除甲、乙和丙之外4人共种方法,第二步、甲、乙和丙三人排在4人排好后产生的5个空挡中的任何3个都符合要求,排法有种,所以共有种;(3)先排甲、乙,有种排法,甲、乙两人中间插入的2人是从其余5人中选,有种排法,将已经排好的4人当作一个大元素作为新人参加下一轮4人组的排列,有种排法,所以总的排法共有种.

附:1、(20__辽宁卷)用1、2、3、4、5、6、7、8组成没有重复数字的八位数,要求1和2相邻,3与4相邻,5与6相邻,而7与8不相邻,这样的八位数共有个.(用数字作答)

解析:第一步、将1和2捆绑成一个大元素,3和4捆绑成一个大元素,5和6捆绑成一个大元素,第二步、排列这三个大元素,第三步、在这三个大元素排好后产生的4个空挡中的任何2个排列7和8,第四步、释放每个大元素(即大元素内的每个小元素在捆绑成的大元素内部排列),所以共有个数.

2、(20__.重庆理)某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,

二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰

好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为()

A.B.C.D.

解析:符合要求的基本事件(排法)共有:第一步、将一班的3位同学捆绑成一个大元素,第二步、这个大元素与其它班的5位同学共6个元素的全排列,第三步、在这个大元素与其它班的5位同学共6个元素的全排列排好后产生的7个空挡中排列二班的2位同学,第四步、释放一班的3位同学捆绑成的大元素,所以共有个;而基本事件总数为个,所以符合条件的概率为.故选(B).

3、(20__京春理)某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为()

A.42B.30C.20D.12

解析:分两类:增加的两个新节目不相邻和相邻,两个新节目不相邻采用插空法,在5个节目产生的6个空挡排列共有种,将两个新节目捆绑作为一个元素叉入5个节目产生的6个空挡中的一个位置,再释放两个新节目捆绑成的大元素,共有种,再将两类方法数相加得42种方法.故选(A).

三.机会均等排列问题(即某两或某些元素按特定的方式或顺序排列的排列问题)

解决机会均等排列问题通常是先对所有元素进行全排列,再借助等可能转化,即乘以符合要求的某两(或某些)元素按特定的方式或顺序排列的排法占它们(某两(或某些)元素)全排列的比例,称为等机率法或将特定顺序的排列问题理解为组合问题加以解决.

例4、7位同学站成一排.

(1)甲必须站在乙的左边?

(2)甲、乙和丙三个同学由左到右排列?

解析:(1)7位同学站成一排总的排法共种,包括甲、乙在内的7位同学排队只有甲站在乙的左边和甲站在乙的右边两类,它们的机会是均等的,故满足要求的排法为,本题也可将特定顺序的排列问题理解为组合问题加以解决,即先在7个位置中选出2个位置安排甲、乙,由于甲在乙的左边共有种,再将其余5人在余下的5个位置排列有种,得排法数为种;

(2)参见(1)的分析得(或).

高中经典数学教案篇6

教学分析

本节课的研究是对初中不等式学习的延续和拓展,也是实数理论的进一步发展.在本节课的学习过程中,将让学生回忆实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.

通过本节课的学习, 让学生从一系列的具体问题情境中,感受到在现实世界和日常生活中存在着大量的不等关系,并充分认识不等关系的存在与应用.对不等关系的相关素材,用数学观点进行观察、归纳、抽象,完成量与量的比较过程.即能用不等式或不等式组把这些不等关系表示出来.在本节课的学习过程中还安排了一些简单的、学生易于处理的问题,其用意在于让学生注意对数学知识和方法的应用,同时也能激发学生的学习兴趣,并由衷地产生用数学工具研究不等关系的愿望.根据本节课的教学内容,应用再现、回忆得出实数的基本理论,并能用实数的基本理论来比较两个代数式的大小.

在本节教学中,教师可让学生阅读书中实例,充分利用数轴这一简单的数形结合工具,直接用实数与数轴上 点的一一对应关系,从数与形两方面建立实数的顺序关系.要在温故知新的基础上提高学生对不等式的认识.

三维目标

1.在学生了解不等式产生的实际背景下,利用数轴回忆实数的基本理论,理解实数的大小关系,理解实数大小与数轴上对应点位置间的关系.

2.会用作差法判断实数与代数式的大小,会用配方法判断二次式的大小和范围.

3.通过温故知新,提高学生对不等式的认识,激发学生的学习兴趣,体会数学的奥秘与数学的结构美.

重点难点

教学重点:比较实数与代数式的大小关系,判断二次式的大小和范围.

教学难点:准确比较两个代数式的大小.

课时安排

1课时

教学过程

导入新课

思路1.(章头图导入)通过多媒体展示卫星、飞船和一幅山峦重叠起伏的壮观画面,它将学生带入“横看成岭侧成峰,远近高低各不同”的大自然和浩瀚的宇宙中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望,自然地引入新课.

思路2.(情境导入)列举出学生身体的高矮、身体的轻重、距离学校路程的远近、百米赛跑的时间、数学成绩的多少等现实生活中学生身边熟悉的事例,描述出某种客观事物在数量上存在的不等关系.这些不等关系怎样在数学上表示出来呢?让学生自由地展开联想,教师组织不等关系的相关素材,让学 生用数学的观点进行观察、归纳,使学生在具体情境中感受到不等关系与相等关系一样,在现实世界和日常生活中大量存在着.这样学生会由衷地产生用数学工具研究不等关系的愿望,从而进入进一步的探究学习,由此引入新课.

推进新课

新知探究

提出问题

1回忆初中学过的不等式,让学生说出“不等关系”与“不等式”的异同.怎样利用不等式研究及表示不等关系?

2在现实世界和日常生活中,既有相等关系,又存在着大量的不等关系.你能举出一些实际例子吗?

3数轴上的任意两 点与对应的两实数具有怎样的关系?

4任意两个实数具有怎样的关系?用逻辑用语怎样表达这个关系?

活动:教师引导学生回忆初中学过的不等式概念,使学生明确“不等关系”与“不等式”的异同.不等关系强调的是关系,可用符号“>”“<”“≠”“≥”“≤”表示,而不等式则是表示两者的不等关系,可用“a>b”“a

教师与学生一起举出我们日常生活中不等关系的例子,可让学生充分合作讨论,使学生感受到现实世界中存在着大量的不等关系.在学生了解了一些不等式产生的实际背景的前提下,进一步学习不等式的有关内容.

实例1:某天的天气预报报道,气温32 ℃,最低气温26 ℃.

实例2:对于数轴上任意不同的两点A、B,若点A在点B的左边,则xA

实例3:若一个数是非负数,则这个数大于或等于零.

实例4:两点之间线段最短.

实例5:三角形两边之和大于第三边,两边之差小于第三边.

实例6:限速40 km/h的路标指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h.

实例7:某品牌酸奶的质量检查规定,酸奶中脂肪的含量f应不少于2.5%,蛋白质的含量p应不少于2.3%.

教师进一步点拨:能够发现身 边的数学当然很好,这说明同学们已经走进了数学这门学科,但作为我们研究数学的人来说,能用数学的眼光、数学的观点进行观察、归纳、抽象,完成这些量与量的比较过程,这是我们每个研究数学的人必须要做的,那么,我们可以用我们所研究过的什么知识来表示这些不等关系呢?学生很容易想到,用不等式或不等式组来表示这些不等关系.那么不等式就是用不等号将两个代数式连结起来所成的式子.如-7<-5,3+4>1+4,2x≤6,a+2≥0,3≠4,0≤5等.

教师引导学生将上述的7个实例用不等式表示出来.实例1,若用t表示某天的气温,则26 ℃≤t≤32 ℃.实例3,若用x表示一个非负数,则x≥0.实例5,|AC|+|BC|>|AB|,如下图.

|AB|+|BC|>|AC|、|AC|+|BC|>|AB|、|AB|+|AC|>|BC|.

|AB|-|BC|<|AC|、|AC|-|BC|<|AB|、|AB|-|AC|<|BC|.交换被减数与减数的位置也可以.

实例6,若用v表示速度,则v≤40 km/h.实例7,f≥2.5%,p≥2.3%.对于实例7,教师应点拨学生注意酸奶中的脂肪含量与蛋白质含量需同时满足,避免写成f≥2.5%或p≥2.3%,这是不对的.但可表示为f≥2.5%且p≥2.3%.

对以上问题,教师让学生轮流回答,再用投影仪给出课本上的两个结论.

讨论结果:

(1)(2)略;(3)数轴上任意两点中,右边点对应的实数比左边点对应的实数大.

(4)对于任意两个实数a和b,在a=b,a>b,a应用示例

例1(教材本节例1和例2)

活动:通过两例让学生熟悉两个代数式的大小比较的基本方法:作差,配方法.

点评:本节两例的求解,是借助因式分解和应用配方法完成的,这两种方法是代数式变形时经常使用的方法,应让学生熟练掌握.

变式训练

1.若f(x)=3x2-x+1,g(x)=2x2+x-1,则f(x)与g(x)的大小关系是(  )

A.f(x)>g(x)       B.f(x)=g(x)

C.f(x)

答案:A

解析:f(x)-g(x)=x2-2x+2=(x-1)2+1≥1>0,∴f(x)>g(x).

2.已知x≠0,比较(x2+1)2与x4+x2+1的大小.

解:由(x2+1)2-(x4+x2+1)=x4+2x2+1-x4-x2-1=x2.

∵x≠0,得x2>0.从而(x2+1)2>x4+x2+1.

例2比较下列各组数的大小(a≠b).

(1)a+b2与21a+1b(a>0,b>0);

(2)a4-b4与4a3(a-b).

活动:比较两个实数的大小,常根据实数的运算性质与大小顺序的关系,归结为判断它们的差的符号来确定.本例可由学生独立完成,但要点拨学生在最后的符号判断说理中,要理由充分,不可忽略这点.

解:(1)a+b2-21a+1b=a+b2-2aba+b=a+b2-4ab2a+b=a-b22a+b.

∵a>0,b>0且a≠b,∴a+b>0,(a-b)2>0.∴a-b22a+b>0,即a+b2>21a+1b.

(2)a4-b4-4a3(a-b)=(a-b)(a+b)(a2+b2)-4a3(a-b)

=(a-b)(a3+a2b+ab2+b3-4a3)=(a-b)[(a2b-a3)+(ab2-a3)+(b3-a3)]

=-(a-b)2(3a2+2ab+b2)=-(a-b)2[2a2+(a+b)2].

∵2a2+(a+b)2≥0(当且仅当a=b=0时取等号),

又a≠b,∴(a-b)2>0,2a2+(a+b)2>0.∴-(a-b)2[2a2+(a+b)2]<0.

∴a4-b4<4a3(a-b).

点评:比较大小常用作差法,一般步骤是作差——变形——判断符号.变形常用的手段是分解因式和配方,前者将“差”变为“积”,后者将“差”化为一个或几个完全平方式的“和”,也可两者并用.

变式训练

已知x>y,且y≠0,比较xy与1的大小.

活动:要比较任意两个数或式的大小关系,只需确定它们的差与0的大小关系.

解:xy-1=x-yy.

∵x>y,∴x-y>0.

当y<0时,x-yy<0,即xy-1<0. ∴xy<1;

当y>0时,x-yy>0,即xy-1>0.∴xy>1.

点评:当字母y取不同范围的值时,差xy-1的正负情况不同,所以需对y分类讨论.

例3建筑设计规定,民用住宅的窗户面积必须小于地板面积.但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好.试问:同时增加相等的窗户面积和地板面积, 住宅的采光条件是变好了,还是变坏了?请说明理由.

活动:解题关键首先是把文 字语言转换成数学语言,然后比较前后比值的大小,采用作差法.

解:设住宅窗户面积和地板面积分别为a、b,同时增加的面积为m,根据问题的要求a

由于a+mb+m-ab=mb-abb+m>0,于是a+mb+m>ab.又ab≥10%,

因此a+mb+m>ab≥10%.

所以同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了.

点评:一般地,设a、b为正实数,且a

变式训练

已知a1,a2,…为各项都大于零的等比数列,公比q≠1,则(  )

A.a1+a8>a4+a5        B.a1+a8

C.a1+a8=a4+a5 D.a1+a8与a4+a5大小不确定

答案:A

解析:(a1+a8)-(a4+a5)=a1+a1q7-a1q3-a1q4

=a1[(1-q3)-q4(1-q3)]=a1(1-q)2(1+q+q2)(1+q)(1+q2).

∵{an}各项都大于零,∴q>0,即1+q>0.

又∵q≠1,∴(a1+a8)-(a4+a5)>0,即a1+a8>a4+a5.

课堂小结

1.教师与学生共同完成本节课的小结,从实数的基本性质的回顾,到两个实数大小的比较方法;从例题的活动探究点评,到紧跟着的变式训练,让学生去繁就简,联系旧知,将本节课所学纳入已有的知识体系中.

2.教师画龙点睛,点拨利用实数的基本性质对两个实数大小比较时易错的地方.鼓励学有余力的学生对节末的思考与讨论在课后作进一步的探究.

作业

习题3—1A组3;习题3—1B组2.

设计感想

1.本节设计关注了教学方法 的优化.经验告诉我们:课堂上应根据具体情况,选择、设计最能体现教学规律的教学 过程,不宜长期使用一种固定的教学方法,或原封不动地照搬一种实验模式.各种教学方法中,没有一种能很好地适应一切教学活动.也就是说,世上没有万能的教学方法.针对个性,灵活变化,因材施教才是成功的施教灵药.

2.本节设计注重了难度控制.不等式内容应用面广,可以说与其他所有内容都有交汇,历 来是高考的重点与热点.作为本章开始,可以适当开阔一些,算作抛砖引玉,让学生有个自由探究联想的平台,但不宜过多向外拓展,以免对学生产生负面影响.

3.本节设计关注了学生思维能力的训练.训练学生的思维能力,提升思维的品质,是数学教师直面的重要课题,也是中学数学教育的主线.采用一题多解有助于思维的发散性及灵活性,克服思维的僵化.变式训练教学又可以拓展学生思维视野的广度,解题后的点拨反思有助于学生思维批判性品质的提升.

高中经典数学教案篇7

一、教学目标

1.知识与能力目标

①使学生理解数列极限的概念和描述性定义。

②使学生会判断一些简单数列的极限,了解数列极限的“e-N"定义,能利用逐步分析的方法证明一些数列的极限。

③通过观察运动和变化的过程,归纳总结数列与其极限的特定关系,提高学生的数学概括能力和抽象思维能力。

2.过程与方法目标

培养学生的极限的思想方法和独立学习的能力。

3.情感、态度、价值观目标

使学生初步认识有限与无限、近似与精确、量变与质变的辩证关系,培养学生的辩证唯物主义观点。

二、教学重点和难点

教学重点:数列极限的概念和定义。

教学难点:数列极限的“ε―N”定义的理解。

三、教学对象分析

这节课是数列极限的第一节课,足学生学习极限的入门课,对于学生来说是一个全新的内容,学生的思维正处于由经验型抽象思维向理论型抽象思维过渡阶段,在《立体几何》内容求球的表面积和体积时对极限思想已有接触,而学生在以往的数学学习中主要接触的是关于“有限”的问题,很少涉及“无限”的问题。极限这一抽象概念能够使他们做基于直观的理解,并引导他们作出描述性定义“当n无限增大时,数列{an}中的项an无限趋近于常数A,也就是an与A的差的绝对值无限趋近于0”,并能用这个定义判断一些简单数列的极限。但要使他们在一节课内掌握“ε-N”语言求极限要求过高。因此不宜讲得太难,能够通过具体的几个例子,归纳研究一些简单的数列的极限。使学生理解极限的基本概念,认识什么叫做数列的极限以及数列极限的定义即可。

四、教学策略及教法设计

本课是采用启发式讲授教学法,通过多媒体课件演示及学生讨论的方法进行教学。通过学生比较熟悉的一个实际问题入手,引起学生的注意,激发学生的学习兴趣。然后通过具体的两个比较简单的数列,运用多媒体课件演示向学生展示了数列中的各项随着项数的增大,无限地趋向于某个常数的过程,让学生在观察的基础上讨论总结出这两个数列的特征,从而得出数列极限的一个描述性定义。再在教师的引导下分析数列极限的各种不同情况。从而对数列极限有了直观上的认识,接着让学生根据数列中各项的情况判断一些简单的数列的极限。从而达到深化定义的效果。最后进行练习巩固,通过这样的一个完整的教学过程,由观察到分析、由定量到定性,由直观到抽象,并借助于多媒体课件的演示,使得学生逐步地了解极限这个新的概念,为下节课的极限的运算及应用做准备,为以后学习高等数学知识打下基础。在整个教学过程中注意突出重点,突破难点,达到教学目标的要求。

五、教学过程

1.创设情境

课件展示创设情境动画。

今天我们将要学习一个很重要的新的知识。

情境

1、我国古代数学家刘徽于公元263年创立“割圆术”,“割之弥细,所失弥少。割之又割,以至不可割,则与圆周合体而无所失矣”。

情境

2、我国古代哲学家庄周所著的《庄子?天下篇》引用过一句话:一尺之棰,日取其半,万世不竭。也就是说拿一根木棒,将它切成一半,拿其中一半来再切成一半,得到四分之一,再切成一半,就得到了八分之„„?如此下去,无限次地切,每次都切一半,问是否会切完?

大家都知道,这是不可能切完的,但是每次切了以后,木棒都比原来的少了一半,也就是说木棒的长度越来越短,但永远不会变成零。从而引出极限的概念。

2.定义探究

展示定义探索(一)动画演示。

问题1:请观察以下无穷数列,当n无限增大时,a,I的变化趋势有什么特点?

(1)1/2,2/3,3/4,„n/n-1(2)0.9,0.99,0.999,0.9999,1-1/10n„„

问题2:观察课件演示,请分析以上两个数列随项数n的增大项有那些特点?

师生一起归纳总结出以下结论:数列(1)项数n无限增大时,项无限趋近于1;数列(2)项数n无限增大时,项无限趋近于1。

那么就把1叫数列(1)的极限,1叫数列(2)的极限。这两个数列只是形式不同,它们都是随项数n的无限增大,项无限趋近于某一确定常数,这个常数叫做这个数列的极限。

那么,什么叫数列的极限呢?对于无穷数列an,如果当n无限增大时,an无限趋向于某一个常数A,则称A是数列an的极限。

提出问题3:怎样用数学语言来定量描述呢?怎样用数学语言来描述上述数列的变化趋势?

展示定义探索(二)动画演示,师生共同总结发现在数轴上两点间距离越小,项与1越趋近,因此可以借助两点间距离无限小的方式来描述项无限趋近常数。无论预先指定多么小的正数e,如取e=O-1,总能在数列中找到一项am,使得an项后面的所有项与1的差的绝对值都小于ε,若取£=0。0001,则第6项后面的所有项与1的差的绝对值都小于ε,即1是数列(1)的极限。最后,师生共同总结出数列的极限定义中应包含哪量(用这些量来描述数列1的极限)。

数列的极限为:对于任意的ε>0,如果总存在自然数N,当n>N时,不等式|an-A|n的极限。

定义探索动画(一):

课件可以实现任意输入一个n值,可以计算出相应的数列第n项的值,并且动画演示数列的变化过程。如图1所示是课件运行时的一个画面。

定义探索动画(二)课件可以实现任意输入一个n值,可以计算出相应的数列第n项的值和Ian一1I的值,并且动画演示出第an项和1之间的距离。如图2所示是课件运行时的一个画面。

3.知识应用

这里举了3道例题,与学生一块思考,一起分析作答。

例1.已知数列:

1,-1/2,1/3,-1/4,1/5„„,(-1)n+11/n,„„

(1)计算an-0(2)第几项后面的所有项与0的差的绝对值都小于0.017都小于任意指定的正数。

(3)确定这个数列的极限。

例2.已知数列:

已知数列:3/2,9/4,15/8„„,2+(-1/2)n,„„。

猜测这个数列有无极限,如果有,应该是什么数?并求出从第几项开始,各项与这个极限的差都小于0.1,从第几项开始,各项与这个极限的差都小于0.017

例3.求常数数列一7,一7,一7,一7,„„的极限。

5.知识小结

这节课我们研究了数列极限的概念,对数列极限有了初步的认识。数列极限研究的是无限变化的趋势,而通过对数列极限定义的探讨,我们看到这一过程又是通过有限来把握的,有限与无限、近似与精确、量变与质变之间的辩证关系在这里得到了充分的体现。

课后练习:

(1)判断下列数列是否有极限,如果有的话请求出它的极限值。①an=4n+l/n;②an=4-(1/3)m;③an=(-1)n/3n;④aan=-2;⑤an=n;⑥an=(-1)n。

(2)课本练习1,2。

6.探究性问题

设计研究性学习的思考题。

提出问题:

芝诺悖论:阿基里斯是《荷马史诗》中的善跑英雄。奔跑中的阿基里斯永远也无法超过在他前面慢慢爬行的乌龟,因为当阿基里斯到达乌龟的起跑点时,乌龟已经走在前面一小段路了,阿基里斯又必须赶过这一小段路,而乌龟又向前走了。这样,阿基里斯可无限接近它,但不能追到它。假定阿基里斯跑步的速度是乌龟速度的10倍,阿基里斯与乌龟赛跑的路程是1公里。如果让乌龟先跑0.1公里,当阿基里斯追到O.1公里的地方,乌龟又向前跑了0.01公里。当阿基里斯追到0.01公里的地方,乌龟又向前跑了0.001公里„„这样一直追下去,阿基里斯能追上乌龟吗?

这里是研究性学习内容,以学生感兴趣的悖论作为课后作业,巩固本节所学内容,进一步提高了学生学习数列的极限的兴趣。同时也为学生创设了课下交流与讨论的情境,逐步培养学生相互合作、交流和讨论的习惯,使学生感受到了数学来源于生活,又服务于生活的实质,逐步养成用数学的知识去解决生活中遇到的实际问题的习惯。

高中经典数学教案篇8

自我介绍:;我姓鞠,今后我将和大家一起学习高中数学课程,手机;讨论数学:;相信大家对于高中学习都充满着好奇,和初中相比,高;我们不急于上新课,我想和大家聊一聊数学,一起来思;一、为什么要学习数学?;数学是科学的大门和钥匙;马克思说:一种科学只有在成功地运用数学时,才算达;著名数学家华罗庚在《人民日报》精彩描述:数学在“;大家知道海王星是怎高中数学开学第一课

自我介绍:

我姓鞠,今后我将和大家一起学习高中数学课程,手机:????,QQ:????。告诉我的通讯方式是希望能拓宽与大家交流的平台。希望能与大家在课堂中相识,在生活中相知,不仅能成为你们知识的传授者,方法的指引者,更希望成为你们情感上的依赖者,成为朋友。

讨论数学:

相信大家对于高中学习都充满着好奇,和初中相比,高中课程与初中课程有很大的不同。今天这节课

我们不急于上新课,我想和大家聊一聊数学,一起来思考为什么要学习数学及如何学好数学这两个问题。

一、为什么要学习数学?

数学是科学的大门和钥匙。

马克思说:一种科学只有在成功地运用数学时,才算达到完善的地步。

著名数学家华罗庚在《人民日报》精彩描述:数学在“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁”等方面无处不有重要贡献。

大家知道海王星是怎么发现的,冥王星又是怎么被请出十大行星行列的???

其实在我们的周围有很多事情都是可以用数学可以来解决的,无非很多人都没有用数学的眼光来看待。

当然,我们学习的数学只是数学学科体系中很基础,很小的一部分。现在课本上学的未必能直接应用于生活,主要是为以后学习更高层次的理科打好基础,同时,也为了掌握一些数学的思考方法以及分析问题解决问题的思维方式。哲学家培根说过:“读诗使人灵秀,读历史使人明智,学逻辑使人周密,学哲学使人善辩,学数学使人聪明?”,也有人形象地称数学是思维的体操。下面我们通过具体的例子来体验一下某些数学思想方法和思维方式。

故事一:据说国际象棋是古印度的一位宰相发明的。国王很欣赏他的这项发明,问他的宰相要什么赏赐。聪明的宰相说,“我所要的从一粒谷子(没错,是1粒,不是1两或1斤)开始。在这个有64格的棋盘上,第一格里放1粒谷子,第二格里放2粒,第三格里放4粒,即每下一格粒数加倍,??如此下去,一直放满到棋盘上的64格。这就是我所要的赏赐。”国王觉得宰相要的实在不多,就叫人按宰相的要求赏赐。但后来发现即使把全国所有的谷子抬来也远远不够。

数学游戏:两人相继轮流往长方形桌子上放同样大小的硬币,硬币一定要平放在桌面上,后放的硬币不能压在先放的硬币上,放最后一颗的硬币的人算赢。应该先放还是后放才有必胜的把握。

数学思想:退到最简单、最特殊的地方。

故事二:聪明的渡边:20世纪40年代末,手写工具突破性进展圆珠笔问世,它以价廉、方便、书写流利在社会上广泛流传,但写到20万字时就会因圆珠磨小而漏油,影响了销售。工程师们从圆珠质量入手,从改进油墨性能入手进行改良,但收效甚微。于是厂家打出广告:解决此问题获奖金50万元。当时山地制笔厂的青年工人渡边看到女儿把圆珠笔用到快漏油时就不用这一现象中受到启发,很好地解决了这一问题,你认为他会怎么做呢?

渡边的成功之处就在于思维角度新,从问题的侧面轻巧取胜。也正体现了数学学习中经常用到的发散式思维。在数学学习中,既要有集中式思维又要有发散式思维。集中式思维是一种常用思维渠道,即为对问题的归纳,联系思维方式,表现为对解题方法的模仿和继承;而发散式思维即对问题开拓、创新,表现为对问题举一反三,触类旁通。在解决具体问题中,我们应该将两种思维方式相结合。

学数学有利于培养人的思维品质:结构意识、整体意识、抽象意识、化归意识、优化意识、反思意识,尽管数学在培养学生的这些思维品质方面和其他学科存在着交集,但数学在其中的地位是无法被代替的。总之,学习数学可以使人思考问题更合乎逻辑,更有条理,更严密精确,更深入简洁,更善于创造??

二、如何学好高中数学

与初中数学相比,高中数学更注重提高数学思维能力,要求同学们在学习数学和运用数学解决问题时,不断地经历直观感知、观察发现、归纳类比、空间想象、抽象概括、符号表示、运算求解、数据处理、演绎证明、反思与建构等思维过程。高一数学一开始便在必修1中触及集合语言、函数模型,在必修2中涉及空间立体图形、坐标法、文字符号图形语言的转换,相对初中数学而言,抽象程度高,逻辑推理强,知识难度大,同学们会感到难学,认为数学神秘莫测,有些章节如听天书,从而可能会产生畏惧感。我认为学好高中数学要注意以下几点:

第一:培养数学兴趣

只有爱好某项事业或专业才能对它产生兴趣,才能激发学习、工作和自觉性与积极性;很难说哪个人天生爱好数学,爱好都是在生活和学习中逐渐产生的。如果你认为数学枯燥、乏味,那么你不可能真正学好数学,只有在学习中,逐渐发现数学的简单美、对称美以及数学高度的严谨与和谐,才能在学习过程中喜欢这门学科,才能产生兴趣。爱因斯坦说:兴趣是最好的老师;在诸多非智力因素中,兴趣处于一种特殊的地位,她可以激发一定的情感,唤起某种动机,培养人的意志,也可以改变人的态度。

第二:要改变一个观念。

有人会说自己的基础不好。那我问下什么是基础?今天所学的知识就是明天的基础。明天学习的知识就是后天的基础。所以要学好每一天的内容,那么你打的基础就是最扎实的了。所以现在你们是在同一个起跑线上的,无所谓基础好不好。今后的学习中,我会照顾大多数同学的数学基础。

第三:养成良好的学习习惯

㈠课前预习。怎样预习呢?就是自己在上课之前把内容先看一边,把自己不懂的地方做个记号或者打个问号,以至于上课的时候重点听,这样才能够很快提高自己的水平。但是预习不是很随便的把课本看一边,预习有个目标,那就是通过预习可以把书本后面的练习题可以自己独立的完成。一中的同学预习就已经有好几个层次了,先是课本,再是精编,再是高考题典,上课对于他们来说是第一轮高考复习。

㈡上课认真听讲。上课的时候准备课本,一只笔,一本草稿。做不做笔记你们自己决定,不过我不大提倡数学课做笔记的。不过有一点,有些知识点比较重要,课本上又没有的,我要求你们把它写在课本上的相应的空白地方。还有如果你觉得某个例题比较新或者比较重要,也可以把它记在书本的相应位置上,这样以后复习起来就一目了然了。那么草稿要来干什么的呢?课堂上你可以自己演算还有做课堂练习。

㈢关于作业。绝对不允许有抄作业的情况发生。如果我发现有谁抄作业,那么既然他这样喜欢抄,我就要你把当天的作业多抄几遍给我。那有人会问,碰到不会做的题目怎么办?有两个办法:一、向同学请教,请教做题目的思路,而不是整个过程和答案。同学之间也要相互帮助,如果你让他抄袭你的作业这样不是帮助他而是害他,这个道理大家应该明白吧。我非常提倡同学之间的相互讨论问题的,这样才能够相互促进提高。二、向老师请教,要养成多想多问的习惯。

㈣准备一本笔记本,作为自己的问题集。把平时自己不懂的和不大理解的还有易错的记录下来,并且要及时的消化,不懂的地方问老师。这是一个很好的办法,到考试的时候就可以有重点、有针对性的自己复习了。我高中的时候就是采用这样的方法把数学成绩提高。

好的开始是成功的一半,新的学期开始了,请大家调整好自己的思想,找到学习的原动力。播种一种思想,收获一种行为;播种一种行为,收获一种习惯;播种一种习惯,收获一种性格;播种一种性格,收获一种命运。愿每位同学都有个好的开始。

高中经典数学教案篇9

教学目的

1、使学生通过观察、猜测、实验等活动,找出简单事物的排列数与组合数。

2、培养学生初步的观察、分析、推理能力以及有顺序地全面思考问题的意识。

3、引导学生使用数学方法解决实际生活中的问题,学会表达解决问题的大致过程。

4、培养学生的合作意识和人际交往能力。

教学重点:

自主探究,掌握有序排列、巧妙组合的方法,并用所学知识解决实际生活的问题。

教学难点:

怎样排列可以不重复、不遗漏。

教学准备:

三只小动物的头像、两顶小雨伞图片、上锁的大门图片、纸条、实物投影仪等。

教学过程:

一、以故事形式引入新课

师:同学们,今天老师为大家带来了3只可爱的小动物,你们看它们是谁呀?小刺猬、小鸭和小鸡三个好朋友今天准备到企鹅博士家去做客呢,可是刚走了一半路,突然下起雨来,可是三只小动物只有两把伞,怎么办呢?

▲当学生在回答以上方法时,教师根据学生的回答把相应的动物头像帖在伞的下面。

师:大家想的办法都不错。的确,三只小动物都和你们一样试了上面这三种方法,可最后它们却选择了第③种方法,你们知道这是为什么吗?原来呀,当它们开始用前面两种方法时,可没走几步,小刺猬身上的刺就把小鸭和小鸡给刺疼了,所以只能选择第③种方法。

二、用开密码锁的方法进行数的排列活动

师:三只小动物到了企鹅博士家的数学城堡,却发现大门紧闭,门上还挂着一把锁。想要开锁就要找到开锁的密码。锁的密码提示是:请用数字1、2、3摆出所有的两位数,密码就是这些数从小到大排列中的第4个。──企鹅博士留。)

师:三只小动物都犯傻了,怎么办呢?同学们能不能给他们帮帮忙?

(生略)

师:那么我们就先每人拿出数字卡片,自己摆一摆,边摆边记,完成后,再小组内交流汇总,组长把整个小组摆出的数全写出来,当然重复的数字不用再写,然后全组同学一起把这些两位数从小到大排列起来,找到密码。

▲学生先自己摆、记,然后小组汇总、排列、交流,教师进行巡视并作适当指导。

师:你们找到密码了吗?是多少?你们是怎么找到的呢?

▲请几个小组的学生汇报找密码的过程。(略)

师:那么刚才你们摆两位数时,你摆出了几个呢?请用手势表示一下。

▲学生举手后,问没摆全的学生是怎么摆的,问全摆出的学生又是怎么摆的,学生出现的情况可能有:有把1、2组成12,然后再交换位置变成21;1、3组成13,交换位置后是31;2、3组成23,交换位置后是32。或者是随便摆一个看一个的。或者是这样摆12、13、23、21、31、32等。对这些摆法可让学生去比较一下,得出这两种方法都是可行的。

师:同学们都摆得很好,都动了脑筋,要想摆得快又不漏掉,我们应该选择一定的顺序去摆。

三、模拟小动物之间的握手来解决组合问题。

师:通过大家的帮忙,企鹅博士家的密码锁被打开了,欢迎各位小动物来闯关。

第一关:握握手

小明、小红、小华三个小朋友,如果每两人握一次手,三人一共握几次手。

▲学生猜好后,教师指出可以以四人小组为单位,三人模拟小动物握手,一人数握手的次数,找出答案。最后通过模拟得出:3人一共握了3次手。

师:排数时用了3个数字,握手时是3个学生,都是“3”,为什么出现的结果却不一样呢?

第二关:购买大比拼

如果要买一本5角的练习本,你有几种不同的付法呢?

先自己独立思考,然后在小组中交流一下,组长负责收集不同的方法,记录在表格中。

四、通过不同层次的练习,使知识得到巩固。

师:同学们说得都非常好。今天,我们不仅帮3只小动物解决了不少的问题,还学到了许多的数学知识,大家高兴吗?

师:那现在我们就带着这份兴奋的心情,来做几道题吧!

1、问有几种不同的穿法?

2、乒乓球大赛

小明、小红、小华、小丽想参加学校的乒乓球双打比赛,你认为他们有多少种不同的组合方式呢?

高中经典数学教案篇10

如何在高二这一关键性的一年中与这些同学一齐共同进步缩小差距,我选取了从课堂教学、作业布置、评价方式这三个方面入手,激发学生的学习用心性,尽量向学生带给从事数学活动的机会,帮忙他们在自主探索和合作交流的过程中真正理解和掌握基础的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。

第一,用多变的课堂教学,充分调动学生的主动性

我认为数学教学是教师思维与学生思维相互沟通的过程。从信息论的角度看,这种沟通就是指数学信息的理解、加工、传递的动态过程,在这个过程中充满了师生之间的数学交流和信息的转换,离开了学生的参与,整个过程就难以畅通。北京师范大学曹才翰教授指出“数学学习是再创造再发现的过程,务必要主体的用心参与才能实现这个过程”;从当前全面实施素质教育的要求来看,激发学生用心参与课堂教学,就是为了提高课堂教学效率,培养学生的学习潜力和创造思维潜力,这与以培养创造型人才为目的的素质教育完全一致,因此,在数学课堂教学中提高学生的参与度,不仅仅具有提高数学教学质量的近期作用,而且具有提高学生素质的远期功效。

若要实现这个目标,在教学引入时我常常以问题作为出发点,选取的素材密切联系学生的现实生活,运用学生的求知欲,使学生感到数学就在他们身边,与现实世界联系紧密,同时问题情景的设置又具有必须的挑战性,引发了学生的思考。

如人教版初二几何《三角形》的《关于三角形的一些概念》在引入时我提出了以下几个问题:你能举出生活中一些有关三角形的实例吗?你能一笔画一个三角形吗?你能用语言叙述你的画图过程吗?

如人教版初二几何《三角形》的《三角形全等的判定(一)》在引入时我提出了这样一个问题:请你任意画一个三角形,你能否再画一个与其全等的三角形。画好后请你剪下来验证一下。学生的用心性被激发,热烈的讨论,课堂上出现了许多状况

有的学生用的是先确定一角再确定两边的画法;有的一个学生是利用尺规根据三边关系画的(这正是后面所要学的一个三角形全等的判定公理);有的学生是利用了垂直、平行、对顶角来省去作图中使用量角器的麻烦,学生充分利用已有的数学知识,利用自己对数学图形的感知,很好的解决了这个问题,透过剪一剪试一试从直观上验证了自己的画法。

如《相似形》的《相似三角形的性质》在引入时我提出了这样的问题:提到与我国并称为世界四大礼貌古国的埃及你会想到什么?学生们说到了法老、金字塔、木乃伊等等,说到金字塔你能测量出埃及大金字塔的高度吗?学生几乎是异口同声地告诉我用影长,当时我称赞他们与我们的几何学之父古希腊人欧几里得的测量方法一样,并讲述了欧几里得的故事,他等到自己在阳光下的影长与他的身高正好相等的时候,测量了金字塔的塔影的长度,这时,他宣布,“这就是大金字塔的高度。”从而激发了学生探索相似三角形的其它性质的兴趣。

我在课堂教学的过程中,为了使成绩较差同学减少对于数学的恐惧感,课堂上放慢教学速度,变换教学方法,如人教版初二几何《三角形》的《关于三角形的一些概念》我是这样处理的:1、请学生讲解三角形的有关概念;2、请学生用折纸的方法讲解角平分线和中线,折纸的过程中你还发现了什么?3、请学生任意作一个三角形,并做出这个三角形的一条角平分线和一条中线。三个要求层层深入了学生对于基本概念的理解,变教师讲为学生讲,取得了较好的效果。

我在课堂上放慢教学速度是能够照顾到大部分学生的,但一小批优等生就会出现没事做的状况,这时学习小组就是他们发挥余热的地方,在具体的教学过程中给学生建立了数学学习小组,让学生在各自的小组中相互帮忙,让每一个学生都能从事小组中不同的工作,并最终完成一个共同的目标。透过小组学习,使学生树立正确的团队观,尊重他人、尊重自己,敢于发表自己的观点,又不固执己见,对同学的见解,既要乐于理解合理成分,又要勇于表达自己不同的看法。在具体实施的过程中,我越发的认识到讨论的重要性,我鼓励学生质疑,质疑教师,质疑教科书,鼓励学生争论,有些知识点在学生的争论中被突破,知识在争论中被融会贯通,我发现学生之间的语言他们更容易理解,于是我开始尝试让学生讲课,讲过三角形的分类等。又如学习基本作图时,教科书就如一本说明书,让学生以学习小组为单位,阅读、画图,互教互学,实际教学时取得了很好的效果。让各层次的学生都能有所知,有所得。在认知效果和记忆效果方面比教师直接给出要好。

第二,布置多样的作业,引导学生的用心性

让学生作业的目的在于巩固和消化所学的知识,并使知识转化为技能技巧。正确组织好学生作业,对于培养学生的独立学习的潜力和习惯,发展学生的智力和创造潜力有着重大好处。因此,教师应重视作业的布置,《数学课程标准》中明确指出:“义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实现人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。”作业布置如何体现这一基本理念,如何调整作业在学生学习活动中的位置,也是提高课堂教学效率的关键。

课堂结束新课后,我透过作业的布置渗透数学学习方法如自学,这样才能真正提高学生数学学习的水平,开始时每一天的第一样作业是复习,最后一项作业是预习,而且把具体的页数写清楚提出具体的预习提纲,加强学生看书的针对性,开始时还带有必须的强制性如让家长签字,从而提高学生阅读理解的潜力。

对数学的兴趣能激发学生的学习动机,富有情境的作业具有必须吸引力,能使学生充分发挥自己的智力水平去完成。趣味性要体现出题型多样,方式新颖,资料有创造性,如课本习题、自编习题、计算类题目、表述类题目(如单元小结、学习体会、数学故事、小论文等)互相穿插,让学生感受到作业资料和形式的丰富多采,使之情绪高昂,乐于思考,从而感受作业的乐趣。

根据上课资料所需经常让学生动手做教具如剪钝角三角形、锐角三角形、直角三角形,做教具说明三角形具有稳定性而四边形没有此特性等,这种做法不但能够提高学生学习的兴趣,而且会有一些意想不到的事情。如:学生做教具说明三角形具有稳定性而四边形没有此特性时,有的学生用线绳打结连接四边,有的学生为了省事用订书钉订的,而订的不同方法得到有的四边形能动而有的不能,经过学生的讨论得出关键在于连接处是一个点还是两个点的问题,学生很受启发。

高中经典数学教案篇11

教学目标

掌握等差数列与等比数列的概念,通项公式与前n项和公式,等差中项与等比中项的概念,并能运用这些知识解决一些基本问题。

教学过程

等比数列性质请同学们类比得出。

【方法规律】

1、通项公式与前n项和公式联系着五个基本量,“知三求二”是一类最基本的运算题。方程观点是解决这类问题的基本数学思想和方法。

2、判断一个数列是等差数列或等比数列,常用的方法使用定义。特别地,在判断三个实数

a,b,c成等差(比)数列时,常用(注:若为等比数列,则a,b,c均不为0)

3、在求等差数列前n项和的(小)值时,常用函数的思想和方法加以解决。

【示范举例】

例1:(1)设等差数列的前n项和为30,前2n项和为100,则前3n项和为。

(2)一个等比数列的前三项之和为26,前六项之和为728,则a1=,q=。

例2:四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数。

例3:项数为奇数的等差数列,奇数项之和为44,偶数项之和为33,求该数列的中间项。

高中经典数学教案篇12

1.1.1任意角

教学目标

(一)知识与技能目标

理解任意角的概念(包括正角、负角、零角)与区间角的概念.

(二)过程与能力目标

会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.

(三)情感与态度目标

1.提高学生的推理能力;

2.培养学生应用意识.教学重点

任意角概念的理解;区间角的集合的书写.教学难点

终边相同角的集合的表示;区间角的集合的书写.

教学过程

一、引入:

1.回顾角的定义

①角的第一种定义是有公共端点的两条射线组成的图形叫做角.

②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.

二、新课:

1.角的有关概念:

①角的定义:

角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.

②角的名称:

③角的分类:A

正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角

负角:按顺时针方向旋转形成的角

④注意:

⑴在不引起混淆的情况下,“角α”或“∠α”可以简化成“α”;

⑵零角的终边与始边重合,如果α是零角α=0°;

⑶角的概念经过推广后,已包括正角、负角和零角.

⑤练习:请说出角α、β、γ各是多少度?

2.象限角的概念:

①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.

例1.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.

⑴60°;⑵120°;⑶240°;⑷300°;⑸420°;⑹480°;

答:分别为1、2、3、4、1、2象限角.

3.探究:教材P3面

终边相同的角的表示:

所有与角α终边相同的角,连同α在内,可构成一个集合S={ββ=α+

k·360°,

k∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和.注意:⑴k∈Z

⑵α是任一角;

⑶终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差

360°的整数倍;

⑷角α+k·720°与角α终边相同,但不能表示与角α终边相同的所有角.

例2.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.

⑴-120°;

⑵640°;

⑶-950°12’.

答:⑴240°,第三象限角;

⑵280°,第四象限角;

⑶129°48’,第二象限角;

例4.写出终边在y轴上的角的集合(用0°到360°的角表示).解:{αα=90°+n·180°,n∈Z}.

例5.写出终边在y?x上的角的集合S,并把S中适合不等式-360°≤β<720°的元素β写出来.

4.课堂小结

①角的定义;

②角的分类:

正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角

负角:按顺时针方向旋转形成的角

③象限角;

④终边相同的角的表示法.

5.课后作业:

①阅读教材P2-P5;

②教材P5练习第1-5题;

③教材P.9习题1.1第1、2、3题思考题:已知α角是第三象限角,则2α,

解:??角属于第三象限,

?k·360°+180°<α<k·360°+270°(k∈Z)

因此,2k·360°+360°<2α<2k·360°+540°(k∈Z)即(2k+1)360°<2α<(2k+1)360°+180°(k∈Z)

故2α是第一、二象限或终边在y轴的非负半轴上的角.又k·180°+90°<

各是第几象限角?

<k·180°+135°(k∈Z).

<n·360°+135°(n∈Z),

当k为偶数时,令k=2n(n∈Z),则n·360°+90°<此时,

属于第二象限角

<n·360°+315°(n∈Z),

当k为奇数时,令k=2n+1(n∈Z),则n·360°+270°<此时,

属于第四象限角

因此

属于第二或第四象限角.

1.1.2弧度制

(一)

教学目标

(二)知识与技能目标

理解弧度的意义;了解角的集合与实数集R之间的可建立起一一对应的关系;熟记特殊角的弧度数.

(三)过程与能力目标

能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题

(四)情感与态度目标

通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美.教学重点

弧度的概念.弧长公式及扇形的面积公式的推导与证明.教学难点

“角度制”与“弧度制”的区别与联系.

教学过程

一、复习角度制:

初中所学的角度制是怎样规定角的度量的?规定把周角的作为1度的角,用度做单位来度量角的制度叫做角度制.

二、新课:

1.引入:

由角度制的定义我们知道,角度是用来度量角的`,角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢?

2.定义

我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下,1弧度记做1rad.在实际运算中,常常将rad单位省略.

3.思考:

(1)一定大小的圆心角?所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?

(2)引导学生完成P6的探究并归纳:弧度制的性质:

①半圆所对的圆心角为

②整圆所对的圆心角为

③正角的弧度数是一个正数.

④负角的弧度数是一个负数.

⑤零角的弧度数是零.

⑥角α的弧度数的绝对值α=.

4.角度与弧度之间的转换:

①将角度化为弧度:

②将弧度化为角度:

5.常规写法:

①用弧度数表示角时,常常把弧度数写成多少π的形式,不必写成小数.

②弧度与角度不能混用.

弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.

例1.把67°30’化成弧度.

例2.把?rad化成度.

例3.计算:

(1)sin4

(2)tan1.5.

8.课后作业:

①阅读教材P6–P8;

②教材P9练习第1、2、3、6题;

③教材P10面7、8题及B2、3题.

高中经典数学教案篇13

●知识梳理

函数的综合应用主要体现在以下几方面:

1.函数内容本身的相互综合,如函数概念、性质、图象等方面知识的综合.

2.函数与其他数学知识点的综合,如方程、不等式、数列、解析几何等方面的内容与函数的综合.这是高考主要考查的内容.

3.函数与实际应用问题的综合.

●点击双基

1.已知函数f(x)=lg(2x-b)(b为常数),若x[1,+)时,f(x)0恒成立,则

A.b1B.b1C.b1D.b=1

解析:当x[1,+)时,f(x)0,从而2x-b1,即b2x-1.而x[1,+)时,2x-1单调增加,

b2-1=1.

答案:A

2.若f(x)是R上的减函数,且f(x)的图象经过点A(0,3)和B(3,-1),则不等式f(x+1)-12的解集是___________________.

解析:由f(x+1)-12得-2

又f(x)是R上的减函数,且f(x)的图象过点A(0,3),B(3,-1),

f(3)

答案:(-1,2)

●典例剖析

【例1】取第一象限内的点P1(x1,y1),P2(x2,y2),使1,x1,x2,2依次成等差数列,1,y1,y2,2依次成等比数列,则点P1、P2与射线l:y=x(x0)的关系为

A.点P1、P2都在l的上方B.点P1、P2都在l上

C.点P1在l的下方,P2在l的上方D.点P1、P2都在l的下方

剖析:x1=+1=,x2=1+=,y1=1=,y2=,∵y1

P1、P2都在l的下方.

答案:D

【例2】已知f(x)是R上的偶函数,且f(2)=0,g(x)是R上的奇函数,且对于xR,都有g(x)=f(x-1),求f(20__)的值.

解:由g(x)=f(x-1),xR,得f(x)=g(x+1).又f(-x)=f(x),g(-x)=-g(x),

故有f(x)=f(-x)=g(-x+1)=-g(x-1)=-f(x-2)=-f(2-x)=-g(3-x)=

g(x-3)=f(x-4),也即f(x+4)=f(x),xR.

f(x)为周期函数,其周期T=4.

f(20__)=f(4500+2)=f(2)=0.

评述:应灵活掌握和运用函数的奇偶性、周期性等性质.

【例3】函数f(x)=(m0),x1、x2R,当x1+x2=1时,f(x1)+f(x2)=.

(1)求m的值;

(2)数列{an},已知an=f(0)+f()+f()++f()+f(1),求an.

解:(1)由f(x1)+f(x2)=,得+=,

4+4+2m=[4+m(4+4)+m2].

∵x1+x2=1,(2-m)(4+4)=(m-2)2.

4+4=2-m或2-m=0.

∵4+42=2=4,

而m0时2-m2,4+42-m.

m=2.

(2)∵an=f(0)+f()+f()++f()+f(1),an=f(1)+f()+f()++f()+f(0).

2an=[f(0)+f(1)]+[f()+f()]++[f(1)+f(0)]=+++=.

an=.

深化拓展

用函数的思想处理方程、不等式、数列等问题是一重要的思想方法.

【例4】函数f(x)的定义域为R,且对任意x、yR,有f(x+y)=f(x)+f(y),且当x0时,f(x)0,f(1)=-2.

(1)证明f(x)是奇函数;

(2)证明f(x)在R上是减函数;

(3)求f(x)在区间[-3,3]上的最大值和最小值.

(1)证明:由f(x+y)=f(x)+f(y),得f[x+(-x)]=f(x)+f(-x),f(x)+f(-x)=f(0).又f(0+0)=f(0)+f(0),f(0)=0.从而有f(x)+f(-x)=0.

f(-x)=-f(x).f(x)是奇函数.

(2)证明:任取x1、x2R,且x10.f(x2-x1)0.

-f(x2-x1)0,即f(x1)f(x2),从而f(x)在R上是减函数.

(3)解:由于f(x)在R上是减函数,故f(x)在[-3,3]上的最大值是f(-3),最小值是f(3).由f(1)=-2,得f(3)=f(1+2)=f(1)+f(2)=f(1)+f(1+1)=f(1)+f(1)+f(1)=3f(1)=3(-2)=-6,f(-3)=-f(3)=6.从而最大值是6,最小值是-6.

深化拓展

对于任意实数x、y,定义运算x__y=ax+by+cxy,其中a、b、c是常数,等式右边的运算是通常的加法和乘法运算.现已知1__2=3,2__3=4,并且有一个非零实数m,使得对于任意实数x,都有x__m=x,试求m的值.

提示:由1__2=3,2__3=4,得

b=2+2c,a=-1-6c.

又由x__m=ax+bm+cmx=x对于任意实数x恒成立,

b=0=2+2c.

c=-1.(-1-6c)+cm=1.

-1+6-m=1.m=4.

答案:4.

●闯关训练

夯实基础

1.已知y=f(x)在定义域[1,3]上为单调减函数,值域为[4,7],若它存在反函数,则反函数在其定义域上

A.单调递减且最大值为7B.单调递增且最大值为7

C.单调递减且最大值为3D.单调递增且最大值为3

解析:互为反函数的两个函数在各自定义区间上有相同的增减性,f-1(x)的值域是[1,3].

答案:C

2.关于x的方程x2-4x+3-a=0有三个不相等的实数根,则实数a的值是___________________.

解析:作函数y=x2-4x+3的图象,如下图.

由图象知直线y=1与y=x2-4x+3的图象有三个交点,即方程x2-4x+3=1也就是方程x2-4x+3-1=0有三个不相等的实数根,因此a=1.

答案:1

3.若存在常数p0,使得函数f(x)满足f(px)=f(px-)(xR),则f(x)的一个正周期为__________.

解析:由f(px)=f(px-),

令px=u,f(u)=f(u-)=f[(u+)-],T=或的整数倍.

答案:(或的整数倍)

4.已知关于x的方程sin2x-2sinx-a=0有实数解,求a的取值范围.

解:a=sin2x-2sinx=(sinx-1)2-1.

∵-11,0(sinx-1)24.

a的范围是[-1,3].

5.记函数f(x)=的定义域为A,g(x)=lg[(x-a-1)(2a-x)](a1)的定义域为B.

(1)求A;

(2)若BA,求实数a的取值范围.

解:(1)由2-0,得0,

x-1或x1,即A=(-,-1)[1,+).

(2)由(x-a-1)(2a-x)0,得(x-a-1)(x-2a)0.

∵a1,a+12a.B=(2a,a+1).

∵BA,2a1或a+1-1,即a或a-2.

而a1,1或a-2.

故当BA时,实数a的取值范围是(-,-2][,1).

培养能力

6.(理)已知二次函数f(x)=x2+bx+c(b0,cR).

若f(x)的定义域为[-1,0]时,值域也是[-1,0],符合上述条件的函数f(x)是否存在?若存在,求出f(x)的表达式;若不存在,请说明理由.

解:设符合条件的f(x)存在,

∵函数图象的对称轴是x=-,

又b0,-0.

①当-0,即01时,

函数x=-有最小值-1,则

或(舍去).

②当-1-,即12时,则

(舍去)或(舍去).

③当--1,即b2时,函数在[-1,0]上单调递增,则解得

综上所述,符合条件的函数有两个,

f(x)=x2-1或f(x)=x2+2x.

(文)已知二次函数f(x)=x2+(b+1)x+c(b0,cR).

若f(x)的定义域为[-1,0]时,值域也是[-1,0],符合上述条件的函数f(x)是否存在?若存在,求出f(x)的表达式;若不存在,请说明理由.

解:∵函数图象的对称轴是

x=-,又b0,--.

设符合条件的f(x)存在,

①当--1时,即b1时,函数f(x)在[-1,0]上单调递增,则

②当-1-,即01时,则

(舍去).

综上所述,符合条件的函数为f(x)=x2+2x.

7.已知函数f(x)=x+的定义域为(0,+),且f(2)=2+.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.

(1)求a的值.

(2)问:PMPN是否为定值?若是,则求出该定值;若不是,请说明理由.

(3)设O为坐标原点,求四边形OMPN面积的最小值.

解:(1)∵f(2)=2+=2+,a=.

(2)设点P的坐标为(x0,y0),则有y0=x0+,x00,由点到直线的距离公式可知,PM==,PN=x0,有PMPN=1,即PMPN为定值,这个值为1.

(3)由题意可设M(t,t),可知N(0,y0).

∵PM与直线y=x垂直,kPM1=-1,即=-1.解得t=(x0+y0).

又y0=x0+,t=x0+.

S△OPM=+,S△OPN=x02+.

S四边形OMPN=S△OPM+S△OPN=(x02+)+1+.

当且仅当x0=1时,等号成立.

此时四边形OMPN的面积有最小值1+.

探究创新

8.有一块边长为4的正方形钢板,现对其进行切割、焊接成一个长方体形无盖容器(切、焊损耗忽略不计).有人应用数学知识作了如下设计:如图(a),在钢板的四个角处各切去一个小正方形,剩余部分围成一个长方体,该长方体的高为小正方形边长,如图(b).

(1)请你求出这种切割、焊接而成的长方体的最大容积V1;

(2)由于上述设计存在缺陷(材料有所浪费),请你重新设计切、焊方法,使材料浪费减少,而且所得长方体容器的容积V2V1.

解:(1)设切去正方形边长为x,则焊接成的长方体的底面边长为4-2x,高为x,

V1=(4-2x)2x=4(x3-4x2+4x)(0

V1=4(3x2-8x+4).

令V1=0,得x1=,x2=2(舍去).

而V1=12(x-)(x-2),

又当x时,V10;当

当x=时,V1取最大值.

(2)重新设计方案如下:

如图①,在正方形的两个角处各切下一个边长为1的小正方形;如图②,将切下的小正方形焊在未切口的正方形一边的中间;如图③,将图②焊成长方体容器.

新焊长方体容器底面是一长方形,长为3,宽为2,此长方体容积V2=321=6,显然V2V1.

故第二种方案符合要求.

●思悟小结

1.函数知识可深可浅,复习时应掌握好分寸,如二次函数问题应高度重视,其他如分类讨论、探索性问题属热点内容,应适当加强.

2.数形结合思想贯穿于函数研究的各个领域的全部过程中,掌握了这一点,将会体会到函数问题既千姿百态,又有章可循.

●教师下载中心

教学点睛

数形结合和数形转化是解决本章问题的重要思想方法,应要求学生熟练掌握用函数的图象及方程的曲线去处理函数、方程、不等式等问题.

拓展题例

【例1】设f(x)是定义在[-1,1]上的奇函数,且对任意a、b[-1,1],当a+b0时,都有0.

(1)若ab,比较f(a)与f(b)的大小;

(2)解不等式f(x-)

(3)记P={xy=f(x-c)},Q={xy=f(x-c2)},且PQ=,求c的取值范围.

解:设-1x1

0.

∵x1-x20,f(x1)+f(-x2)0.

f(x1)-f(-x2).

又f(x)是奇函数,f(-x2)=-f(x2).

f(x1)

f(x)是增函数.

(1)∵ab,f(a)f(b).

(2)由f(x-)

-.

不等式的解集为{x-}.

(3)由-11,得-1+c1+c,

P={x-1+c1+c}.

由-11,得-1+c21+c2,

Q={x-1+c21+c2}.

∵PQ=,

1+c-1+c2或-1+c1+c2,

解得c2或c-1.

【例2】已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称.

(1)求f(x)的解析式;

(2)(文)若g(x)=f(x)x+ax,且g(x)在区间(0,2]上为减函数,求实数a的取值范围.

(理)若g(x)=f(x)+,且g(x)在区间(0,2]上为减函数,求实数a的取值范围.

解:(1)设f(x)图象上任一点坐标为(x,y),点(x,y)关于点A(0,1)的对称点(-x,2-y)在h(x)的图象上.

2-y=-x++2.

y=x+,即f(x)=x+.

(2)(文)g(x)=(x+)x+ax,

即g(x)=x2+ax+1.

g(x)在(0,2]上递减-2,

a-4.

(理)g(x)=x+.

∵g(x)=1-,g(x)在(0,2]上递减,

1-0在x(0,2]时恒成立,

即ax2-1在x(0,2]时恒成立.

∵x(0,2]时,(x2-1)max=3,

a3.

【例3】在4月份(共30天),有一新款服装投放某专卖店销售,日销售量(单位:件)f(n)关于时间n(130,nN__)的函数关系如下图所示,其中函数f(n)图象中的点位于斜率为5和-3的两条直线上,两直线的交点的横坐标为m,且第m天日销售量最大.

(1)求f(n)的表达式,及前m天的销售总数;

(2)按规律,当该专卖店销售总数超过400件时,社会上流行该服装,而日销售量连续下降并低于30件时,该服装的流行会消失.试问该服装在社会上流行的天数是否会超过10天?并说明理由.

解:(1)由图形知,当1m且nN__时,f(n)=5n-3.

由f(m)=57,得m=12.

f(n)=

前12天的销售总量为

5(1+2+3++12)-312=354件.

(2)第13天的销售量为f(13)=-313+93=54件,而354+54400,

从第14天开始销售总量超过400件,即开始流行.

设第n天的日销售量开始低于30件(1221.

从第22天开始日销售量低于30件,

即流行时间为14号至21号.

该服装流行时间不超过10天.

高中经典数学教案篇14

一、教材分析(说教材):

1.教材所处的地位和作用:

本节内容在全书和章节中的作用是:《》是中数学教材第册第章第节内容。在此之前学生已学习了基础,这为过渡到本节的学习起着铺垫作用。本节内容是在中,占据的地位。以及为其他学科和今后的学习打下基础。

2.教育教学目标:

根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

(1)知识目标:

(2)能力目标:通过教学初步培养学生分析问题,解决实际问题,读图分析,收集处理信息,团结协作,语言表达能力以及通过师生双边活动,初步培养学生运用知识的能力,培养学生加强理论联系实际的能力,(3)情感目标:通过的教学引导学生从现实的生活经历与体验出发,激发学生学习兴趣。

3.重点,难点以及确定依据:

下面,为了讲清重难上点,使学生能达到本节课设定的目标,再从教法和学法上谈谈:

二、教学策略(说教法)

1.教学手段:

如何突出重点,突破难点,从而实现教学目标。在教学过程中拟计划进行如下操作:教学方法。基于本节课的特点:应着重采用的教学方法。

2.教学方法及其理论依据:坚持“以学生为主体,以教师为主导”的原则,根据学生的心理发展规律,采用学生参与程度高的学导式讨论教学法。在学生看书,讨论的基础上,在老师启发引导下,运用问题解决式教法,师生交谈法,图像信号法,问答式,课堂讨论法。在采用问答法时,特别注重不同难度的问题,提问不同层次的学生,面向全体,使基础差的学生也能有表现机会,培养其自信心,激发其学习热情。有效的开发各层次学生的潜在智能,力求使学生能在原有的基础上得到发展。同时通过课堂练习和课后作业,启发学生从书本知识回到社会实践。提供给学生与其生活和周围世界密切相关的数学知识,学习基础性的知识和技能,在教学中积极培养学生学习兴趣和动机,明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

3.学情分析:(说学法)

(1)学生特点分析:中学生心理学研究指出,高中阶段是(查同中学生心发展情况)抓住学生特点,积极采用形象生动,形式多样的教学方法和学生广泛的积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上表少年好动,注意力易分散

(2)知识障碍上:知识掌握上,学生原有的知识,许多学生出现知识遗忘,所以应全面系统的去讲述;学生学习本节课的知识障碍,知识学生不易理解,所以教学中老师应予以简单明白,深入浅出的分析。

(3)动机和兴趣上:明确的学习目的,老师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力

最后我来具体谈谈这一堂课的教学过程:

4.教学程序及设想:

(1)由引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”继而紧张的沉思,期待录找理由和证明过程。在实际情况下学习可以使学生利用已有的知识与经验,同化和索引出当肖学习的新知识,这样获取知识,不但易于保持,而且易于迁移到陌生的问题情境中。

(2)由实例得出本课新的知识点

(3)讲解例题。在讲例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于学生的思维能力。

(4)能力训练。课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。

(5)总结结论,强化认识。知识性的内容小结,可把课堂教学传授的知识尽快化为学生的素质,数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐步培养学生良好的个性品质目标。

(6)变式延伸,进行重构,重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联,累积,加工,从而达到举一反三的效果。

(7)板书

(8)布置作业。

针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有余力的学生有所提高,

教学程序:

(一)课堂结构:复习提问,导入讲授课,课堂练习,巩固新课,布置作业等五部分

高中数学集合教学反思

集合这章内容,教学参考书上安排的课时为五课时,我们的导学案也是安排五课时,实际教学时,由于对学生的实际情况估计不足,第一课时的导学案用了两课时才完成。集合这一章的特点是概念不多,但这章所涉及到的内容很广,学生学习本章内容时,不仅要理解本章的概念,还要理解与本章内容相关联的其他内容,这些内容有初中学习过的内容、有生活中的方方面面的相关知识,再加上高中学习方法与初中不同,逻辑思维能力要求较高,因此学生感觉学起来比较困难。针对这种情况,我在实际教学时,首先要求学生准确理解概念,如:集合的元素具有三个性质:确定性、互异性、无序性。集合的关系、运算等都是从元素的角度定义的,所以解集合问题时,教会学生对元素的性质进行分析,反复训练,让学生通过实例体会这三个性质。

第二,掌握相关的符号语言、venn图,正确使用列举法、描述法表示集合,特别要注意用描述法表示集合时,集合中的元素是什么,这是一个教学难点。第二个难点是集合的运算—交集和并集。突破难点充分运用数形结合思想,集合间的关系和运算,以数形结合思想为指导,借助图形思考,可以使各集合间的关系直观明了,使抽象的集合运算建立在直观的基础上,使解题思路清晰明朗,直观简捷,有利于问题的解决。

第三,指导学生理解并掌握自然语言、符号语言、图形语言这三种语言,灵活准确地进行语言转换,可以帮助学生提高分析问题,解决问题的能力。

第四,集合问题涉及到的其他内容,遇到了讲透,不拓展。

高中经典数学教案篇15

一、教学内容

本节主要内容为:经历探索30°、45°、60°角的三角函数值的过程,能够进行含有30°、45°、60°角的三角函数值的计算。

二、教学目标

1、经历探索30°、45°、60°角的三角函数值的过程,能够进行有关推理,进一步体会三角函数的意义。

2、能够进行含有30°、45°、60°角的三角函数值的计算。

3、能够根据30°、45°、60°角的三角函数值,说出相应的锐角的大小。

三、过程与方法

通过进行有关推理,探索30°、45°、60°角的三角函数值。在具体教学过程中,教师可在教材的基础上适当拓展,使得内容更为丰富.教师可以运用和学生共同探究式的教学方法,学生可以采取自主探讨式的学习方法.

四、教学重点和难点

重点:进行含有30°、45°、60°角的三角函数值的计算

难点:记住30°、45°、60°角的三角函数值

五、教学准备

教师准备

预先准备教材、教参以及多媒体课件

学生准备

教材、同步练习册、作业本、草稿纸、作图工具等

六、教学步骤

教学流程设计

教师指导学生活动

1.新章节开场白.1.进入学习状态.

2.进行教学.2.配合学习.

3.总结和指导学生练习.3记录相关内容,完成练习.

教学过程设计

1、从学生原有的认知结构提出问题

2、师生共同研究形成概念

3、随堂练习

4、小结

5、作业

板书设计

1、叙述三角函数的意义

2、30°、45°、60°角的三角函数值

3、例题

七、课后反思

本节课基本上能够突出重点、弱化难点,在时间上也能掌控得比较合理,学生也比较积极投入学习中,但是学生好像并不是掌握得很好,在今后的教学中应该再加强关于这方面的学习。

高中经典数学教案篇16

教学目标:

①掌握对数函数的性质。

②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值 域及单调性。

③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。

教学重点与难点:对数函数的性质的应用。

教学过程设计:

⒈复习提问:对数函数的概念及性质。

⒉开始正课

1 比较数的大小

例 1 比较下列各组数的大小。

⑴loga5.1 ,loga5.9 (a>0,a≠1)

⑵log0.50.6 ,logЛ0.5 ,lnЛ

师:请同学们观察一下⑴中这两个对数有何特征?

生:这两个对数底相等。

师:那么对于两个底相等的对数如何比大小?

生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。

师:对,请叙述一下这道题的解题过程。

生:对数函数的单调性取决于底的大小:当0调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递增,所以loga5.1

板书:

解:Ⅰ)当0

∵5.1<5.9 ∴loga5.1>loga5.9

Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,

∵5.1<5.9 ∴loga5.1

师:请同学们观察一下⑵中这三个对数有何特征?

生:这三个对数底、真数都不相等。

师:那么对于这三个对数如何比大小?

生:找“中间量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,

log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

板书:略。

师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函数 的单调性比大小,②借用“中间量”间接比大小,③利用对数函数图象的位置关系来比大小。

2 函数的定义域, 值 域及单调性。

高中经典数学教案篇17

一、教材分析:

集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

二、目标分析:

教学重点.难点

重点:集合的含义与表示方法.

难点:表示法的恰当选择.

教学目标

l.知识与技能

(1)通过实例,了解集合的含义,体会元素与集合的属于关系;

(2)知道常用数集及其专用记号;

(3)了解集合中元素的确定性.互异性.无序性;

(4)会用集合语言表示有关数学对象;

2.过程与方法

(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.

(2)让学生归纳整理本节所学知识.

3.情感.态度与价值观

使学生感受到学习集合的必要性,增强学习的积极性.

三.教法分析

1.教学方法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.2.教学手段:在教学中使用投影仪来辅助教学.

四.过程分析

(一)创设情景,揭示课题

1.教师首先提出问题:

(1)介绍自己的家庭、原来就读的学校、现在的班级。

(2)问题:像“家庭”、“学校”、“班级”等,有什么共同特征?

引导学生互相交流.与此同时,教师对学生的活动给予评价.

2.活动:

(1)列举生活中的集合的例子;

(2)分析、概括各实例的共同特征

由此引出这节要学的内容。

设计意图:既激发了学生浓厚的学习兴趣,又为新知作好铺垫

(二)研探新知,建构概念

1.教师利用多媒体设备向学生投影出下面7个实例:

(1)1—20以内的所有质数;

(2)我国古代的.四大发明;

(3)所有的安理会常任理事国;

(4)所有的正方形;

(5)海南省在2004年9月之前建成的所有立交桥;

(6)到一个角的两边距离相等的所有的点;

(7)国兴中学2004年9月入学的高一学生的全体.

2.教师组织学生分组讨论:这7个实例的共同特征是什么?

3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出7个实例的特征,并给出集合的含义.一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.

4.教师指出:集合常用大写字母A,B,C,D,?表示,元素常用小写字母a,b,c,d?表示.

设计意图:通过实例让学生感受集合的概念,激发学习的兴趣,培养学生乐于求索的精神

(三)质疑答辩,发展思维

1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.

2.教师组织引导学生思考以下问题:

判断以下元素的全体是否组成集合,并说明理由:

(1)大于3小于11的偶数;

(2)我国的小河流.让学生充分发表自己的建解.

3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.

4.教师提出问题,让学生思考

b是(1)如果用A表示高—(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,

高一(4)班的一位同学,那么a,b与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.

如果a是集合A的元素,就说a属于集合A,记作a?A.

如果a不是集合A的元素,就说a不属于集合A,记作a?A.

(2)如果用A表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A的关系分别是什么?请用数学符号分别表示.

(3)让学生完成教材第6页练习第1题.

5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A组第1题.

6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:

(1)要表示一个集合共有几种方式?

(2)试比较自然语言.列举法和描述法在表示集合时,各自的特点?适用的对象是什么?

(3)如何根据问题选择适当的集合表示法?

使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

设计意图:明确集合元素的三大特性,使学生弄清楚三种表示方式的优缺点,从而突破难点。

(四)巩固深化,反馈矫正

教师投影学习:

(1)用自然语言描述集合{1,3,5,7,9};

(2)用例举法表示集合A?{x?N1?x?8}

(3)试选择适当的方法表示下列集合:教材第6页练习第2题.

设计意图:使学生及时巩固所学新知,体会三种表示方式存在的必要性和适用对象

(五)归纳小结,布置作业

小结:在师生互动中,让学生了解或体会下例问题:

1.本节课我们学习了哪些知识内容?2.你认为学习集合有什么意义?

3.选择集合的表示法时应注意些什么?

设计意图:通过回顾,对概念的发生与发展过程有清晰的认识,回顾集合元素的三大特性及集合的三种表示方式。

作业:1.课后书面作业:第13页习题1.1A组第4题.

2.元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种

呢?如何表示?请同学们通过预习教材.

五.板书分析

高中经典数学教案精选17篇(全文)

将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
101186